Invariant operators for quadratic Hamiltonians
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The motion of wave packets can be easily determined for any Hamiltonian that is quadratic in
position and momentum, even if the coefficients of the terms in the Hamiltonian vary with time. The
method is based on the existence of an invariant operator, linear in position and momentum, the
coefficients of these operators being solutions of the corresponding classical system. This
immediately yields a set of very simple wave packets whose evolution is easily determined, and
whose magnitude has the same form as the energy eigenfunctions of the harmonic osadlator
Gaussian or Hermite—Gaussjafihis set provides a complete basis for finding the evolution of any
state and the exact propagator is readily determined. For the harmonic oscillator, this set includes
coherent states, squeezed states, displaced number states, and squeezed number states as special
cases. The following important properties hold for every quadratic Hamiltonian, no matter what
time dependence is present in the Hamiltonidn: The motion of the centroid of any wave packet
separates from that of any moments relative to the cent(®idcvery detail of the evolution of the
quantum system can be calculated from the solutions of the corresponding classical $$stem.
Wave functions of Gaussiafor Hermite—Gaussianform will retain that form as they evolve.
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[. INTRODUCTION than one dimension and because an arbitrary Hamiltonian
can be approximated locally by a quadratic one if the wave
One of the disappointments about most introductoryfunction is sufficiently localised. This requires a time-
courses on quantum mechanics is that they contain so littlgependent quadrati@ven if the exact Hamiltonian does not
about the motion of wave packets. The main emphasis is ogary with time) because as the system evolves the local qua-
the eigenfunctions of the Hamiltonian and these have no madratic approximation will change. In general, such an ap-
tion if bound and are not normalisable if unbound. Histori- proximation will include this cross term.
cally these energy eigenfunctions were very important be- There are many examples of time-dependent quadratic
cause of their direct application to spectroscopy, but wavg4amiltonians in quantum optics, e.g., the parametric ampli-
packet motion is important in considering quantum mechanfier or the Paul trap. Their formulation would be in terms of
ics as a complete theory and understanding its relation tgreation and annihilation operators. In this paper, only the
classical mechanics. In part, the reason for the neglect ahechanical case will be considered and the formulation will
wave packet motion has been the technical difficulty of dealpe in terms of position and momentum.
ing with it in terms of eigenfunctions of the Hamiltonian.  The analysis used here is based on the existence of a time-
Here | will show that, for an important class of Hamilto- gependent invariant operator. Invariant operators are gener-
nians, one can easily find endless examples of simple wavgisations of “constants of the motion” that allow for depen-
packets whose evolution is simply determined in terms of th@yence on time. The invariant operators used here are linear in
solutions of the correspor]dlng classical system. Furthe.rmor?,osition and momentum and have the algebraic properties of
these wave packets provide a complete basis from which thgscillator raising and lowering operators. They can therefore
mOt'Qf‘ of an arb|tra,r’y_ wave fun<‘;‘t|on can be.calgula_\t(é_'d]e. be used to construct wave functions that, apart from a phase
term “wave packet,” instead of “wave function,” will indi-  gpitt and a spatial displacement, have the same form as the
cate normalisability and the existence of the expectation Va'énergy eigenfunctions of a harmonic oscillator, i.e., a Gauss-
ues of position and momentum and their squares. ian multiplied by a Hermite polynomialhereafter called
A quadratic Hamiltonian is one that is quadratic in the yermite_GaussiafsThese wave functions retain this form
position and momentum operators. Thus, for a Hermitian,nqer the Hamiltonian evolution with time.
Hamiltonian in one space dimension, the most general form |y ariant operators, similar to those used here, were used
IS by Lewis and Riesenfefdo analyse the harmonic oscillator
N 182 Lpcoo ooy | 12 | £a o with time-dependent frequency. The role of these operators
H=2ap"+ 2b(PX+Xp) + 2cX°+ TP+ g, @ in constructing oscillator-likgcoherent states was investi-
The analysis used here works even when the coefficientgated by Hartley and RayMuch of the present work is
a, b, ¢, f, gvary with time. These quadratic Hamiltonians closely related to developments, in the context of quantum
include many important cases; for example: free particlepptics, of Glauber's theory of coherent states to cover dis-
particle moving vertically under gravity; particle in a time- placed and squeezed number stétes.
varying, spatially homogeneous electric field; harmonic 0s- Very many time-dependent quadratic systems have been
cillator; driven harmonic oscillatofg varying with time. analysed using various methadsOne commonly used ap-
Usuallyb=0 and thera=1/m andc=me? (if it is posi-  proach is based on Lie algettahe present work aims to
tive); the massn and frequencyw may vary with time. We  give a simpler unified approach to this whole class of sys-
keep the termpX+Xp in the development of the theory be- tems, an approach which emphasises their close relation with
cause it can represent a homogeneous magnetic field in motiee corresponding classical systems.
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Schralinger’s picture will be used throughout, but the in- separate from that of any moment relative to the centroid,

