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The motion of wave packets can be easily determined for any Hamiltonian that is quadratic in
position and momentum, even if the coefficients of the terms in the Hamiltonian vary with time. The
method is based on the existence of an invariant operator, linear in position and momentum, the
coefficients of these operators being solutions of the corresponding classical system. This
immediately yields a set of very simple wave packets whose evolution is easily determined, and
whose magnitude has the same form as the energy eigenfunctions of the harmonic oscillator~i.e.,
Gaussian or Hermite–Gaussian!. This set provides a complete basis for finding the evolution of any
state and the exact propagator is readily determined. For the harmonic oscillator, this set includes
coherent states, squeezed states, displaced number states, and squeezed number states as special
cases. The following important properties hold for every quadratic Hamiltonian, no matter what
time dependence is present in the Hamiltonian:~1! The motion of the centroid of any wave packet
separates from that of any moments relative to the centroid.~2! Every detail of the evolution of the
quantum system can be calculated from the solutions of the corresponding classical system.~3!
Wave functions of Gaussian~or Hermite–Gaussian! form will retain that form as they evolve.
© 1999 American Association of Physics Teachers.
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I. INTRODUCTION

One of the disappointments about most introduct
courses on quantum mechanics is that they contain so
about the motion of wave packets. The main emphasis i
the eigenfunctions of the Hamiltonian and these have no
tion if bound and are not normalisable if unbound. Histo
cally these energy eigenfunctions were very important
cause of their direct application to spectroscopy, but w
packet motion is important in considering quantum mech
ics as a complete theory and understanding its relatio
classical mechanics. In part, the reason for the neglec
wave packet motion has been the technical difficulty of de
ing with it in terms of eigenfunctions of the Hamiltonia
Here I will show that, for an important class of Hamilt
nians, one can easily find endless examples of simple w
packets whose evolution is simply determined in terms of
solutions of the corresponding classical system. Furtherm
these wave packets provide a complete basis from which
motion of an arbitrary wave function can be calculated.~The
term ‘‘wave packet,’’ instead of ‘‘wave function,’’ will indi-
cate normalisability and the existence of the expectation
ues of position and momentum and their squares.!

A quadratic Hamiltonian is one that is quadratic in t
position and momentum operators. Thus, for a Hermi
Hamiltonian in one space dimension, the most general f
is

Ĥ5 1
2ap̂21 1

2b~ p̂x̂1 x̂p̂!1 1
2cx̂21 f p̂1gx̂. ~1!

The analysis used here works even when the coeffici
a, b, c, f, gvary with time. These quadratic Hamiltonian
include many important cases; for example: free parti
particle moving vertically under gravity; particle in a tim
varying, spatially homogeneous electric field; harmonic
cillator; driven harmonic oscillator~g varying with time!.

Usually b50 and thena51/m andc5mv2 ~if it is posi-
tive!; the massm and frequencyv may vary with time. We
keep the termp̂x̂1 x̂p̂ in the development of the theory b
cause it can represent a homogeneous magnetic field in
336 Am. J. Phys.67 ~4!, April 1999
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than one dimension and because an arbitrary Hamilton
can be approximated locally by a quadratic one if the wa
function is sufficiently localised.1 This requires a time-
dependent quadratic~even if the exact Hamiltonian does no
vary with time! because as the system evolves the local q
dratic approximation will change. In general, such an a
proximation will include this cross term.

There are many examples of time-dependent quadr
Hamiltonians in quantum optics, e.g., the parametric am
fier or the Paul trap. Their formulation would be in terms
creation and annihilation operators. In this paper, only
mechanical case will be considered and the formulation w
be in terms of position and momentum.

The analysis used here is based on the existence of a t
dependent invariant operator. Invariant operators are ge
alisations of ‘‘constants of the motion’’ that allow for depe
dence on time. The invariant operators used here are line
position and momentum and have the algebraic propertie
oscillator raising and lowering operators. They can theref
be used to construct wave functions that, apart from a ph
shift and a spatial displacement, have the same form as
energy eigenfunctions of a harmonic oscillator, i.e., a Gau
ian multiplied by a Hermite polynomial~hereafter called
Hermite–Gaussians!. These wave functions retain this form
under the Hamiltonian evolution with time.

