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a b s t r a c t

The magnon energy bands or spectra in a two-layer ferromagnetic superlattice are studied. It is found

that a modulated energy gap exists in the magnon energy band along Kx direction perpendicular to the

superlattice plane, which is different from the optical magnon gap at Kx ¼ 0. The anisotropy, the spin

quantum numbers and the interlayer exchange couplings all affect the magnon energy gap. If the

anisotropy exists, there will be no acoustic energy branch in the system. There is a competition effect of

the anisotropy and the spin quantum number on the magnon energy gap. The competition achieves a

balance at the zero energy gap, at which the symmetry of the system is higher. The two energy spectra

of the two-layer ferromagnetic superlattice are lowered with increasing temperature.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Investigation of layered magnetic systems has been a subject of
growing interests in condensed matter physics [1–3], because the
characteristics of artificial multilayer/superlattice materials are
quite different from those of their bulk component materials
[4–6]. The magnetic anisotropy is an important parameter in
superlattice systems [7–9], which may dominate other physical
properties, such as the spin–wave excitation spectrum or the
magnetization, of a magnetic system. For multilayered magnetic
materials, either the addition of a single layer to a film or the
variety of structural (or magnetic) parameters (for instance,
anisotropy, spin quantum numbers, interlayer and intralayer
exchange couplings) of a material would load to new features in
the energy band and the magnetic properties of the material.

The materials with periodic magnetic structure can be refereed
to magnonic crystals. In magnetic superlattices, the magnon as a
kind of spin excitations is an interesting subject [10–25]. LePage
ll rights reserved.

y of Technology, Shenyang
and Camley investigated the spin–wave spectrum of a superlattice
consisting of two alternating ferromagnetic films with antiferro-
magnetic coupling at interfaces [13]. A theory was presented for
bulk and surface spin waves in a triangular antiferromagnet with
ferromagnetic interlayer coupling, and developed for spin–wave
dispersions of a semi-infinite frustrated system and also thin films
[14]. Interface spin waves (ISW) in a bilayer of two-sublattice
Heisenberg ferrimagnet with the nearest-neighboring exchange
interaction were investigated [15]. The spin–wave spectrum and
the ferromagnetic resonance spectra of a magnetic thin film were
studied by van Stapele et al. [16]. Temperature dependence of
magnetization and optical magnon gap in antiferromagnetic
YBa2Cu3O6 bilayer was obtained by employing the Green’s
function technique and the Callen decoupling approximation
[17]. Barnas [18] analyzed the spin–wave spectrum of infinite,
semi-infinite, and finite ferromagnetic superlattices with arbitrary
elementary units by the transfer-matrix formalism. The spin–
wave spectra of three- and four-layer superlattices (and the
corresponding sublattices) were studied analytically, by using the
bosonization Holstein–Primakoff transformation in the linear
spin–wave approximation and the Bogoliubov transformation
[19,26]. It was found that the magnon energy gap strongly
affects physical properties of layered magnetic system [20].

www.sciencedirect.com/science/journal/physb
www.elsevier.com/locate/physb
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Fig. 1. A schematic model of the two-layer ferromagnetic superlattice, where only

the interlayer exchange couplings are illustrated.
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However, little attention has been paid on a systemically
theoretical study of the magnon energy gap of superlattices.
Deng et al. [21] studied the magnon energy gap of an anisotropic
two-layer superlattice by using local coordinates and a spin-Bose
transformation quantum approach. The magnon dispersion
with two ferromagnetic layers was calculated in the pure
exchange limit, the pure dipolar limit, and both the exchange
and dipolar interactions. It was presented that the magnon energy
gap derives mainly from the exchange interaction [22,23]. In our
previous work [24,25], the magnon energy band was studied for
ferrimagnetic [24] and ferromagnetic [25] superlattices with three
layers in a unit cell. The results showed that there are two
modulated energy gaps, and the absence of the energy gap means
that the system has a high magnetically structural symmetry
[24,25].

In order to understand further the magnon energy gap of
superlattices, in this report, we study the effect of a single-ion
anisotropy on the magnon energy gap in a superlattice con-
structed by two kinds of ferromagnetic materials that are
ferromagnetically coupled. It is observed that, there are two
energy spectra branches along Kx direction in this two-layer
ferromagnetic superlattice. The energy gap can exist in the
magnon energy band of the system. The anisotropy, the spin
quantum numbers and the interlayer exchange couplings all
affect the magnon energy gap. If the anisotropy exists, there
will be no acoustic energy branch in the system. We find a
competition effect of the anisotropy and the spin quantum
number on the magnon energy gap Do12. The competi-
tion achieves a balance at the zero energy gap, at which the
symmetry of the system is higher. The two energy spectra of the
two-layer ferromagnetic superlattice are lowered with increasing
temperature.