result in a great simplification in the algebra, and allow ax - . .
close parallel with the classical formalism. P. For example, it is shown in the Appendix that the spreads

in position and momentumA(:=(X?)Y2 and A ,:=(P?)1?)
Il. THE TOTAL TIME DERIVATIVE OF ANY evolve independently of the centroid and are Completely un-
OPERATOR affected byf or g. This is an important simplifying feature of
the evolution with quadratic Hamiltonians; it has been noted
For any operato, its expectation value changes with for @ homogeneous time-varying force and another example
time according to will be considered in Sec. IXD. Fl_thhermore, the _evolut|on
_ of the spreads can be expressed in terms of solutions of the
A J - I~ classical equations of motion. It is shown in the Appendix
dt (A)= <E A> + % ([H,AD, @ that the spreads exactly follow those for a set of identical
hich be found i textbook ‘ hahi class_ical_ partic_les subject to _the corresponding classical
which can be found In any textbook on quantum mechaniCs.yamiltonian. Since the centroid and spreads of a wave
The first term comes from the intrinsic time dependencg in packet follow exactly those of a set of classical particles and
and the second from the way the states change with time. ttan be calculated from the classical equations of motion, it is
is convenient, therefore, to define the “total time derivative” not surprising that the complete evolution of the wave packet
of any operatod to bé can also be calculated from the classical equations of motion.
) It has long been known that there is a way of mapping any
d. =/3-—i A r [FA] (3 ~wave function into a distribution in phase spasemetimes
Tt At negative) that evolves classically in the case of a quadratic

Hamiltonian. This is provided by the Wigner distribution
[I use a:=b to denote ‘a is defined to beb” ]. Then it is P 4 ¢

always true that

W(X t:zi e~ ipy/h x+1 *x—l dy. 8
(x,p,0)= Px+5 Y|P >y|dy. (8

. d .
dt (A)= <a A>' 4 |t has been showifi that this satisfies the classical Liouville
) , . equation if the Hamiltonian is quadratic. This means that the
Furthermore, it can easily be seen that the definit®n gistribution evolves as if each point in phase space follows

implies that the trajectory of a classical particté This connection will
d .. .. . d L not be pursued here; instead we will find the evolution of
gt (AB)=AB+AB, gt (f(H)A)=fA+fA, (50  wave functions by introducing an invariant operator.

which mean that this “total derivative” obeys the same al- IV. INVARIANT OPERATORS
gebraic rules as ordinary differentiation. It is not necessary to
think of it as differentiation in the usual sense; it is enough to  An operator is said to be invariant if its total time deriva-
know that it obeys the same algebraic rules. The fact that it isive is zero; in Eq.(3) the intrinsic time dependence of the
not defined to be a rate of change of anything does not mattesperator cancels that from the commutator. Invariant opera-
because the operator relations are never the end result; theyrs corresponds to constants of the motion in the sense that
are the means to finding wave functions, expectation valuesi) the expectation value with respect to any state is constant,
or eigenvalues. All we ever use are the properties in EjJs. which follows from Eq.(4), and (ii) any eigenstate of an
and(5). invariant operator will remain an eigenstateith unchang-

ing eigenvalug To see this observe that
Ill. SOME GENERALITIES ABOUT QUADRATIC

HAMILTONIANS Ay=

. oA . . .
AA—i% E—AH) y=—ihAg. (9)

N
H—i# E
For the time-dependent Hamiltonian in EG), it is easy R )
to calculate the “equations of motion” using E(B): So, if A is invariant andys satisfies Schringer’s equation
b Aty IS A s then so doedAy. Therefore, ifAy—ay=0 at some time,
X=aptbx+f, p=bp+cxtg. ©) then it must remain zero. Similarly, if a relation of the form
These have exactly the same form as the corresponding clagy,— 4 holds at some time, then it will hold at all times

sical equations(i.e., Hamiltonian’s equations It follows assumin obev Schidinaer's equatio
from Eg. (4) that the expectation values of position and mo—( % & y g g "

mentum exactly follow a classical trajectory. This is essen-
tially Ehrenfest’s result for this system. V. INVARIANT OPERATORS FOR QUADRATIC

For any wave packet defin&:=%x—(%), P=p—(p). HAMILTONIANS

Then, from Eq.(6), It will now be shown that it is possible to construct an
X=aP+bX —P=bP+cX (7 Invariant of the form
ha=§ép—nmX+ho, (10)

whereé, m, o, are functions of the time. Using the equations
of motion, Eq.(6), it follows that

i.e., X,P satisfy the undriven equations of motiofiThe
terms involvingf or g will be referred to as “driving”

terms] Since these equations férandP do not depend on o
% or P, the motion of the centroittefined by(X) and(p)) is ha=(é—bé—am)p—(w+cé+bm)k+(ho—gé—fm)
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and thereforéd will be invariant if
E=am+Dbé,

—r=bmtce, 19

hio=fm+gé.