Invariant operators, similar to those used here, were u
by Lewis and Riesenfeld2 to analyse the harmonic oscillato
with time-dependent frequency. The role of these opera
in constructing oscillator-like~coherent! states was investi-
gated by Hartley and Ray.3 Much of the present work is
closely related to developments, in the context of quant
optics, of Glauber’s theory of coherent states to cover d
placed and squeezed number states.4

Very many time-dependent quadratic systems have b
analysed using various methods.2,5 One commonly used ap
proach is based on Lie algebra.6 The present work aims to
give a simpler unified approach to this whole class of s
tems, an approach which emphasises their close relation
the corresponding classical systems.
336© 1999 American Association of Physics Teachers
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Schrödinger’s picture will be used throughout, but the
troduction of the ‘‘total time derivative of an operator’’ wi
result in a great simplification in the algebra, and allow
close parallel with the classical formalism.

II. THE TOTAL TIME DERIVATIVE OF ANY
OPERATOR

For any operatorÂ, its expectation value changes w
time according to

d

dt
^Â&5 K ]

]t
ÂL 1

i

\
^@Ĥ,Â#&, ~2!

which can be found in any textbook on quantum mechan7

The first term comes from the intrinsic time dependence iÂ
and the second from the way the states change with tim
is convenient, therefore, to define the ‘‘total time derivativ
of any operatorÂ to be8

d

dt
Â[ Ȧ̂ª

]

]t
Â1

i

\
@Ĥ,Â#. ~3!

@I use aªb to denote ‘‘a is defined to beb’’ #. Then it is
always true that

d

dt
^Â&5 K d

dt
ÂL . ~4!

Furthermore, it can easily be seen that the definition~3!
implies that

d

dt
~ÂB̂!5 Ȧ̂B̂1ÂḂ̂,

d

dt
~ f ~ t !Â!5 ḟ Â1 f Ȧ̂, ~5!

which mean that this ‘‘total derivative’’ obeys the same
gebraic rules as ordinary differentiation. It is not necessar
think of it as differentiation in the usual sense; it is enough
know that it obeys the same algebraic rules. The fact that
not defined to be a rate of change of anything does not m
because the operator relations are never the end result;
are the means to finding wave functions, expectation val
or eigenvalues. All we ever use are the properties in Eqs~4!
and ~5!.

III. SOME GENERALITIES ABOUT QUADRATIC
HAMILTONIANS

For the time-dependent Hamiltonian in Eq.~1!, it is easy
to calculate the ‘‘equations of motion’’ using Eq.~3!:

ẋ̂5ap̂1bx̂1 f , 2 ṗ̂5bp̂1cx̂1g. ~6!

These have exactly the same form as the corresponding
sical equations~i.e., Hamiltonian’s equations!. It follows
from Eq. ~4! that the expectation values of position and m
mentum exactly follow a classical trajectory. This is ess
tially Ehrenfest’s result for this system.

For any wave packet defineX̂ª x̂2^x̂&, P̂ª p̂2^ p̂&.
Then, from Eq.~6!,

Ẋ̂5aP̂1bX̂, 2 Ṗ̂5bP̂1cX̂, ~7!

i.e., X̂,P̂ satisfy the undriven equations of motion.@The
terms involving f or g will be referred to as ‘‘driving’’
terms.# Since these equations forX̂ and P̂ do not depend on
x̂ or p̂, the motion of the centroid~defined bŷ x̂& and^ p̂&) is
337 Am. J. Phys., Vol. 67, No. 4, April 1999
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separate from that of any moment relative to the centr
i.e., the expectation value of any operator built fromX̂ and

P̂. For example, it is shown in the Appendix that the spre

in position and momentum (Dxª^X̂2&1/2 and Dpª^P̂2&1/2)
evolve independently of the centroid and are completely
affected byf or g. This is an important simplifying feature o
the evolution with quadratic Hamiltonians; it has been not9

for a homogeneous time-varying force and another exam
will be considered in Sec. IX D. Furthermore, the evoluti
of the spreads can be expressed in terms of solutions o
classical equations of motion. It is shown in the Appen
that the spreads exactly follow those for a set of ident
classical particles subject to the corresponding class
Hamiltonian. Since the centroid and spreads of a w
packet follow exactly those of a set of classical particles
can be calculated from the classical equations of motion,
not surprising that the complete evolution of the wave pac
can also be calculated from the classical equations of mo

It has long been known that there is a way of mapping
wave function into a distribution in phase space~sometimes
negative!! that evolves classically in the case of a quadra
Hamiltonian. This is provided by the Wigner distribution

W~x,p,t !ª
1

h E e2 ipy/hcS x1
1

2
yDc* S x2

1

2
yDdy. ~8!

