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Dephasing Times in a Nondegenerate Two-Dimensional Electron Gas
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Studies of weak localization by scattering from vapor atoms for electrons on a liquid helium surface
are reported. There are three contributions to the dephasing time. Dephasing by the motion of vapor
atoms perpendicular to the surface is studied by varying the holding field to change the characteristic
width of the electron layer at the surface. A change in vapor density alters the quasielastic scattering
length and the contribution to dephasing due to the motion of atoms both perpendicular and parallel to
the surface. Dephasing due to the electron-electron interaction is dependent on the electron density.

PACS numbers: 73.20.Fz, 73.20.Dx, 73.20.Jc
Weak localization of degenerate electrons by elastic
scattering from static impurities has been a topic of
serious study for the last two decades [1]. Recently there
has been a revival of interest in the damping of weak
localization in these systems by the electron-electron
interaction [2–4]. In comparison there have been few
studies of weak localization in nondegenerate systems in
which localization is due to quasielastic scattering from
slowly moving impurities [5–7]. Adams and Paalanen
explored both weak and strong localization of electrons on
a solid hydrogen surface [6–8]. Localization occurred as
a result of scattering from surface imperfections and from
helium atoms that were introduced above the surface.
In our system electrons are confined to two dimensions
above a liquid helium surface. Weak localization results
from quasielastic scattering from slowly moving helium
vapor atoms. This system is particularly interesting
because it possesses an unusual mechanism for damping
quantum effects, namely, the motion of the vapor atoms.
At the same time there are a number of experimentally
tunable parameters (the electron density, the holding field
that helps confine the electrons to the helium surface,
and the vapor density) that can be varied to separate
various damping mechanisms. In this Letter we report
a systematic investigation of the dephasing times in this
nondegenerate two-dimensional electron gas.

Weak localization is a quantum effect that results from
constructive interference between closed electron paths
and their time-reversed counterparts. This constructive in-
terference increases the probability of backscattering and
results in an increase in resistivity over the classical Drude
value. In addition to the electron-electron interaction, in
our system weak localization is damped by the slow mo-
tion of the helium vapor atoms. The velocity of thermal he-
lium atoms is 1% of the electron velocity and the fractional
change in electron energy in a collision is �1022. There
is an important distinction in the way in which weak local-
ization is suppressed by the vertical and horizontal motions
of the helium vapor atoms. Horizontal motion changes the
lengths of the paths introducing a random relative phase
between a path and its approximate time-reversed counter-
part, thereby washing out their interference [9,10]. In con-
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trast vertical motion suppresses weak localization because
roughly speaking the scattering atom may not be present
for both the forward and return paths, thereby reducing
the weight of the interference contribution. Below we esti-
mate the dephasing rate due to vertical motion of the vapor
atoms; more details will be given elsewhere [11]. Similar
ideas have been expressed in Ref. [12], but the precise for-
mula we obtain is different. The corresponding discussion
of horizontal motion is given in Refs. [9,10].

We use a Corbino geometry consisting of four electrodes
located beneath the helium liquid. The resistivity is mea-
sured by capacitively coupling a low frequency ac current
through the electron layer [13]. A normal field is applied
to the inner three electrodes which are used for the resis-
tivity measurement. When the holding field E� is greater
than the saturated field Es � ne�2´0, a positive voltage
V0 is applied to the outermost guard electrode to compen-
sate for fringing fields. We adjust the guard voltage to
maximize the signal. The signal amplitude decreases if
either the area of the third electrode covered with elec-
trons is reduced (which reduces the capacitance between
the electrons and the electrode) or if the diameter of the
electron pool becomes sufficiently large that it capacitively
couples to the guard ring. Numerical calculation with this
optimum value of V0 indicates a nearly uniform electron
density above the three inner electrodes.

For a nondegenerate, two-dimensional electron gas, the
longitudinal conductivity in a magnetic field B perpendicu-
lar to the plane of electrons is given by [7,14]
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Here n is the electron density, m is the electron mass,
m is the mobility, C is the digamma function, t0 is the
quasielastic scattering time, tf is the dephasing time, E
is the energy, and Ec is the cutoff energy below which
electrons are localized. The first term in the curly brackets
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gives the Drude resistivity, and the second term gives the
weak-localization correction. We assume that the total
dephasing rate is given by

t21
f � t21

e-e 1 t21
y 1 t21

h . (2)

Here te-e, ty , and th are the dephasing times due to the
electron-electron interaction, vertical motion, and horizon-
tal motion, respectively.