[For the common case whele=0, one can replacer by

mé¢.] That is, £ and 7 must satisfy the equations of motion because(a)=(a,)+a and (a,)=0 sincea,

A. Expectation values

It will emerge that these eigenfunctions, can be com-
pletely characterized by their expectation value& aindp,
and the spread&, andA,. These are easily determined, as
follows.

First, note that

(d)=a, (a")=a* (19

lowers the

for all n,

for the classical undriven systefhe., homogeneous, with eigenstate to an orthogonal one.

f=g=0) and then

t
azf (fr+gé)dt. (12)
0

Any lower limit could be used in this integration; this choice

Equation(10) and its adjoint can be solved f& and p,
using Eq.(13):

makeso=0 att=0. Thus from any two solutions of the and therefore

classical undriven system, one can build an invariant of the .

quantum system, including the driving.
Now #[&,a"]=i(&m* — & ). This must be constaitbe-

caused anda' are invariantand real. Therefore the required

x=i(&*a—¢ah)—i(& o~ ¢£o%),
p=i(m*a—mah—i(w* o— mwo*), (20
Xi=%—(X)=i(&*a,—¢£al),

(21)

P:i=p—(p)=i(m*a,— 7).

classical solutions can be taken to be complex and scaled to Now it is easy to calculate the second-order moments,

make

i(gm* — & m)=
e.,

Im(&* 7)=3 (13
and then

[a,a"=1. (14)

VI. EIGENFUNCTIONS OF INVARIANT
OPERATORS

Let 1,02 be the eigenstate & with eigenvaluew, so that

al=ayy, (15
It is convenient to defind,:=&4— «. Thena, is invariant,
a,4°=0, and

[a,.al]1=1. (16)

using(a'a,)=n,
AZ=(X) =g ¢(2n+1),
Aypi=(3(PX+XP))={(2n+1), (22
AZ=(P?)=m*m(2n+1),

where:=Re(¢* 7). From this definition off and Eq.(13) it
follows that

Em=[+3ih. (23
Hence, for these eigenstates, the three moments are related:
AZAS—AZ,=ih3(2n+1). (24)

In the Appendix, this relation is compared with the corre-
sponding one for an arbitrary wave packet. Equatiag)
shows that the classical solutigh = determines the spread
of the wave packets, and then Eg0) shows that the eigen-
value a determinegx) and(p).

As in the case of the harmonic oscillator, one can now geng_ \Wave functions

erate the infinite set of orthonormal elgenstateéﬁa (with
eigenvaluen):

with n=1,2,3,.... (17)

1
A 0
1#2:\/? (ah"yd
The states)!, remain eigenstates éﬂéa, and relations be-
tween them of the form

¢n+1:i éTlﬁn

a \/ﬁ arTa
remain true as the states evolve, beca]sis invariant, as in
Eqg. (9.

(18)

This is the heart of the matter; we have constructed an

infinite string of states that follow the motigwith continu-
ously changing paramete& ) but retain the algebraic re-

lations that will be seen to preserve the simple form of their

wave functions.
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Equation(10), minus its expectation value, becomes
ha,=&(p—p)— m(X=X), (25
where p:=(p), X:=(X). In Schralinger's representation,

where p=—i#dldx, the solution oféat//2=0 is therefore,
apart from normalization,

¢p—ex | (x—7+£_)2
2he =P |

This is more easily understood if it is expressed as a real
Gaussian multiplied by a phase facthat varies withx).
The exponent in Eq26) is

(26)

(x X)2+2p(x— _)+7—§T }

(Xl;fﬂz_(zwl }

=ig-

Mark Andrews 338



where

szi 4 X;Y)z-l-ZH(X—Y)-Fg Eﬂ (27
20 |7\ [¢] =) |
Here we have used, from E{3),
mlé= & ml|é?=({=3in)l|€?,
glm=gn | al?= (¢~ 5|, @9
Therefore,
Yo=e’ exd —{3(x—X)/|£[}*lexd {3pl|m[}?]. (29