It has been shown10 that this satisfies the classical Liouvill
equation if the Hamiltonian is quadratic. This means that
distribution evolves as if each point in phase space follo
the trajectory of a classical particle.11 This connection will
not be pursued here; instead we will find the evolution
wave functions by introducing an invariant operator.

IV. INVARIANT OPERATORS

An operator is said to be invariant if its total time deriv
tive is zero; in Eq.~3! the intrinsic time dependence of th
operator cancels that from the commutator. Invariant op
tors corresponds to constants of the motion in the sense
~i! the expectation value with respect to any state is cons
which follows from Eq.~4!, and ~ii ! any eigenstate of an
invariant operator will remain an eigenstate~with unchang-
ing eigenvalue!. To see this observe that

S Ĥ2 i\
]

]t D Âc5S ĤÂ2 i\
]Â

]t
2ÂĤ Dc52 i\ Ȧ̂c. ~9!

So, if Â is invariant andc satisfies Schro¨dinger’s equation

then so doesÂc. Therefore, ifÂc2ac50 at some time,
then it must remain zero. Similarly, if a relation of the for
Âc5f holds at some time, then it will hold at all time
~assumingc, f obey Schro¨dinger’s equation!.

V. INVARIANT OPERATORS FOR QUADRATIC
HAMILTONIANS

It will now be shown that it is possible to construct a
invariant of the form

\â5j p̂2p x̂1\s, ~10!

wherej, p, s, are functions of the time. Using the equatio
of motion, Eq.~6!, it follows that

\ ȧ̂5~ j̇2bj2ap! p̂2~ṗ1cj1bp!x̂1~\ṡ2gj2 f p!
337Mark Andrews
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and thereforeâ will be invariant if

j̇5ap1bj,

~11!
2ṗ5bp1cj,

\ṡ5 f p1gj.

@For the common case whereb50, one can replacep by

mj̇.# That is,j and p must satisfy the equations of motio
for the classical undriven system~i.e., homogeneous, wit
f 5g50) and then

\s5E
0

t

~ f p1gj!dt. ~12!

Any lower limit could be used in this integration; this choi
makess50 at t50. Thus from any two solutions of th
classical undriven system, one can build an invariant of
quantum system, including the driving.

Now \@ â,â†#5 i (jp* 2j* p). This must be constant~be-
causeâ andâ† are invariant! and real. Therefore the require
classical solutions can be taken to be complex and scal
make

i ~jp* 2j* p!5\,

i.e.,

Im~j* p!5 1
2\, ~13!

and then

@ â,â†#51. ~14!

VI. EIGENFUNCTIONS OF INVARIANT
OPERATORS

Let ca
0 be the eigenstate ofâ with eigenvaluea, so that

âca
05aca

0. ~15!

It is convenient to defineâaªâ2a. Then âa is invariant,
âaca

050, and

@ âa ,âa
† #51. ~16!

As in the case of the harmonic oscillator, one can now g
erate the infinite set of orthonormal eigenstates ofâa

† âa ~with
eigenvaluen!:

ca
n5

1

An!
~ âa

† !nca
0 with n51,2,3,... . ~17!

The statesca
n remain eigenstates ofâa

† âa , and relations be
tween them of the form

ca
n115

1

An
âa

†ca
n ~18!

remain true as the states evolve, becauseâa
† is invariant, as in

Eq. ~9!.
This is the heart of the matter; we have constructed

infinite string of states that follow the motion~with continu-
ously changing parametersj, p! but retain the algebraic re
lations that will be seen to preserve the simple form of th
wave functions.
338 Am. J. Phys., Vol. 67, No. 4, April 1999
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A. Expectation values

It will emerge that these eigenfunctionsca
n can be com-

pletely characterized by their expectation values ofx̂ and p̂,
and the spreadsDx andDp . These are easily determined,
follows.

First, note that

^â&5a, ^â†&5a* for all n, ~19!

because^â&5^âa&1a and ^âa&50 since âa lowers the
eigenstate to an orthogonal one.

Equation~10! and its adjoint can be solved forx̂ and p̂,
using Eq.~13!:

x̂5 i ~j* â2jâ†!2 i ~j* s2js* !,
~20!p̂5 i ~p* â2pâ†!2 i ~p* s2ps* !,

and therefore

X̂ª x̂2^x̂&5 i ~j* âa2jâa
† !,

~21!
P̂ª p̂2^ p̂&5 i ~p* âa2pâa

† !.

Now it is easy to calculate the second-order mome
using ^âa

† âa&5n,

Dx
2
ª^X̂2&5j* j~2n11!,

Dxpª^ 1
2~ P̂X̂1X̂P̂!&5z~2n11!, ~22!