The outline of this paper is as follows: In Section 2, we describe
the model, Hamiltonian of the system and calculation procedure.
Section 3 represents the effect of anisotropy, spin quantum
numbers and interlayer exchange couplings on the energy gap.
Section 4 gives a conclusion.
2. Model and calculation procedure

We consider a Heisenberg model with a single-ion anisotropy
for a two-layer ferromagnetic superlattice on a simple cubic
lattice. A schematic model of a two-layer superlattice was
illustrated in Fig. 1. A unit cell of the superlattice consists of two
layers, 1 and 2, where spins are denoted by Sl (l ¼ 1, 2) for each
layer. The nearest neighboring spins within each sublayer are
coupled ferromagnetically by intralayer exchange couplings Jl

(l ¼ 1, 2), respectively. The interlayer exchange couplings J12

between spins at the nearest neighboring layers are ferromag-
netic. The superlattice structure is stacked periodically along x-
direction that is normal to layers (yz-planes). The Hamiltonian is

H ¼ �
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2

X2

l¼1

X
r;d==

JlSl;rSl;rþd== �
X2

l¼1

X
r

J12Sl;rSlþ1;r �
X2

l¼1

X
r

DlðS
Z
l;rÞ

2

(1)
DðoÞ ¼
o� ð4J1hS

z
1ið1� gk==

Þ þ 2J12hS
z
2i þ 2D1hS

z
1iÞ 2J12hS

z
1igk?

2J12hS
z
2igk?

o� ð4J2hS
z
2ið1� gk==

Þ þ 2J12hS
z
1i þ 2D2hS

z
2iÞ

������
������ (6)
where l is the number of sublayers, d== represents that only the
exchanges between the nearest neighbors in yz-planes are taken
into account. The direction of spins of the initial state in the two
sublayers is along the positive z-direction. Therefore, the inter-
layer exchange couplings J12 and the intralayer ones J1 and J2 are
positive. The anisotropy constants are denoted by Dl (l ¼ 1,2) for
each layer. There are N sites on each layer-lattice, and total 2N

sites for the system. To analyze the two-layer ferromagnetic
superlattice, we introduce the Green functions, according to
Callen [27]:

G1ðo; i1; i2Þ ¼ hhSþi1 j expðpSz
i2
ÞS�i2 iio (2a)

F1ðo; j2; i2Þ ¼ hhS
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j2
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i2
ÞS�i2 iio (2b)
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ÞS�j2
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i2
j expðqSz

j2
ÞS�j2
iio (3b)

where p and q are parameters. Using the technique of the equation
of motion for the Green functions, within the Tyablikov decou-
pling approximation, we obtain the Fourier components of the
Green functions:

G1ðo; kÞ F2ðo; kÞ
F1ðo; kÞ G2ðo; kÞ

 !
¼

1
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F1ðpÞ 0

0 F2ðqÞ
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where

F1ðpÞ ¼ h½S
þ

i ; expðpSz
i ÞS
�

i �i (5a)

F2ðqÞ ¼ h½S
þ

j ; expðqSz
j ÞS
�

j �i (5b)
where o represents the energy spectrum of the system, hSz
1i and

hSz
2i are sublayer magnetizations per site (the unit is taken to be
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Fig. 2. Kx dependence of the energy spectra o of the two-layer ferromagnetic

superlattices with S1 ¼ 2.0, S2 ¼ 1.5, J1 ¼ J2 ¼ 1.0, J12 ¼ 1.0, D1 ¼ D2 ¼ 0.0,

Ky ¼ Kz ¼ 0 and t ( ¼ kBT) ¼ 0. Here, Do12 is the energy gap between the energy

spectra o1 and o2.
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gmB) in sublayers 1 and 2, respectively. Here
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The parameters Mij (i, j ¼ 1,2) in Eq. (4) are given as follows:
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After using the spectral theorem and Callen’s [27] technique, we
finally obtain the magnetization of each sublayer as
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where n1 and n2 are the auxiliary functions:
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Here b ¼ 1/kBT, T is temperature of the system. Setting the
determinant to zero:

DðoÞ ¼ 0 (11)

Carrying out numerical calculation to solve self-consistently the
fundamental Eqs. (9)–(11), we obtain two positive solutions
for the spin–wave spectra of the ferromagnetic two-layer super-
lattice.