The last term will be absorbed into the normalization/gt
To deal with the states with>0, we needf the effect of
interchangingd,, ande'’.
From[a,e'™]=4"1¢p,e'@]=¢6" it follows that, for
any wave functiony,

a,e"'y=e"a,+£0" )y

- (x—X)
:'Hg p—p-— g(—Y)+§W+D ¥
Ef. in
‘i |p-zgeom)y
where we have again used H@8). Thus
a,e'%=e'""Pay, (30
where
. |§|
and B is the phase og, so that
e'f=¢ll¢l. (32

It is easily verified thafa,a’]=1 and it is possible to con-
struct a basmﬁm(x X) of real eigenstates df'a such that

aq’>|§|—0 and% i=n~ 12 a¢|§| These, of course, are just

the ordinary oscillator eigenstates, centeredkpmith scale

VII. THE EVOLUTION OF AN ARBITRARY WAVE
FUNCTION

For any complex solutiog, 7 (of the undriven system
and any eigenvalue, the set!) for n=1,2,3,... is complete.
Therefore the time-evolutiod’ (x,t) of any wave function
V¥ (x,0), given at time =0, can be obtained by expanding it
in terms of they!\(x,0). Thus, if

W (x,00= 2, c/(x,0 (35)
then
W(x,1)=2 Caih(X,1). (36)

For some purposes it might be possible to take just a few
terms of this expansion to give a wave packet of desired
form by a suitable choice of thg,, and then Eq(36) can be
used directly. If the exact evolution of an arbitrary initial
wave functionW (x,0) is required then the orthonormality of
the ¢, can be used to find the,:

Zf ¥ (x,0)¥ (x,0)dx. (37)

Although the basis is complete for any choiceé&gf 7,
anda, one would naturally choose these to match the spreads
and means of the wave packet, particularly if numerical cal-
culations were to be undertaken.

The propagatorlnserting(37) into Eq. (36) gives

set by |&. They can be expressed in terms of the Hermite

polynomials.
¢|n§|(y):(277)_1/4|§|_1/22_n/2(n!)_1/2
€l 72yAHL(27 Mg y). (39

Now the complex eigenstates! of ”T”a can be ex-
pressed in terms of the reaﬂ‘ g as

Wor=e! TR Bl (x =), (34

because then Eq30) shows that Eqs(15) and (18) are
satisfied.

xXexp — 5

[Proof: &,y0=2,e'"¢}=€""Pagl=0 and ¢}
_llot(1B] g+l — e QlOHO DBl gn = 12y,
Xel(0+nﬁ)¢‘n§‘ 1/2 l[l ]

Note thaty! retains the form given in Eq34) for all
time, buté and 7w change with timéon a classical trajectoyy
and therefore so d@, B, and . It is remarkable that any

Gaussian or Hermite—Gaussian wave packet will retain its

form even with arbitrary time variation of the forcésr the
mass$ as long as the dependence of the Hamiltoniax end
p remains quadratic.
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‘lf(x,t)=fco K(x,x",t)¥(x’,00dx’, (38
where
KOG =2 (095" (X0
=472 (XX Pl (X =X), (39)

whereA 6:=6(x,t) — 8(x’,0) andA B:=8(t) — 8(0). Writing
y:==(x—Xx)/(v2|€]) and inserting Eq(33) gives

elAB
——ex
v2m|é€'|

einAﬁ

X2 i Ho(Y)Ha(y).

K(x,x',t)= p—[ 3 (y2+y'?)]

(40)

This sum can be carried out exactly using Mehler’s
formula*

>

n

Hn(y)HA(Y")

= 2"n!
2z Z2(y%+y'2
B p{ yy y y ), @1
\/ﬁ
which leads to
Mark Andrews 339



1 1 {o=0. Then, by Eq(48), ALl=3% and therefore anp=0
K(x,x',t)= - - exp[i[Ae——A,B state is a minimum-uncertainty state at that time. Also it
V—4mi|E€'[sin AB 2 follows from Egs.(45) and(46) that cos¢=0 and sing=1
2yy' —(y2+y'?)cosAB and therefore¢=Au+iCJv, where O=3:A"% (In the
2sinAg } (42 cases examined in this paper, no loss of generality is caused

by this assumption that there is a finite time for whigh
This is not the most useful form for the propagator, because-0, which implies that there is some time when the0
there are cancellations betwe&# and the last term. A more state has the minimum possible uncertainty product. It is
direct method will be given elsewhere. unknown to me whether this is true for any quadratic Hamil-
tonian)