Dp
2
ª^P̂2&5p* p~2n11!,

wherezªRe(j*p). From this definition ofz and Eq.~13! it
follows that

j* p5z1 1
2i\. ~23!

Hence, for these eigenstates, the three moments are rel

Dx
2Dp

22Dxp
2 5 1

4\
2~2n11!. ~24!

In the Appendix, this relation is compared with the cor
sponding one for an arbitrary wave packet. Equation~22!
shows that the classical solutionj, p determines the sprea
of the wave packets, and then Eq.~20! shows that the eigen
valuea determineŝ x̂& and ^ p̂&.

B. Wave functions

Equation~10!, minus its expectation value, becomes

\âa5j~ p̂2 p̄!2p~ x̂2 x̄!, ~25!

where p̄ª^ p̂&, x̄ª^ x̂&. In Schrödinger’s representation
where p̂52 i\]/]x, the solution ofâaca

050 is therefore,
apart from normalization,

ca
05expF ip

2\j S x2 x̄1
j

p
p̄D 2G . ~26!

This is more easily understood if it is expressed as a
Gaussian multiplied by a phase factor~that varies withx!.
The exponent in Eq.~26! is

i

2\ Fpj ~x2 x̄!212p̄~x2 x̄!1
j

p
p̄2G

5 iu2F S x2 x̄

2uju D
2

2S p̄

2upu D
2G ,
338Mark Andrews
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uª
1

2\ FzS x2 x̄

uju D 2

12p̄~x2 x̄!1zS p̄

upu D
2G . ~27!

Here we have used, from Eq.~23!,

p/j5j* p/uju25~z5 1
2i\!/uju2,

~28!j/p5jp* /upu25~z2 1
2i\!/upu2.

Therefore,

ca
05eiu exp@2$ 1

2~x2 x̄!/uju%2#exp@$ 1
2p̄/upu%2#. ~29!

The last term will be absorbed into the normalization ofca
0.

To deal with the states withn.0, we need12 the effect of
interchangingâa andeiu.

From @ â,eiu(x)#5\21j@ p̂,eiu(x)#5ju8 it follows that, for
any wave functionc,

âaeiuc5eiu~ âa1ju8!c

5eiu
j

\ H F p̂2 p̄2
p

j
~x2 x̄!G1Fz ~x2 x̄!

uju2 1 p̄G J c

5eiu
j

\ H p̂2
i\

2uju2 ~x2 x̄!J c,

where we have again used Eq.~28!. Thus

âaeiuc5ei ~u1b!âc, ~30!

where

âª
uju
\

p̂2
i

2uju ~x2 x̄!, ~31!

andb is the phase ofj, so that

eib5j/uju. ~32!

It is easily verified that@ â,â†#51 and it is possible to con
struct a basisf uju

n (x2 x̄) of real eigenstates ofâ†â such that
âf uju

0 50 andf uju
n11

ªn21/2âf uju
n . These, of course, are ju

the ordinary oscillator eigenstates, centered onx̄, with scale
set by uju. They can be expressed in terms of the Herm
polynomials:13

f uju
n ~y!5~2p!21/4uju21/222n/2~n! !21/2

3exp~2 1
4 uju22y2!Hn~221/2uju21y!. ~33!

Now the complex eigenstatesca
n of âa

† âa can be ex-
pressed in terms of the realf uju

n as

ca
n
ªei ~u1nb!f uju

n ~x2 x̄!, ~34!

because then Eq.~30! shows that Eqs.~15! and ~18! are
satisfied.

@Proof: âaca
05âaeiuf uju

0 5ei (u1b)âf uju
0 50 and ca

n11

5ei @u1(n11)b# f uju
n11 5 n21/2ei @u1(n11)b# â f uju

n 5 n21/2 âa

3ei (u1nb)f uju
n 5n21/2âaca

n .#
Note thatca

n retains the form given in Eq.~34! for all
time, butj andp change with time~on a classical trajectory!
and therefore so dou, b, and z. It is remarkable that an
Gaussian or Hermite–Gaussian wave packet will retain
form even with arbitrary time variation of the forces~or the
mass! as long as the dependence of the Hamiltonian onx and
p remains quadratic.
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VII. THE EVOLUTION OF AN ARBITRARY WAVE
FUNCTION

For any complex solutionj, p ~of the undriven system!
and any eigenvaluea, the setca

n for n51,2,3,... is complete
Therefore the time-evolutionC(x,t) of any wave function
C(x,0), given at timet50, can be obtained by expanding
in terms of theca

n(x,0). Thus, if

C~x,0!5(
n

cnca
n~x,0! ~35!

then

C~x,t !5(
n

cnca
n~x,t !. ~36!