The dephasing time tf is measured by fitting the longi-
tudinal magnetoresistance. Figure 1 shows a graph of the
longitudinal resistivity �1�sxx� versus magnetic field. The
solid line is given by Eq. (1) with the parameters t0 and
tf adjusted to give the best fit [15]. The dashed line is
the Drude resistivity. In our analysis we calculate Ec self-
consistently from the expression [6,10]

Ec � �h̄�2pt0� ln�tf�t0� . (3)

The fits are relatively insensitive to the value of Ec since
Ec # 250 mK ø T .

The dephasing due to the electron-electron interaction is
caused by the fluctuations in the electric field due to other
electrons. These fluctuations are controlled by thermally
excited plasma oscillations. We therefore assume that the
dephasing rate is inversely proportional to the characteris-
tic plasma frequency

vcp �
p

n3�2e2��2m´� ; ´ � �´ 1 ´0��2 . (4)

To verify this assumption and to separate the contribution
of electron-electron interaction to tf we measured the de-
phasing time as a function of electron density. These data
are shown in Fig. 2 where tf is plotted as a function of
plasma frequency. The data are fit by

tf � tA��1 1 avcptA� . (5)

This equation follows from Eq. (2) with tA defined as
t

21
A � t21

y 1 t
21
h and te-e � 1�avcp . The best fit for

the parameter a is 1.1 6 0.1.

FIG. 1. rxx versus B2; n � 1.7 3 1011 m22, T � 2.15 K,
m � 0.7 m2�V s. The dashed line is the Drude theory.
Figure 2 shows that our data are consistent with the as-
sumption that the time scale for dephasing via electron-
electron interaction is set by the plasma frequency. Further
support for this assumption comes from measurements of
the electronic velocity autocorrelation time which is also
found to be set by the inverse plasma frequency [17]. We
hope this finding will stimulate the development of a the-
ory of dephasing by electron-electron interaction that is
applicable to a nondegenerate electron gas.

We turn now to the damping due to the motion of the
vapor atoms. The theoretical expression for the dephasing
time due to horizontal motion is [9,10]

th � �gt0t2
l�1�3; tl � l�

p
2kBT�M . (6)

Here l is the de Broglie wavelength of the electron, M
is the mass of a helium atom, and the theoretical value of
g � 6. The analogous expression for vertical motion is

ty � � ft0t2
z �1�3; tz � b�

p
kBT�M . (7)

Here b is a measure of the width of the vertical subband
wave function of the electrons and the theoretical value of
f � 9�2. It is a known function of the holding electric
field [see discussion following Eq. (9)]. Equation (7) has
not appeared before in the literature; we sketch its deriva-
tion below. In both Eqs. (6) and (7) it is assumed that the
motion of helium is ballistic on the dephasing time scale
and that tz , tl ¿ t0. Both conditions are met under ex-
perimental conditions.

To test the theoretical expressions, Eqs. (6) and (7), and
to separate ty and th we vary the characteristic width b of
the electronic wave function by changing the holding field.
The range of b was limited by microphonic induced insta-
bilities of the charged surface at small n and large E�. We
calculate ty from Eq. (2) using the empirical value of te-e
and the theoretical value of th [Eq. (6)] but with g as an ad-
justable parameter. The calculated values of ty are plotted
as a function of �t0t2

z �1�3 (see Fig. 3) and the parameter g

FIG. 2. Dephasing time versus inverse plasma frequency.
T � 1.96 K.
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FIG. 3. ty versus �t0t
2
z �1�3. T � 2.165 K. The solid line is

a fit to theory with f � 0.4 and g � 1.3.

is adjusted until the best linear fit through the data passes
through the origin. This yields values of f � 0.4 6 0.1
and g � 1.3 6 0.3. For the measurements shown in Fig. 3
the product kT l was 1.6–2.4 with kT �

p
2mkBT�h̄, and

the product vcpt0 was in the range 0.05–0.08. Thus,
dephasing is dominated by dephasing due to the motion
of helium atoms in these data. The measured dephasing
times ty and th are comparable because b and l are com-
parable (at zero applied holding field b � 7.6 nm while
l � 14 nm at 2.1 K).

A second comparison to the theoretical expressions,
Eqs. (6) and (7), comes from measuring the dependence
of tf on the electron-atom scattering time t0 studied by
changing the vapor density which depends sensitively on
temperature. Combining Eqs. (6) and (7) shows

t21
A � �� ft2

z �21�3 1 �gt2
l�21�3�t21�3

0 . (8)

The coefficient of t
21�3
0 contains temperature dependent

parameters tz and tl. A graph of t
21
A is shown in Fig. 4.

