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Role of confined phonons in thin-film superconductivity
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We calculate the critical temperatufe and the superconducting energy gapsof a thin-film supercon-
ductor system, whera,, is the superconducting energy gap of tita subband. Since the quantization of both
the electron energy and phonon spectrum arises due to dimensional confinement in one direction, the effective
electron-electron interaction mediated by the quantized confined phonons is different from that mediated by the
bulk phonon, leading to the modification @f in the thin-film system. We investigate the dependence .of
andA,, on the film thicknessl with this modified interaction.

Superconductivity in thin films has been studied for thewherewy, is the phonon Debye frequenady, the electronic
last four decades. The phenomenon of thin-film superconeensity of states at the Fermi energy, aviglthe effective
ductivity has its own specific peculiar features. In earlyattractive electron-electron interaction mediated by phonon
investigations; * the effect of the film size on the supercon- exchange. An increase ®f,V, implies an increase .
ducting transition temperatufg, for thin films was investi-  For a thin film with thicknesgl, the density of states at the
gated. Experiments have shown a monotonic increase of tHeermi energy develops quantum structure due to the confined
critical temperaturd . with decreasing film thicknedsfrom 2D subbands: Ngjjm=(2v—1)m/4md=N3p(2v+ 1) 7/
the theoretical point of view; the shape resonances and the2dk-, where v=1,2,... is the occupied subband index.
strong thickness dependenceTqfare the characteristic fea- Thus when we use the bulk electron-phonon coupling con-
tures of thin-film superconductivity. The size quantization ofstantJ unmodified by any phonon size confinement correc-
the transverse motion of the electron in the film leads to arions, which is identical for all subbands, the critical tem-
increase ofT ;. with decreasing film thickness, arising essen-perature for thin films depends on the film thickness, and
tially from an enhanced effective BCS pairing interaction.decreases exponentially as the thickness increases. However,
The resonance effects are manifest each time one ofthe for a fixed bulk electron densitfor, kg), as the film thick-
two-dimensional2D) subband energy levels,(d) of a film  ness increases the higher quantized subbands are occupied by
with thicknesd (for ‘transverse’ motion perpendicular to the Cooper pairs, so that the critical temperature of the film
film faces or along the confinement directigrasses through jumps to a higher value due to the higherarising entirely
the Fermi surface as the thicknedss varied. In previous from the jumps in the density of states as the effective Fermi
calculations:~3 the phonon modes were assumed to be thdevel moves through higher values of the subband index
same as in the bulk material and only the one-dimensionarhis implies that with increasing thickness of the film the
guantum confinement effects of electrons were consideredyitical temperature of the film exhibits resonance features.
i.e., the superconductivity in the thin film was considered toln real thin films therefore the electron-phonon coupling con-
be arising from the attractive electron-electron interactiorstant is different from that in the bulk material due to the
mediated by bulk phonons interacting with subband-quantization of the phonon dispersidrand therefore the
guantized electrons. However, phonons in thin filfteab” simple resonance scenafidiscussed aboyanust be modi-
phonon modesalso have specific characteristic features byfied. When we consider the confined phonons in the thin
virtue of definite boundary conditions imposed by confine-film, the electron-phonon coupling constant is different for
ment in thin films. The phonon dispersion in a thin film different subbands, and the effective coupling strength de-
undergoes substantial modification compared with the bulkgcreases with increasing subband index; that is, higher sub-
and a quantization of the phonon spectrum oceéufsThe  bands have progressively weaker electron-phonon coupling
guantization of the phonon spectra has many effects on thirconstants. This change of the coupling constant gives rise to
film electronic properties, which have been extensively studfeatures in the superconducting energy gap of thin films,
ied, particularly in the context of semiconductor quantumwhich have not earlier been considered in the literature. In
well structures. It is the purpose of this paper to reconsidethis paper we calculate the critical temperatligeand super-
the previous calculatioh®f thin-film superconductivity tak- conducting energy gapa, with the modified electron-
ing into account confined size-quantized phonons in the thirlectron interaction mediated by the confined slab phonons.
film. We find the resonant shape of the superconducting trarifhe results for the calculated critical temperature obviously
sition temperaturel; arises from both the quantum elec- depend on the slab phonon dispersion, which in turn depends
tronic confinement and phonon confinement. on the boundary conditions used in the phonon confinement

Following the BCS theofy/ the critical temperaturd, model. We have followed here the simple approach of Th-
~1.14wp exp(—1/NogVo) for a bulk BCS superconductor, ompson and Blatt,where the boundary has been treated by
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an infinite wall, and we use wave functions which vanish atpairs are produced betweek, o) and (—k,n,— o). The

the boundary. Although this is a highly simplified phonon direct effective electron-electron interaction due to the ex-

confinement model it has the virtue of being analytically change of virtual confined slab phonons becomes
tractable—one could systematically improve upon this

model using our theory as the starting point. We expect our 'max
results to be valid qualitatively. Vam(Q) = |21 M"™(q)Dy(aq)M™, 5
We assume that our superconducting film with a finite -

width d is confined in thez direction by an infinite square- whereM['" is the electron-confined phonon matrix element

well confinement potential applied a=0 andz=d. We and D, the phonon propagatdrand thel sums cover all

choose the same infinif®@ne-dimensionalsquare-well con- phonons with energy less than the cutoff enetgy. The

finement for both electrons and phonons, as would be appranaximum value ofl contributing to the sum over the slab

priate for a free-standing thin film. Using periodic boundaryphonon modd in Eq. (5), | ,ax, iS given by the condition

conditions in thex andy directions with periodicity distance | ,,=(d/7)(hwp/c), where ¢ is the velocity of the