For some purposes it might be possible to take just a
terms of this expansion to give a wave packet of des
form by a suitable choice of thecn , and then Eq.~36! can be
used directly. If the exact evolution of an arbitrary initi
wave functionC(x,0) is required then the orthonormality o
the ca

n can be used to find thecn :

cn5E
2`

`

ca
n* ~x,0!C~x,0!dx. ~37!

Although the basis is complete for any choice ofj0 , p0 ,
anda, one would naturally choose these to match the spre
and means of the wave packet, particularly if numerical c
culations were to be undertaken.

The propagator.Inserting~37! into Eq. ~36! gives

C~x,t !5E
2`

`

K~x,x8,t !C~x8,0!dx8, ~38!

where

K~x,x8,t !5(
n

ca
n~x,t !ca

n* ~x8,0!

5eiDu(
n

einDbf uju
n ~x2 x̄!f uj8u

n
~x82 x̄8!, ~39!

whereDuªu(x,t)2u(x8,0) andDbªb(t)2b(0). Writing
yª(x2 x̄)/(&uju) and inserting Eq.~33! gives

K~x,x8,t !5
eiDb

A2pujj8u
exp2[ 1

2 ~y21y82!]

3(
n

einDb

2nn!
Hn~y!Hn~y8!. ~40!

This sum can be carried out exactly using Mehle
formula:14

(
n

zn

2nn!
Hn~y!Hn~y8!

5
1

A12z2
expH 2zyy82z2~y21y82!

12z2 J , ~41!

which leads to
339Mark Andrews
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K~x,x8,t !5
1

A24p i ujj8usin Db
expH i FDu2

1

2
Db

1
2yy82~y21y82!cosDb

2 sin Db G J . ~42!

This is not the most useful form for the propagator, beca
there are cancellations betweenDu and the last term. A mor
direct method will be given elsewhere.

VIII. DETERMINING j, p

To deal with specific examples, it helps to express
required classical solutionj, p ~of the undriven system! in
terms of a standard basis of real solutions. In the pre
one-dimensional case, two real solutions are needed. In
section, it will be assumed that there is no cross term in
Hamiltonian (b50). Then the undriven equations of moti
are

p5mẋ, ṗ52cx ~43!

~m andc may vary with time!. We can take the real basis
solutions of this to bex5u(t) with u(0)51, u̇(0)50, and
x5n(t) with n(0)50, m0ṅ(0)51. The complex solutionj
must be a linear combination of these and, since a con
phase factor can be removed, we can take

j5Du1eiwhn, p5m~Du̇1eiwh ṅ !, ~44!

whereD, h, w are constants. From Eq.~22!, D is the initial
value ofDx for any n50 state, andh is the initial value of
Dp . To satisfy the normalization condition Eq.~13!, we re-
quire

Dh sin w5 1
2\. ~45!

Thus there are only two parameters to be chosen to d
mine the solution and these could beD and h, the initial
spreads in position and momentum. The initial value oz
ªRe(j*p) is

z05Dh cosw. ~46!

In terms of this,

j5Du1D21@z01 1
2i\#n, ~47!

and

D2h25z0
21 1

4\
2, ~48!

as in Eq.~24!.
Expectation values of position and momentum follow

classical motion and therefore

x̄[^x&5 x̄0u1 p̄0n,
~49!p̄[^p&5m~ x̄0u̇1 p̄0ṅ !.

The second-order moments for anyn50 state, given in
Eq. ~22!, now work out to be

j* j5D2u212z0un1h2n2,

z5m@D2uu̇1z0~uṅ1u̇n!1h2nṅ#, ~50!

p* p5m2@D2u̇212z0u̇ṅ1h2ṅ2#,

agreeing with Eq.~A4! for an arbitrary wave packet.
The generic form of the eigenfunctions is more ea

found if the origin of time is taken to be whenz50, so that
340 Am. J. Phys., Vol. 67, No. 4, April 1999
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z050. Then, by Eq.~48!, Dh5 1
2\ and therefore anyn50

state is a minimum-uncertainty state at that time. Also
follows from Eqs.~45! and ~46! that cosf50 and sinf51
and thereforej5Du1 i hn, where h5 1

2\D21. ~In the
cases examined in this paper, no loss of generality is cau
by this assumption that there is a finite time for whichz
50, which implies that there is some time when then50
state has the minimum possible uncertainty product. It
unknown to me whether this is true for any quadratic Ham
tonian.!