VIll. DETERMINING - &, = IX. EXAMPLES OF UNDRIVEN SYSTEMS (WITH b

To deal with specific examples, it helps to express the=0)

required classical solutiog, 7 (of the undriven systejmin i
terms of a standard basis of real solutions. In the present 1N€ Steps to be taken to find the set of wave packelts

one-dimensional case, two real solutions are needed. In th@d their evolution are as follows.

section, it will be assumed that there is no cross term in th‘?l) Solve the classical equations of motiol/dt)(m¥)
Hamiltonian = 0). Then the undriven equations of motion — —cx for u, . (If this cannot be done analytically, then

are a computed solution will do.
p=mX, p=—cx (43)  (2) Choose the initial spreadl. (It is being assumed that the

(mandc may vary with timg. We can take the real basis of initial time will be such thaty=0.) This determineg, =

. _ . _ y _ _1
solutions of this to bex=u(t) with u(0)=1, u(0)=0, and with ¢=Au+i0p, 7=m¢, andd=zA""
x=p(t) with »(0)=0, my(0)=1. The complex solutio (3) Choose the initial means,,pg . Tﬁen'the_lnvanant ei-
must be a linear combination of these and, since a constant genvalue is, from Eq10), a=Apo—ilXo.

phase factor can be removed, we can take (4) Then the infinite set of wave packets is given by Egs.
' . o (34) and (33).

E=Au+e¢dv, w=m(Au+e'¢0p), (44) ) . ) y

whereA, O, ¢ are constants. From EQ2), A is the initial A. Free particle (x=0, u=1, »=t/m)

value of A, for anyn=0 state, andl is the initial value of The motion of the centroid is very simplp=py, X=X,

A,. To satisfy the normalization condition E(L3), we re- ~ +m~pyt. Also

quire | 1 E=A+im 10t, 7=i0, ¢=m 0%, (51
Al sin ¢=5fi. 49 and therefore

Thus there are only two parameters to be chosen to deter- |£[2= A2+ m~ 20022, (52)

mine the solution and these could Beand [, the initial
spreads in position and momentum. The initial valuelof The spread in momentum does not change with time. Spa-

=Re ) is tially, the packet narrows and then spreads. At its minimum
spread, it has the minimum uncertainty product.

{o=Al cos ¢. (46) The Gaussian solution of the free Sotlirmyer equation is

In terms of this, discussed in many texts. The Hermite—Gaussians have had

1 5 little (if any?) attention in quantum mechanics but they are

E=AutA [ Lotzin]y, (47) well known in the wave optics of axisymmetric optical sys-

and tems, where the paraxial wave equation takes the form of a

o2 42 132 one-dimensional free Schdimger equation(with time re-

A= {5+ 3h", (489 placed by distance along the axi§

as in Eq.(29).

Expectation values of position and momentum follow theB. Damped free particle

classical motion and therefore As an example of a time-dependent undriven system, con-

X=(X)=Xou+pov, sider the Hamiltoniatd = e~ ”'p2/2m. This is the Caldirola—
A\ T (49 Kanai Hamiltonian for the damped motion of a free
= = + . . . . . .
P=(p)=M(XgU +Po?) . _ particlel’” The classical equations of motion ape=e”'m¥x
The second-order moments for any=-0 state, given in  andp=0, which lead tdk+ yx= 0. Thusy gives the strength

Eqg. (22, now work out to be of the damping force. The basis of solutions of thisiis 1
& E= A0+ 2L ur+ 0202, and v=(1—e ")/my. Hence p=py, X=Xg+m py7,
{=m{Auir+ Co(ui+iaw) + %] R
=m[A“ul uv+uvy vv],
0 ¢=A+im 0r, w=i0e ", ¢=m 0% "7
m* w=mA A%+ 2 ouv+ 027, (53
agreeing with Eq(A4) for an arbitrary wave packet. For smally these quantities revert to those for the undamped

The generic form of the eigenfunctions is more easilycase. Note that the spread of the packet, measurefd| by
found if the origin of time is taken to be whef+=0, so that tends to a constant value at large times. The evolution of a
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Fig. 1. Evolution of a Gaussian wave function for a free partithe top
three curveparranged to havéx) pass throughk=1 att=0 and to have its
minimum spread there. Alsghe bottom three curvgshe similar evolution
for a damped free particle arranged to pass throxgl® att=0. In both
cases the dashed curves give the trajectory of the points whe(&)
+2|¢, i.e., the points where the Gaussian falls off t@ df its central
value.(The parameters am=p=y=1,A=0.1,0=0.2.)

typical wave packet is compared with that for the undamped
uan-

case in Fig. 1. A model of the Brownian motion of a

X. DRIVEN SYSTEMS

All higher moments, i.e., averages over products of devia-
tions from the mean, are the same as for the corresponding
undriven system. Only the effects of the driving wandp
need be considered and this is essentially an exercise in clas-

sical mechanics. From E¢R0),
X=X+2Im(¢* o), (56)

where X,p are the mean position and momentum for the
undriven system. Using Eq12),

pP=p+2Im(7* o),

t
|m(§*U)=ﬁ_lfo{lm(§*(t)§(t’))g(t')

+Im(&* () m(t)f(t")}dt’,

tum particle results from adding a stochastic driving force; It is convenient to write this as

this also comes within the scope of the present method.