L, we have the one-electron wave function and spectrum phonons.(We assume that all slab phonons have the same
velocity because information on the slab mode velocity is not

bi,n(r,2) =up(Z)explik-r)/L, experimentally availablg We then get
2k2 J Imax
En(k):m'l'En- @ Vnm:_A_d 21 [Bg,)n’]z’ (6)

Here, k= (ky,ky), r=(x,y) are the 2D wave vector and po-
sition vector in the plane of free motion, and by solving
Schralinger equation for direction with confinement poten-

tial we have B

Un(2)=(2/d)?sin(ky2),

where the confinement form factor is given by

® —szd in(l wz/d
' =d ), zy; (z)sin(l wz/d)u,(z)

2

_hz(kn)2 B T

Er‘l_ 2m ’ (2)

| |
12-(n—n")2 12-(n+n")2)’

)

Equation (7) has the following selection rule: fgm=n’|
wherek,=nw/d with n= integer. Thus confinementintlze = even(odd only odd (even |'s are allowed in the sum
direction leads to the quantization of electron energy levelsver slab modek The slab phonons with oddare symmet-
into different subbands. In addition to the quantization ofric and the ones with evdrare antisymmetric with respect to
electron energy, we take into account the modification in theeflection throughz=d/2, i.e., under the transformatida
thin-film phonon dispersion arising from the quantization of —d/2| —|d/2—z|. Since the electron wave functions are ei-
the phonon spectrufi’ The quantization of the phonon ther symmetric or antisymmetric, the couplings between two
spectra leads to the change of the conventional electrorsubbands of the same symmetry involve symmetric quan-
phonon interaction. The specific expression for the electrontized phonons, while couplings between two subbands of dif-
phonon coupling in the thin film can be obtained on the basiserent symmetry involve antisymmetric phonofiote that
of the general deformation potential electron-phonon interacthis simplicity will be lost if parity is not a good quantum

tion theory® number as it is in our simple infinite square-well model, but
would not be under an asymmetric confinemeWite see that
Hep= DJ’ dBr () Vw(r)w(r), 3  Vom decreases with increasimgsince _the transition of elec- _
trons to higher subbands cannot be induced by phonons with
where small momentay. Thus the componenté,,,, of the interac-

tion matrix form a monotonically decreasing sequence with
1 _ increasing subband index. When all the confined phonons
W(r)= \/_K % un(z)e* ey, (4) contributg toVim (i.e'., I max— ) we recover the bulk pho-
: non mediated resufts.e., V= — (J/Ad) (1+ 3 8,,), as we
A is the 2D areag, , is the destruction operator for an elec- should. As a result of the confined phonons, a superconduct-

tron with momenturk in the nth subbandw(r) is the lattice N9 condensate of Cooper pairs can be produced in a given

constantwhich we uncritically assume to be the bulk value the same subband and second because of transitions from
since not much experimental information is availablehe ~ Other subbands contributing to the condensate.
displacement vectom(r) can be obtained by solving equa- In_the presence of a num_ber_of subbands the reduced BCS
tions of motions of the elastic continuum with the appropri- Hamiltonian of the system is given by
ate boundary conditiorfs’ We skip the details of this elastic
continuum theory(which involves substantial algebréor H= 2 §n(k)Clnngna
the sake of brevity. k.n,o

Within the framework of the BCS theory, Cooper pairs
are produged co_nsisting of elect_rons. with oppositend + 2 E VnmClrmUCT_krm_ngnacfknfa, (8
identicaln in a thin superconducting film, i.e., the electron Kk’ o MM
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wherec] . is electron creation operator in tmeh subband
with spino, &,(k) = €,(k) — u the electron energy in thah

subband measured from the chemical potengiagndV,,

the attractive interaction betweerh subband andnth sub-
band mediated by the confined phonons in the film.