In the following, we shall discuss whether the energy gaps
exist in the energy band structure along the Kx direction
(perpendicular to the superlattice plane), and how the spin
quantum number, the interlayer exchange couplings, the aniso-
tropy constants and the temperature affect these energy gap or
energy spectra.
3. Results and discussion

Fig. 2 shows the Kx dependence of the energy spectra of the
two-layer ferromagnetic superlattices. Two energy spectra
branches o1 and o2 exist in the system: o1 is an acoustic branch
and o2 is optical. There is a magnon energy gap Do12. The
magnon energy gap Do12 is defined as the gap between the top of
the branch o1 and the bottom of the branch o2, which is different
from the optical magnon gap at Kx ¼ 0. As the cases of photon,
electron and phonon, the magnon energy gap should affect
strongly physical properties of the magnetic system.

First, we discuss the effect of the spin quantum number and
the interlayer exchange couplings on the magnon energy gap of
the two-layer ferromagnetic superlattice. Fig. 3(a) represents the
dependence of the magnon energy gap Do12 on the first- and the
second-layer spin quantum numbers S1 and S2, as J12 ¼ 1.0,
J1 ¼ J2 ¼ 1.0, and D1 ¼ D2 ¼ 0. From Fig. 3(a), the spin quantum
numbers S1 and S2 have the same contribution to the energy
gap Do12 that approaches to zero only when S1 approaches to S2.
The energy gap Do12 increases with increasing the difference of S1

and S2.
Fig. 3(b) shows the dependence of the energy gap Do12 on the

spin quantum number S1 and the interlayer coupling J12. Here
parameters for calculations are: S2 ¼ 1.0, D1 ¼ D2 ¼ 0, and
J1 ¼ J2 ¼ 1.0. It is seen from Fig. 3(b) that, the energy gap Do12

approaches to zero only when S1 is close to S2, which is consistent
with Fig. 3(a). J12 dose not affect the zero energy gap, but it affects
the non-zero energy gap. For the non-zero energy gap, the energy
gap Do12 increases with increasing J12. The spin quantum number
S1 and the interlayer exchange coupling J12 all affect the energy
gap Do12.

The effects of the anisotropy constants D1 and D2 on the energy
gap are shown in Figs. 4–7. When the anisotropy exists in the
system, the acoustic energy branch does not exist. From Fig. 4, if
D1 ¼ D2 ¼ 0.2 the acoustic energy branch does not exist, and there
is a magnon excitation gap at Kx ¼ 0. However, such magnon
excitation gap is different from the optical magnon gap at Kx ¼ 0.
By numerical calculation, one knows that, the effects of the
anisotropy constants D1 and D2 on the energy gap are similar to
those of the spin quantum numbers. Only when D1 approaches to
D2, the energy gap Do12 approaches to zero as S1 ¼ S2, and J1 ¼ J2.
The energy gap Do12 increases with increasing the difference of
D1 and D2. Namely, the anisotropy also affect sensitively the
energy gap Do12.

Fig. 5 represents the dependence of the energy gap Do12 on
the spin quantum number S1 and the anisotropy constant D1 of
the first layer. Here parameters for calculations are: D2 ¼ 0.2,
S2 ¼ 1.5, J12 ¼ 1.0 and J1 ¼ J2 ¼ 1.0. It is clear that, the energy gap
Do12 surges. In the S1–D1 parametric region shown in Fig. 5, there
are six points at which the energy gap Do12 vanishes, where
D1 ¼ 0.2, S1 ¼1.5; D1 ¼ 0.4, S1 ¼ 2.0; D1 ¼ 0.52, S1 ¼ 2.5; D1 ¼ 0.6,
S1 ¼ 3.0; D1 ¼ 0.7, S1 ¼ 4.0; D1 ¼ 0.76, S1 ¼ 5.0. For the first set of
parameters D1 and S1, the system corresponds to the case
discussed above, which is easy to be understood. However,
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Fig. 4. Kx dependence of the energy spectra o of the two-layer ferromagnetic

superlattices with S1 ¼ 1.0, S2 ¼ 0.5, J1 ¼ J2 ¼ 1.0, J12 ¼ 1.0, D1 ¼ D2 ¼ 0.2, and

Ky ¼ Kz ¼ 0, and t ( ¼ kBT) ¼ 0.