IX. EXAMPLES OF UNDRIVEN SYSTEMS „WITH b
50…

The steps to be taken to find the set of wave packetsca
n

and their evolution are as follows.

~1! Solve the classical equations of motion (d/dt)(mẋ)
52cx for u, n. ~If this cannot be done analytically, the
a computed solution will do.!

~2! Choose the initial spreadD. ~It is being assumed that the
initial time will be such thatz050.) This determinesj,p

with j5Du1 i hn, p5mj̇, andh5 1
2\D21.

~3! Choose the initial meansx̄0 ,p̄0 . Then the invariant ei-
genvalue is, from Eq.~10!, \a5D p̄02 i h x̄0 .

~4! Then the infinite set of wave packets is given by Eq
~34! and ~33!.

A. Free particle „ ẍ50, u51, n5t/m…

The motion of the centroid is very simple:p̄5 p̄0 , x̄5 x̄0

1m21p̄0t. Also

j5D1 im21ht, p5 i h, z5m21h2t, ~51!

and therefore

uju25D21m22h2t2. ~52!

The spread in momentum does not change with time. S
tially, the packet narrows and then spreads. At its minimu
spread, it has the minimum uncertainty product.

The Gaussian solution of the free Schro¨dinger equation is
discussed in many texts.15 The Hermite–Gaussians have ha
little ~if any?! attention in quantum mechanics but they a
well known in the wave optics of axisymmetric optical sy
tems, where the paraxial wave equation takes the form o
one-dimensional free Schro¨dinger equation~with time re-
placed by distance along the axis!.16

B. Damped free particle

As an example of a time-dependent undriven system, c
sider the HamiltonianĤ5e2gt p̂2/2m. This is the Caldirola–
Kanai Hamiltonian for the damped motion of a fre
particle.17 The classical equations of motion arep5egtmẋ
andṗ50, which lead toẍ1g ẋ50. Thusg gives the strength
of the damping force. The basis of solutions of this isu51
and n5(12e2gt)/mg. Hence p̄5 p̄0 , x̄5 x̄01m21p̄0t,
wheretª(12e2gt)/g. Also

j5D1 im21ht, p5 i he2gt, z5m21h2e2gtt.
~53!

For smallg these quantities revert to those for the undamp
case. Note that the spread of the packet, measured byuju,
tends to a constant value at large times. The evolution o
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typical wave packet is compared with that for the undam
case in Fig. 1. A model of the Brownian motion of a qua
tum particle results from adding a stochastic driving forc17

this also comes within the scope of the present method.

C. Harmonic oscillator †m and v constant: ẍ52v2x,
u5cosvt, n5„vm…

21 sin vt‡

Write LªA2mv/\ ~with the dimensions of length! and
sªD/L ~sometimes called the squeezing factor!. Then

j5L~s cosvt1 is21 sin vt !,

p5mvL~2s sin vt1 is21 cosvt !, ~54!

z5 1
4\~s222s2!sin 2vt.

So the spreads oscillate with angular period 2v. Unlessa
50 these states are~or will be! spatially displaced from th
centre of the oscillator; they correspond to what are ca
displaced number statesin quantum optics.4 If s51 thenz
50 for all time andj5Leivt so uju and upu do not change
with time; these are calledcoherent states. If sÞ1 they are
calledsqueezed states.

The displaced oscillator ground state was discovered
Schrödinger18 in 1926, the squeezed equivalent was found
Kennard19 in 1927, and displaced number states were disc
ered by Senitzky20 in 1954.

D. Parabolic hill †ẍ5l2x, u5coshlt, n
5„ml…

21 sinh lt‡

j5D coshlt1 i ~ml!21 sinh lt,
~55!z5 1

2ml@D21~ml!22h2#sinh 2lt.

The width of the packet narrows and then spreads, as
the free particle; but here the rate of spreading is ultima
exponential with time instead of linear. This is an interest
case in which to contemplate the separation of the motio
the centroid from that of the moments~relative to the cen
troid!. The spreads evolve independently of whether the
troid goes over the hill or retreats before the top. In the c
of two classical particles starting together with different
locities, their distance apart goes as sinhlt whether they
both go over the hill or one goes over and the other f
back! Also, in the quantum case the wave packet rem
Gaussian21 ~or Gauss–Hermite! in either case!