In the BCS theory(which is what we utiliz¢ the gap
function has the same energy cutéfby as the interaction.
In the weak-coupling approximation we have the the super- 0
conducting energy gap fonth subband given by the gap

equation 20
Viom Aptani(E,/2kT
AMM=2 o —— “E 2D 9
m " ®)
where E,= (£2+ A2)Y2. The nondiagonal terms in the sum 1
reflect the possibility of the transition of the electron pair ]
from one subband into another as a result of interaction with ]
confined phonons. Integration oviergives the gap function ]
of the subbanch at T=0 K:
A TS g hl( "’°>A (10
== Sin — r&nn’
n 277 n' n’ " nn 5 ]_O ]_5 20
where a,, =V, /J. If all confined phonons contribute d (A)

equally to the electron-electron interaction, i.eq,f=1 FIG. 1. () The calculated su .
. .1 perconducting energy gaApsof
+6nn/2), then we recover the results of Ref. 1. With the each occupied subbang and (b) the critical temperature for an

coupled subband interactions EGQ0) becomes a nonlinear gectron densityn=2x 10722 cm 2 as a function of the film thick-
cpupled subband matrix equation. The critical temperature i§agsd. In (a the highest curve is the energy gap of the lowest
given by subband =1), and the second highest curve is that of the first
excited subbandn(=2), and so on, with four occupied subbands. In
2md (b) the solid line indicates our result with the interaction mediated
Tc=114dwpexp| ——— |, 11 by confined slab phonons and the dashed line from Ref. 1 corre-
JmE aqnXip sponds to the bulk phonon result. The arrow in each figure indicates
n' the purely bulk result.

wherex;,=A,/A, the ratio of thenth subband energy gap As d—=, Je;+—J because ajn(d—*)=1+6,,/2 and
to the lowest subband energy gap. For any given finite widthx;,(d—%«)=1, and N¢;,—N3p. Thus, we recover the
d of the slab, only a finite number of eigenvalugscontrib-  three-dimensional results as we expect.
ute; values of,, in excess ofu+ % wp make vanishing con- In Fig. 1 we show the calculated superconducting energy
tributions, because then all tlg’s lie outside the interaction gaps of each subband and the critical temperature as a func-
region. Thus the summation in Egg.0) and (11) is only tion of the film thicknessl up to the fourth subband occupa-
over all the occupied subbands. For a fixed electron densitiion. In this figure we use the following parameters: Debye
we can find the maximum value of the (or, the highest energy%wp=100 K, electron densityi,=2x10?? cm™3,
occupied subbandrom the chemical potential. The number and p=N3pJ=mkzJ/(27%)=0.3. In previous
densityng=N/V is related to the chemical potential by the calculation$? the energy gaps of different subbands were
relation, N=2%, \n,,, where n,,=[exp(~e,(k)/kgT)  find to be the same by virtue of the bulk phonon approxima-
+1]" 1 is the Fermi distribution function. AT=0 K we tion. The shape resonance feature in the earlier
have calculation$? arise only from the effective 2D density of
state of the film as the chemical potential passes through
different subbands. In our calculation we find that the energy
(v+ 1)} , (12 gaps are different for different subbands since the effective
coupling strength depends explicitly on the occupied sub-
bands. In addition, the resonance structures in our reghés
sharp maxima in Fig.)larise from both the thickness depen-
dent density of stateNy;;,, and the effective interaction pa-
rameterJqss. The energy gap is maximum for the lowest
subband and decreases in the higher subbands for a fixed
film thickness. In Fig. (b) we also compare our results with
Ref. 1 for equivalent parameter values. Our results exhibit
i > @yXy. (13 ~ More resonance features and has much lotyettypically,
2v+14=y about half around the maximéhan that of Ref. 1. Note that

w=(mdh?/vM)

1
V+§

+ w
no —V
6d3

wherev is the maximum value of occupied subbamdnd is
given by the integral value of the expressiors dkg /7. If
we write Eqg. (11) in the wusual BCS form, T,
=1.14wp exp(—1/NsiimJdess), the effective interaction pa-
rameter can be written as

Jeff=
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any inhomogeneity on the microscopic scéjeite unavoid- unless the dispersion curves for adjacent regions overlap. In
able in real thin films of 5—15-A thicknepwill considerably  our calculation we treat the boundaries as impenetrable in
suppress the resonance features of Fig. 1, and any enhanegder to simplify the calculations. In real systems the bound-
ment inA, or T, may remain unobservable unless the filmsaries become softer at the surface, so that electrons inside the
are microscopically of uniform thickness. The reduction ofslab may interact with surface phonons. In particular, the
the critical temperature in our calculation compared with thagurface phonons may induce electrons to fo_rrrl11Coope_r pairs
obtained in Ref. 1note that our calculated, is still en-  at the boundaries and give rise to increasd dn™" Thus in

hanced above the bulk. as is obvious from Fig. (b)] can

be explained by the enhancement of the effective interactio

parameter in the slab phonon model.

Our main approximation is that we use an infinite surfac
barrier for both electrons and phonons. The present work caﬁ’
easily be extended to include more realistic boundary
conditions? but one then needs to resort to numerical work
right from the beginning, losing much of the essential quali-

our strict “infinite wall” model the enhancement df; is
maller than that in the more realistic boundary conditions.
ur calculatedr, could therefore be considered to be lower

ebound for the expected,’s in thin-film superconductors

ithin the BCS model. We believe that the basic physics
iscussed in this paper and the qualitative features of our
results shown in Fig. 1 transcend our specific model, and
should be valid in any BCS-type superconductivity in thin

films.

tative physics of the phenomenon. The infinite barrier ap-

proximation is obviously only of qualitative validity, but in
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general this approximation usually works well for phononsONR.
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