FIG. 4. The quantity t
21
A versus t

21�3
0 .
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The values of t
21
A increase with increasing t

21�3
0 , but the

fits to theory are poor. Figure 4 shows a fit with f � 0.8
and g � 1.0. Similar fits can be obtained with f and g
up to f � 0.4 and g � 4, but the data cannot be fit to the
values f � 0.4, g � 1.0 obtained from the fit to Fig. 3.
For these measurements the product kT l was in the range
2.4–7.5.

We also studied the variation of the scattering time
t0 ~ m with the holding field E�. Figure 5 shows a plot
of the mobility as a function of the width b for electrons
on both isotopes of helium. Curves represent scaled theo-
retical values. The data are inconsistent with theory, which
predicts the mobility to be linear in b [18]. Values of kT l
were in the range 1.6–2.4 and 1.0–1.3 for 4He and 3He,
respectively, and Ec was as large as 600 mK for 3He. The
differences in behavior for the two isotopes may be related
to the close approach to strong localization for 3He.

We turn now to the derivation of the formula for damp-
ing due to vertical motion of the vapor atoms [Eq. (7); see
Ref. [11] for more details]. If we treat the helium vapor
atoms as hard-core potentials, the contribution of a path
to the return amplitude is a product of the amplitude to
scatter off the first atom, multiplied by the amplitude to go
to the second atom, multiplied by the amplitude to scat-
ter off the second atom, and so on around the loop. Let
A�z� be the amplitude to scatter from an atom at a height
z above the liquid helium surface. We choose

A�z� �
16pah̄2

mb3 z2 exp

µ
2

2z
b

∂
for z . 0

� 0 for z , 0 . (9)

This is derived by taking the vertical subband wave func-
tion of the electrons to be of the variational form c�z� �
2b23�2z exp�2z�b� [19]. The helium atoms are treated
as hard-core potentials; a is the s-wave scattering length,

FIG. 5. Mobility versus the variational parameter b. Open
symbols: 4He at T � 2.165 K; closed symbols: 3He at T �
1.26 K. Curves are theory�1.75: solid, 4He; dashed, 3He.
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and the variational parameter b is a function of the applied
field.

We now assume the helium atoms are allowed to move
vertically [20]. Since a given atom is encountered at differ-
ent times on the forward and return paths we must consider

Q�t� � �A�z�A�z 1 yt�	 . (10)

Here t is the difference in the times at which the atom is
encountered on the forward and return paths. The atom is
assumed to move ballistically at vertical speed y for this
time. �· · ·	 denotes an average over all possible configura-
tions of the helium atom (vertical position is assumed to
be uniformly distributed and vertical speed is given by the
Maxwell-Boltzmann formula). The interference between
the forward and return paths is then reduced by the fac-
tor q�t� � Q�t��Q�0� due to the motion of this atom. A
path of duration t encounters t�t0 atoms; hence its inter-
ference with its time-reversed partner is reduced by a factor
of q�t�t�t0 due to the vertical motion of all the atoms. This
estimate is improved by noting that the difference in times
at which an atom is encountered by the forward and return
paths is not the same for all atoms: it varies from zero (for
atoms in the middle of the path) to t (for atoms at the ends).

Using Eqs. (9) and (10) we find that the contribution of
paths of duration t is reduced by exp�2t3�t3

y� [21] and
tz

y is given by Eq. (7). In general, damping factors vary as
exp�2Ctg�. For electron-electron interactions, g � 1; for
both horizontal and vertical motions of the helium atoms,
g � 3.

In conclusion, we have succeeded in separating the three
contributions to the dephasing times. The times ty and
th are found to be consistent with the predicted func-
tional forms. The experimentally determined values of the
numerical coefficients are f � 0.4 0.8 and g � 1.0 1.5
(values based on the analysis of Fig. 3 which we believe
provides a more reliable estimate than Fig. 4). These val-
ues are an order of magnitude smaller than the correspond-
ing theoretical values. The reduction in ty with an increase
in holding field has a simple explanation. Increasing the
field reduces the width of the volume occupied by elec-
trons and, therefore, enhances the escape of atoms from
this volume. Nothing was known regarding the dephasing
time due to electric field fluctuations of other electrons.
We found te-e empirically to be �v21

cp , the only obvious
characteristic time associated with the electron gas.
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