Fig. 1. Evolution of a Gaussian wave function for a free particle~the top
three curves! arranged to havêx̂& pass throughx51 at t50 and to have its
minimum spread there. Also~the bottom three curves! the similar evolution
for a damped free particle arranged to pass throughx50 at t50. In both
cases the dashed curves give the trajectory of the points wherex5^ x̂&
62uju, i.e., the points where the Gaussian falls off to 1/e of its central
value.~The parameters arem5p5g51, D50.1, h50.2.)
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X. DRIVEN SYSTEMS

All higher moments, i.e., averages over products of de
tions from the mean, are the same as for the correspon
undriven system. Only the effects of the driving onx̄ and p̄
need be considered and this is essentially an exercise in
sical mechanics. From Eq.~20!,

x̄5x% 12 Im~j* s!, p̄5p% 12 Im~p* s!, ~56!

where x% ,p% are the mean position and momentum for
undriven system. Using Eq.~12!,

Im~j* s!5\21E
0

t

$Im~j* ~ t !j~ t8!!g~ t8!

1Im~j* ~ t !p~ t8!! f ~ t8!%dt8,
~57!

Im~p* s!5\21E
0

t

$Im~p* ~ t !j~ t8!!g~ t8!

1Im~p* ~ t !p~ t8!! f ~ t8!%dt8.

It is convenient to write this as

Im~j* s!5
1

2 E
0

t

$A~ t,t8!g~ t8!1B~ t,t8! f ~ t8!%dt8,

~58!

Im~p* s!5
1

2 E
0

t

$2B~ t8,t !g~ t8!1C~ t,t8! f ~ t8!%dt8,

where

A~ t,t8!ª2\21 Im~j* ~ t !j~ t8!!,

B~ t,t8!ª2\21 Im~j* ~ t !p~ t8!!, ~59!

C~ t,t8!ª2\21 Im~p* ~ t !p~ t8!!.

In terms of the basisu, n of classical solutions~for b
50)

A~ t,t8!5u~ t !n~ t8!2n~ t !u~ t8!,

B~ t,t8!5m@u~ t !ṅ~ t8!2n~ t !u̇~ t8!#, ~60!

C~ t,t8!5m2@ u̇~ t !ṅ~ t8!2 ṅ~ t !u̇~ t8!#

and, by Eq.~49!,

x% 5 x̄0u1 p̄0n, p% 5m~ x̄0u̇1 p̄0ṅ !. ~61!

XI. EXAMPLES OF DRIVEN SYSTEMS

A. Motion under gravity

With our definition of driving, this is a free particle with
constant driving termg. Thus u and n are as for the free
particle and then

A~ t,t8!5~ t82t !/m, B~ t,t8!51, C~ t,t8!50. ~62!

Evaluating the integrals in Eq.~58! and adding to Eq.~61!
gives

x̄5 x̄01m21p̄0t2
1

2m
gt2, p̄5 p̄02gt, ~63!

as expected.

B. Time-varying, spatially homogeneous field„Ref. 9…

This case is the same as in Sec. X A except thatg now
varies with time,
341Mark Andrews
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x̄5 x̄01m21p̄0t2m21E
0

t

~ t2t8!g~ t8!dt8,

~64!

p̄5 p̄02E
0

t

g~ t8!dt8.

C. Driven oscillator „Ref. 5…

Consider the driving to be through a termg(t)x in the
Hamiltonian. The undriven case was dealt with in Sec. IX
Hence,

A~ t,t8!5~vm!21 sin@v~ t2t8!#,

B~ t,t8!5cos@v~ t2t8!#, ~65!

C~ t,t8!5vm sin@v~ t2t8!#,

and therefore

x̄5 x̄0 cosvt1~mv!21p̄0 sin vt

1~mv!21E
0

t

sin@v~ t82t !#g~ t8!dt8,

~66!
p̄52mv x̄0 sin vt1 p̄0 cosvt

2E
0

t

cos@v~ t82t !#g~ t8!dt8.

XII. CONCLUSION

It has been shown that, for any quadratic Hamiltonian,
can form a time-dependent invariant operatorâ, using trajec-
tories of the corresponding classical system. This enable
construction of wave packets~with the form of oscillator
eigenstates! that follow the classical motion~as do all nor-
malisable wave packets!. The evolution of any wave functio
can also be calculated through the explicit propagator. T
every detail of the evolution of a quantum quadratic sys
can be calculated from the trajectories of the correspon
classical system. The initial values, however, are subjec
constraints~such as the uncertainty relations! that are not
present for the classical system.