Fig. 3. (a) S1 and S2 dependence of the magnon energy gap Do12 of the two-layer ferromagnetic superlattices, with J12 ¼ 1.0, D1 ¼ D2 ¼ 0, J1 ¼ J2 ¼ 1.0, and t ( ¼ kBT) ¼ 0

and (b) S1 and J12 dependence of the magnon energy gaps Do12 of the two-layer ferromagnetic superlattices, with S2 ¼ 1.0, D1 ¼ D2 ¼ 0, J1 ¼ J2 ¼ 1.0, and t ( ¼ kBT) ¼ 0.

Fig. 5. D1 and S1 dependence of the magnon energy gap Do12 of the two-layer

ferromagnetic superlattices, with S2 ¼ 1.5, J12 ¼ 1.0, D2 ¼ 0.2, J1 ¼ J2 ¼ 1.0, and t

( ¼ kBT) ¼ 0.
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the system with other five sets of parameters does not correspond
to that case, and S1 increases with increasing D1. We believe that
this phenomenon is a new quantum effect, which can be
understood by the competition effect of the anisotropy and the
spin quantum number of the same layer on the magnon energy
gap Do12.

Fig. 6 illustrates the dependence of the energy gap Do12 on the
spin quantum number S2 and the anisotropy constant D1 of the
first layer. Here parameters for calculations are: D2 ¼ 0.2, S1 ¼ 1.5,
J12 ¼ 1.0, and J1 ¼ J2 ¼ 1.0. From Fig. 6, the energy gap Do12

also surges in a region. But there is only one point with the zero
energy gap Do12, where D1 is close to 0.2 and S2 close to 1.5. It is
clear that at this point the system corresponds to the case
discussed above. Moreover, there are two points with D1 ¼ 0.465,
S2 ¼ 1.0; D1 ¼ 0.735, S2 ¼ 0.5, at which the energy gap Do12 is
close to zero. From these three points, S2 decreases with
increasing D1. It is due to the competition effect of the anisotropy
and the spin quantum number of different layers on the magnon
energy gap Do12.
In this system, there are effects of the magnetic anisotropy,
which can be due to the interactions between the magnetic
moments of atoms and the electric field of the crystal lattice. The
single-ion anisotropy connects with the spin–orbit interaction,
which is consistent with the overall symmetry of the crystal
lattice [28]. Namely, the anisotropy energy consists of the factors
of spin quantum number and anisotropy constant, related with
the overall symmetry of the crystal lattice. Therefore, the zero
energy gaps in Figs. 5 and 6 (except two points discussed above)
are ascribed to the competition effect of the anisotropy constant
and the spin quantum number on the magnon energy gap Do12.
The competition achieves a balance at the zero energy gaps, at
which the symmetry of the system is higher. This agrees with Refs.
[21–25].

By numerical calculation, the effects of the anisotropy
constants D1 and J12 on the energy gap with S1 ¼ S2, J1 ¼ J2 are
studied. It is shown that, the energy gap Do12 approaches zero
only at a D1 close to D2. The energy gap Do12 increases with
increasing the difference of D1 and D2. The interlayer exchange
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Fig. 6. D1 and S2 dependence of the magnon energy gap Do12 of the two-layer

ferromagnetic superlattices, with S1 ¼1.5, J12 ¼ 1.0, D2 ¼ 0.2, J1 ¼ J2 ¼ 1.0, and t

( ¼ kBT) ¼ 0.

Fig. 7. D1 and J12 dependence of the magnon energy gap Do12 of the two-layer

ferromagnetic superlattices, with S1 ¼ 1.0, S2 ¼ 0.5, D2 ¼ 0.2, J1 ¼ J2 ¼ 1.0, and t

( ¼ kBT) ¼ 0.

Fig. 8. Kx dependence of the energy spectra o of the two-layer ferromagnetic

superlattices with S1 ¼ 2.0, S2 ¼ 1.5, J1 ¼ J2 ¼ 1.0, J12 ¼ 1.0, D1 ¼ 0.3, D2 ¼ 0.1, and

Ky ¼ Kz ¼ 0. Here, the solid, dotted, dash dotted and dashed curves represent the

values of t ( ¼ kBT) ¼ 0, 3.0, 5.0, and 7.0, respectively.
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coupling J12 affects neither the zero energy gap nor the non-zero
energy gap. It is explained by that there is no competition effect
between the anisotropy and the interlayer exchange coupling.