C. Harmonic oscillator [m and w constant: X= — w?

u=coswt, ¥=_(wm) ! sin wt]

Write L:=v2mw/# (with the dimensions of lengjhand
s:=A/L (sometimes called the squeezing fagtdthen

X,

£=L(s coswt+is ! sin wt),
m=moL(—s sin wt+is™ ! coswt),
{=1h(s 2—s?)sin 2wt.

So the spreads oscillate with angular periag 2nlessa

(54

=0 these states afer will be) spatially displaced from the

¢ (57)
Im(w*o)=ﬁ‘1fo{lm(w*(t)f(t’))g(t’)
+1Im(ar* (t)r(t’)) (") }dt’.
1 1t
Im(g*cr):EJ{A(t,t’)g(t')+B(t,t’)f(t’)}dt’,
0
1 ft (58)
Im(w*a)=§J{—B(t',t)g(t’)+C(t,t’)f(t')}dt’,
0
where
A(t,t):=2A"1 Im(&* (1) &),
B(t,t') =241 Im(& () m(t")), (59)

C(t,t"):=2"1 Im(7* (t)m(t")).

In terms of the basisi, v of classical solutiongfor b

centre of the oscillator; they correspond to what are called

displaced number statdés quantum opticé.If s=1 then{

=0 for all time andé=Le'“! so|¢ and|n| do not change

with time; these are calledoherent statedf s#1 they are
calledsqueezed states

A(t,t")=u(t)p(t’) —v(Hu(t’),

The displaced oscillator ground state was discovered bynq by Eq.(49)
Schralinger®in 1926, the squeezed equivalent was found by '

Kennard®in 1927, and displaced number states were discov-

ered by SenitzI&? in 1954.
D. Parabolic hill [X=A?x, u=coshAt, »
=(mA) ! sinh At]

£=A coshat+i(mn) ! sinhat,

Z=ImA[A2+ (m\) 202]sinh At. (59)

B(t,t")=m[u(t)p(t")—wp(t)u(t")], (60)
C(t,t")=m[u(t) »(t") — v(t)u(t’)]
X=XoU+Pov, P=mXoU+Pov). (61)

Xl. EXAMPLES OF DRIVEN SYSTEMS
A. Motion under gravity

With our definition of driving, this is a free particle with a
constant driving terng. Thusu and v are as for the free
particle and then

Att)=(t'—t)/m, B(t,t')=1, C(t,t")=0. (62

The width of the packet narrows and then spreads, as does
the free particle; but here the rate of spreading is ultimatelfEvaluating the integrals in Eq58) and adding to Eq(61)
exponential with time instead of linear. This is an interestinggives

case in which to contemplate the separation of the motion of
the centroid from that of the momeng=elative to the cen-
troid). The spreads evolve independently of whether the cen-
troid goes over the hill or retreats before the top. In the casgq expected
of two classical particles starting together with different ve- '
locities, their distance apart goes as sithwhether they
both go over the hill or one goes over and the other fall
back! Also, in the quantum case the wave packet remains This case is the same as in Sec. X A except thabw
Gaussiaft- (or Gauss—Hermitein either case! varies with time,

1
o o mele s g2 e
X=Xo+ M ~Pot >m gts, p=po—at, (63

SB. Time-varying, spatially homogeneous fieldRef. 9)
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_ _ t d . PN -
X="Xg+ mflpot—m’lfo(t—t’)g(t’)dt’, at (X?)=a(PX+XP)+2bX?,

1 (64) S
F=Fo—f g(t')dt'. gp (PX+XP)=2aP?-2cX?, (A1)
0

C. Driven oscillator (Ref. 5) %(fﬂ): b2 PR+ KP).
Consider the driving to be through a tergft)x in the

Hamiltonian. The undriven case was dealt with in Sec. IX C. Thus, defining the second-order moments, A,, A,,