The method used is applicable for arbitrary time dep
dence in the Hamiltonian and it makes little difference to
development of the theory whether such time dependen
present or not;â will vary with time in either case. Even i
the case of a time-independent Hamiltonian this method
advantages over the usual method of expanding in ei
states of the Hamiltonian in that the states used here
wave packets following the classical motion. Thus in
case of a free particle the energy eigenstates are plane w
whereas in the present method the Gaussian packet an
Gauss–Hermite packets emerge. In the case of the harm
oscillator, the displaced oscillator ground state, the sque
states, and the displaced number states emerge.

APPENDIX: MOMENTS OF ARBITRARY WAVE
PACKETS

It is shown here that the second-order moments of an
bitrary wave packet have some simple properties for q
dratic Hamiltonians. From Eqs.~5! and ~7!,
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d

dt
~X̂2!5a~ P̂X̂1X̂P̂!12bX̂2,

d

dt
~ P̂X̂1X̂P̂!52aP̂222cX̂2, ~A1!

d

dt
~ P̂2!522bP̂22c~ P̂X̂1X̂P̂!.

Thus, defining the second-order momentsDx , Dp , Dxp
as in Eq.~22!,

d

dt
Dx

252aDxp12bDx
2,

d

dt
Dxp5aDp

22cDx
2, ~A2!

d

dt
Dp

2522bDp
222cDxp .

The product of any two solutionsx1 ,p1 andx2 ,p2 of the
classical undriven equations,ẋ5ap1bx, 2 ṗ5bp1cx,
will satisfy Eq. ~A2!; this is easily seen because the alge
is the same as for Eq.~A1!. If these two classical solution
are independent, thenx1

2,x1x2 ,x2
2 will provide a basis forDx

2

and so on, so that we can write

Dx
25Ax1

212Bx1x21Cx2
2,

Dxp5Ax1p11B~x1p21x2p1!1Cx2p2 , ~A3!

Dp
25Ap1

212Bp1p21Cp2
2.

If the solutionsx1 ,p1 and x2 ,p2 are chosen so that in
tially x1(0)51, p1(0)50 and x2(0)50, p2(0)51, then
putting A, B, C equal to the initial values ofDx

2, Dxp , Dp
2

will satisfy the initial conditions of Eq.~A3!. That is,

Dx
25Dx

02
x1

212Dxp
0 x1x21Dp

02
x2

2,

Dxp5Dx
02

x1p11Dxp
0 ~x1p21x2p1!1Dp

02
x2p2 , ~A4!

Dp
25Dx

02
p1

212Dxp
0 p1p21Dp

02
p2

2.

Thus the evolution of the second-order moments of an a
trary wave packet is simply expressed in terms of class
trajectories.

The initial values of these three second-order moments
initially independent, but they do not evolve independen
it is easily derived from Eq.~A2! that Dx

2Dp
22Dxp

2 is con-
stant. Furthermore this quantity satisfies the inequality

Dx
2Dp

22Dxp
2 > 1

4\
2. ~A5!

This can be derived from a form of Schwarz’s inequality

4^P̂2&^X̂2&>^P̂X̂1X̂P̂&2u^P̂X̂2X̂P̂&u2. ~A6!

It is interesting that Schro¨dinger noted22 in 1930 that this
inequality is stronger than Heisenberg’s uncertainty ineq
ity. Equation ~24! shows that then50 states saturate th
inequality in Eq.~A5! in the sense that equality holds at
times.23

A set of N identical classical particles moving under th
Hamiltonian will have the same evolution equations for th
moments, defined byx̄ªN21( ix

i , Dx
2
ªN21( i(x

i2 x̄)2,
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etc. In this caseDx
2Dp

22Dxp
2 is constant, but must be non

negative ~rather than not less than14\
2 in the quantum

case!.24
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HIT THAT DESK, SOLDIER!

In American parlance the expression ‘‘basic training’’ refers to the instruction given to recruits
in the armed forces. Its purpose is to ensure that the trainees emerge with the fitness that will be
expected of them when they embark on their main mission ...

But this course isunlike a boot camp in that you will not be asked to do things without
question; no instructor will bark at you to ‘‘hit that desk and given me fifty derivatives ofex. ’’
You are encouraged to question everything, and as far as possible everything you do will be given
a logical explanation and motivation.

The coursewill be like a boot camp in that you will be expected to work hard and struggle
often, and will emerge proud of your mathematical fitness.

R. Shankar,Basic Training in Mathematics—A Fitness Program for Science Students~Plenum Press, New York, 1995!, p.
xi.
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