Fig. 7 represents the dependence of the magnon energy gap
Do12 on the interlayer exchange couplings J12 and the anisotropy
constant D1 of the two-layer ferromagnetic superlattices, with
S1 ¼ 1.0, S2 ¼ 0.5, J1 ¼ J2 ¼ 1.0, and D2 ¼ 0.2. In Fig. 7, the
interlayer exchange coupling J12 also affects the energy gap
Do12. It is clear that there is a line with zero energy gap. In this
system, there is the competition effect of the anisotropy constant
and the spin quantum number on the magnon energy gap Do12,
because of S1aS2. The result in Fig. 7 can be understood by that
the interlayer exchange coupling J12 affects the balance point of
the competition between the spin quantum number and the
anisotropy.

The effects of temperature t ( ¼ kBT) on the energy bands of the
two-layer ferromagnetic superlattices with S1 ¼ 2.0, S2 ¼ 1.5,
J1 ¼ J2 ¼ 1.0, J12 ¼ 1.0, D1 ¼ 0.3 and D2 ¼ 0.1 are shown in Fig. 8.
The two energy spectra o1 and o2 are lowered with increasing
temperature t.

From discussion above, generally, the point at which Do12 is
close to zero corresponds to that the spin quantum numbers (or
the anisotropy constants) of two layers are close to equality. The
energy gap Do12 increases with increasing the difference of S1 and
S2 (or that of D1 and D2). From the dependence of the magnon
energy gap Do12 on the anisotropy constant and the spin
quantum number of the two-layer ferromagnetic superlattices,
we have found a novel phenomenon: the value of the energy gap
Do12 surges in a region, and several zero energy gaps exist. This is
a quantum effect, which can be understood by the competition
effect of the anisotropy and the spin quantum number on the
magnon energy gap Do12.The competition achieves a balance at
the zero energy gaps, at which the symmetry of the system is
higher. Therefore, the zero magnon energy gap is related to high
structural symmetry. Our point of view can be compared with that
in literatures [21–25]. The magnon gap is a function of the
magnetic anisotropy: the stronger the anisotropy is, the bigger
the magnon gap is [21]. Schwenk et al. [22,23] also thought
that the vanishing of gaps could be understood by a C2 symmetry
operation around the z-axis. In three-layer ferrimagnetic super-
lattice [24] and ferromagnetic one [25], two zero energy gaps
correspond to different higher magnetically structural symmetry.
The previous results [21–25] agree with the viewpoint of the
present work. However, there is no competition effect between
the anisotropy and the interlayer exchange coupling, but the
interlayer exchange coupling affects the balance point of
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the competition of the spin quantum number and the anisotropy.
And the two energy spectra o1 and o2 are lowered with
increasing temperature.

Spin waves in the layered magnetic systems have been
investigated by use of various classical and quantum theories.
The classical approaches ignore quantum fluctuations that
might significantly affect the magnon excitation. Here, we use
the quantum double-time–temperature Green function method.
The result is consistent with that of line spin wave at zero
temperature. But the method is appropriate also to the region of
high temperatures [27].
4. Conclusion

In conclusion, we have discussed the effects of the anisotropy,
the spin quantum number, the interlayer exchange couplings
and the temperature on the magnon energy band gap or spectra
in the two-layer ferromagnetic superlattice, by means of a double-
time–temperature spin Green’s function. The main results are
concluded as following.

There are two energy spectra branches along Kx direction in the
two-layer ferromagnetic superlattice. In most cases, a magnon
energy gap exists in the Kx direction in our system (except for
when special conditions are satisfied, the energy gap vanishes). If
the anisotropy exists D1a0 (or D2a0), the acoustic energy branch
will not exist in the system, and there is a magnon excitation gap
at Kx ¼ 0. Such energy gap Do12 is different from the optical
magnon gap normally at Kx ¼ 0. The spin quantum numbers, the
interlayer exchange couplings and the anisotropy all affect the
magnon energy gap Do12. Generally, the point at which Do12

approaches to zero is near to the equality of the spin quantum
numbers (or the anisotropy constants) of the two layers. The
energy gap Do12 increases with increasing the difference of S1 and
S2 (that of D1 and D2). From the dependence of the magnon energy
gap Do12 on the anisotropy constant and spin quantum number,
the value of the energy gap Do12 varies, and the zero energy gaps
exist for several special cases. This new phenomenon can be
understood by the competition effect of the anisotropy and
the spin quantum number on the magnon energy gap Do12. The
competition achieves a balance at the zero energy gaps, at which
the symmetry of the system is higher. There is no competition
effect between the anisotropy and the interlayer exchange
coupling. The interlayer exchange coupling affects the balance
point of the competition of the spin quantum number and the
anisotropy. The two energy spectra of the two-layer ferromagnetic
superlattice are lowered with increasing temperature.
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