Hence, as in Eq.(22),
" — -1 o —t! d
A(t,t")=(om)” " sifw(t—t")], &A§=2anp+2bA§,
B(t,t")=cog w(t—t")], (65
! H ! d
C(t,t")=om sifw(t—t')], qt Ayp=aAj—cAZ, (A2)
and therefore
X=Xg Cos wt+(Mw) *py sin wt 5 Aj=—2bAj—2cA,,.
+(mw)*lft sifw(t’—t)]g(t")dt’, The product of any two solutions; ,p; andx,,p, of the
0

classical undriven equations=ap+bx, —p=bp+cx,
(66)  will satisfy Eq.(A2); this is easily seen because the algebra
is the same as for EqAL). If these two classical solutions
t , o are independent, thert,x;x,,x3 will provide a basis forA2
- fo cod w(t' —t)]g(t")dt’. and so on, so that we can write

A2=AX3+ 2Bx X+ CX3,

P=—MwXq Sin wt+py cos wt

Xl CONCLUSION Ayp=AX1p1+B(X1p2+X2P1) + CXoP2, (A3)
It has been shown that, for any quadratic Hamiltonian, one

can form a time-dependent invariant operatpusing trajec-

tories of the corresponding classical system. This enables the If the solutionsx;,p; and x,,p, are chosen so that ini-

construction of wave packetsvith the form of oscillator tially x,(0)=1, p;(0)=0 and x,(0)=0, p,(0)=1, then

eigenstatesthat follow the classical motiofas do all nor-  iting A, B, Cequal to the initial values oA2, A,,, A2

malisable wave packetsThe evolution of any wave function satisfy the initial conditions of Eq(A3). T)r(mat iSp P

can also be calculated through the explicit propagator. Thus, ’

every detail of the evolution of a quantum quadratic system — A2— 7024 200 X Xp+ Agzxg,

can be calculated from the trajectories of the corresponding

AZ=Api+2Bp;p,+ Cp.

. " . 2 2
classical system. The initial values, however, are subject to Axp:Ag X1P1+ Agp(X1D2+sz1)+Ag XoP5, (A4)
constraints(such as the uncertainty relationthat are not , ,
i 2_ 70?2 0 02,2
present for the classical system. AZ=AY pi+2A7 pip,+AJ ps.

The method used is applicable for arbitrary time depen-
dence in the Hamiltonian and it makes little difference to theThus the evolution of the second-order moments of an arbi-
development of the theory whether such time dependence f§ary wave packet is simply expressed in terms of classical
present or nota will vary with time in either case. Even in trajéctories.
the case of a time-independent Hamiltonian this method has _'I_'he |r_1|t|al values of these three second-ord_er moments are
advantages over the usual method of expanding in eigeribitially independent, but they do not evolve independently;
states of the Hamiltonian in that the states used here aféis easily derived from Eq(A2) that A7A5—AZ is con-
wave packets following the classical motion. Thus in thestant. Furthermore this quantity satisfies the inequality
case of a free particle the energy eigenstates are plane waves, 202 A2 =152 (A5)
whereas in the present method the Gaussian packet and the =x=p “xp™ 4% -
Gauss—Hermite packets emerge. In the case of the harmonjgis can be derived from a form of Schwarz’s inequality,
oscillator, the displaced oscillator ground state, the squeezed L L
states, and the displaced number states emerge. 4(P?) (X% =(PX+XP)?[(PX—XP)|2. (AB)

It is interesting that Schbnger noted in 1930 that this
inequality is stronger than Heisenberg’s uncertainty inequal-

APPENDIX: MOMENTS OF ARBITRARY WAVE ity. Equation (24) shows that then=0 states saturate the
PACKETS inequ%!ity in Eq.(A5) in the sense that equality holds at all
times:

It is shown here that the second-order moments of an ar- A set of N identical classical particles moving under this
bitrary wave packet have some simple properties for quakHamiltonian will have the same evolution equations for their
dratic Hamiltonians. From Eq$5) and (7), moments, defined by:=N"1Z x|, A2:=N"13;(x'-X)?,

342 Am. J. Phys., Vol. 67, No. 4, April 1999 Mark Andrews 342



etc. In this case&iAg—Aip is constant, but must be non- ll‘Foradiscussion of this for’t’he free particle, see Hai-Woong Lee, “Spread-
negative (rather than not less thaf%? in the quantum L of a free wave packet,” Am. J. PhyS0, 438-440(1982.

24 An alternative to this approach is to use Glauber’s displacement operator.
CaSQ. See, for example, M. Boiteux and A. Levelut, “Semicoherent states,” J.
Phys. A6, 589-596(1973.

IEric J. Heller, “Time-dependent approach to semiclassical dynamics,” J13See Ref. 7, p. 61.

Chem. Phys62, 1544-15581975; V. G. Bagrov, V. V. Belov, and I. M. 4 MerzbacherQuantum MechanicéNiley, New York, 1998, 3rd ed., p.
Ternov, “Quasiclassical trajectory-coherent states of a particle in an arbi- gg.

trary electromagnetic field,” J. Math. Phy34, 2855—28591983. 155ee Ref. 7, p. 164.

%H. R. Lewis and W. R. Riesenfeld, “An Exact Quantum Theory of the 185ee, for example, B. E. A. Saleh and M. C. TeiBindamentals of Pho-
Time-Dependent Harmoni(_: Os_cillator and of a Charged Particle in a Time- tonics (Wiley, New York, 1993, p. 51.

Dependent Electromagnetic Field,” J. Math. Phy8, 1458—14731969. R. M. Cavalcanti, “The wave function of a Brownian particle,” Los Ala-

3John G. Hartley and John R. Ray, “Coherent states for the time-dependentmos eprint: quant—ph/9805005 2 May 1998. Phys ReGIE6807—-6809
harmonic oscillator,” Phys. Rev. @5, 382-386(1982. (1998 '
“For a recent summary, see: Michael Martin Nieto, “Displaced and s P L .

’ J E. Schralinger, “Der stetige Wergang von der Mikro-zur Makro-
sgueezed number states,” Phys. Lett229, 135-143(1997). 9 9 gang

5 . - mechanik,” Naturwissenschafteld, 664 (1926.
P. Carruthers and M. M. Nieto, “Coherent States and the Forced QuantunﬂgE. H. Kennard, “Zur Quantenmechanik einfacher Bewegungstypen,” Z.

Oscillator,” Am. J. Phys.33, 537-544(1965; V. V. Dodonov, . A. Phys.44, 326/(1927.

Malkin, and V. I. Man’ko, “Coherent states of a charged particle in a ,, ) . . . . "
time-dependent uniform electromagnetic field of a plane current,” Physica I:Ll?s Sffjl_té(l;}gs;armomc Oscillator Wave Functions,” Phys. R&,

(Amsterdam 59, 241-256(1972. 21 . . . .
6James Wei and Edward Norman, “Lie algebraic solution of linear differ- A graphical representation of the behaviour of a Gaussian wave packet

ential equations,” J. Math. Physl, 575-577(1963; Y.-Z. Lai, J.-Q. near a saddle point has been given by A. Askar and J. H. Weiner, “Wave
Liang, H. J. W. ’Miller—Kirsten ana Jian-Ge Zhou Y“Time evc;lution of Packet Dynamics on Two-Dimensional Quadratic Potential Surfaces,”

quantum systems with time-dependent Hamiltonian and the invariant Her; Am. J. Phys 39, 1230-12341970.

mitian operator,” J. Phys. &9, 1773-17831996. 2For a discussion see Max Jammigne Conceptual Development of Quan-
E. MerzbacherQuantum MechanicéNiley, New York, 1970, 2nd ed., p. tum MechanicgMcGraw-Hill, New York, 1966, p. 336.
165. 2%For more detail on these and higher moments see: M. Andrews, “The
8See Ref. 7, p. 337, Eq15.19. Also L. D. Landau and E. M. Lifshitz, ~ spreading of wave packets in quantum mechanics,” J. Phyi}, A123—
Quantum MechanicéPergamon, 1958 p. 9. 1129 (1981); and Mark Andrews and Michael Hall, “Evolution of mo-
SM. A. Gregaio and A. S. de Castro, “A particle moving in a homoge- ments over quantum wave packets or classical clustébsd. 18, 37-44
neous time-varying force,” Am. J. Phy§2, 557—-559(1984. (1984.
10M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, “Distribu- 24For more detail on moments over sets of identical classical particles see
tion Functions in Physics: Fundamentals,” Phys. R&p6 121-167 M. Andrews, “The evolution of a cluster of particles and the invariants of
(1984, p. 140. a time-dependent oscillator,” Phys. Lett. 88, 95—-97(1981.

HIT THAT DESK, SOLDIER!

In American parlance the expression “basic training” refers to the instruction given to recruits
in the armed forces. Its purpose is to ensure that the trainees emerge with the fitness that \will be
expected of them when they embark on their main mission ...

But this course isunlike a boot camp in that you will not be asked to do things withqut
guestion; no instructor will bark at you to “hit that desk and given me fifty derivatives*df
You are encouraged to question everything, and as far as possible everything you do will bg given
a logical explanation and motivation.

The coursewill be like a boot camp in that you will be expected to work hard and struggle
often, and will emerge proud of your mathematical fitness.

R. ShankarBasic Training in Mathematics—A Fitness Program for Science Studelgsum Press, New York, 199%.
Xi.
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