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Donor states in modulation-doped SiÕSiGe heterostructures
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We present a unified approach for calculating the properties of shallow donors inside or outside heterostruc-
ture quantum wells. The method allows us to obtain not only the binding energies of all localized states of any
symmetry, but also the energy width of the resonant states which may appear when a localized state becomes
degenerate with the continuous quantum well subbands. The approach is nonvariational, and we are therefore
also able to evaluate the wave functions. This is used to calculate the optical absorption spectrum, which is
strongly nonisotropic due to the selection rules. The results obtained from calculations for Si/Si12xGex quan-
tum wells allow us to present the general behavior of the impurity states, as the donor position is varied from
the center of the well to deep inside the barrier. The influence on the donor ground state from both the
central-cell effect and the strain arising from the lattice mismatch is carefully considered.
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I. INTRODUCTION

Impurity states in heterostructures have been the sub
of detailed investigations during the last two decades. Tra
tionally, impurities are considered to be purely detrimen
by increasing the scattering rates. On the other hand, do
is essential to supply enough free carriers into the syst
The strive has therefore been to remove the doping reg
from the active region by using modulation doping.

Recently, however, impurities have been placed in the
tive region of Si/SiGe quantum well structures to expl
their presence and properties for novel optical devices in
far-infrared or terahertz~THz! region.1–3 Si and Ge are non
polar materials with low intrinsic absorption at THz freque
cies. Taking into account also the possibilities for integrat
with existing device technology,4 these systems appear ve
attractive for optical applications in the THz region, whic
recently has received a lot of attention in a variety of field5

A detailed knowledge of the properties of impurity states
Si/SiGe heterostructures is therefore essential.

Much effort has been spent on calculating the impur
energy states in a quantum well~QW!. The techniques, al
within the effective-mass approximation, range from t
commonly employed variational techniques6–13 to direct in-
tegration of the Schro¨dinger equation14 and basis
expansions.15,16 The systems considered have, to the bes
our knowledge, exclusively been III-V materials such
GaAs/AlxGa12xAs quantum wells, for both donors6–11,14and
acceptors,12,13,15,16and the results are found to agree reas
ably well with experimentally obtained values.17–21 Particu-
lar aspects such as image charges9 and the effect of screenin
of the impurity potential by the free carriers in the well22

have also been investigated.
To allow for a more detailed comparison of the calcula

ground-state binding energy with experimental results,
must also take into account the central-cell effect or
chemical shift. Its physical origin is the absence of screen
by the valence electrons at distances smaller than the o
electronic shells, in which case effective-mass theory bre
down. In principle, therefore, a proper treatment of chemi
0163-1829/2003/68~16!/165338~16!/$20.00 68 1653
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shifts is not possible within the traditional effective-ma
theory.23 Nevertheless, several authors have considered
central-cell effect in the bulk by introducing various sho
range pseudopotentials, which are adjusted to give ag
ment with the experimental binding energies.24–26 This ap-
proach has also been attempted in the quantum well ca12

whereas Muelleret al. have chosen to relate the QW centra
cell shift to the envelope function amplitude.27

The donor ground state naturally appears below the lo
est QW quantization level. As we will see, there are howe
Rydberg-like series of impurity states attached to each Q
subband, as well as to the three-dimensional continuum.
situation is thus very similar to what has been observed
strong magnetic fields, where impurity states are attache
each Landau level.28

It has been noted by several authors that in narrow qu
tum wells, the lowest antisymmetric impurity state, which
bound to the second QW subband, may become reso
with the continuum of the first subband.8,9 Resonant states o
this so-called Fano type, i.e., a discrete~and hence localized!
state degenerate with a continuum, are well known fr
atomic physics,29 bulk semiconductors,24,30–33and quantum
wells.34–37 If symmetry allows it, the localized state ca
couple or hybridize with the continuous states. The reson
state is then characterized by an energy width, which is
mediately related to its lifetime.29 It is of crucial importance
to determine this width in order to consider the effects of
coupled impurity states on the optical and electrical prop
ties of modulation-doped quantum wells.

When the impurity is placed outside the well, in the ba
rier, similar but entirely different resonant states may also
formed from the usual shallow donor levels, and their wid
can be evaluated by the resonant coupling method.38 At-
tempts have been made to apply an essentially equiva
method for the case of donors inside the well.11,39,40 It has
however been shown that the approximations made in
approach are rather severe, and the widths do not agree
more exact results obtained using the same method as wi
presented in this paper.41 Only when the coupling betwee
the impurity state and the quantum well is weak, can su
©2003 The American Physical Society38-1
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perturbation methods be expected to yield accurate resu
In this work we shall present a nonvariational approa

for calculating the energy levels of shallow donors, in whi
we expand the total Hamiltonian in a complete basis. T
turns the Schro¨dinger equation into a matrix eigenvalu
problem, which is diagonalized to yield all localized, hybri
ized, and continuous states. The approach has several
efits over the variational method. First of all, no assumptio
are made regarding the form of the impurity wave functio
but instead we obtain the correct envelope function, wh
then can be employed for calculating, e.g., optical ma
elements. Second, the entire energy spectrum is treate
multaneously, and hence we also obtain a description of
perturbed continuum and can observe the formation of
hybridized resonant states, and calculate their energy wid
Additionally, the difference in the effective mass in the w
and barriers is easily included, as well as an electric fie
and we are able to consider~but not limited to! anisotropic
materials such as Si and Ge. It is furthermore possible
place the impurities in the barrier instead of in the well, a
we thus have a unified approach for treating impurities
modulation-doped heterostructures.

We will specifically consider Si/Si12xGex quantum wells,
which are strained due to the lattice-constant mismatch
result, the sixfold degeneracy of the conduction-band bot
and the donor states is partially lifted. Moveover, the imp
rity ground state in bulk Si is known to be shifted and sp
by the central-cell effect.42,43 We shall therefore also prese
an approach for simultaneously taking the strain and
central-cell effect into account.

One of the advantageous properties of a coupled reso
state is the possibility of populating it by electrically pum
ing the carriers, from the bottom of the subband, until th
reach the resonance energy.33,44,45They may then be capture
into the resonant state, and possibly make an optical tra
tion to the ground state. If an inverted population could
arranged between the resonant state and the ground state
could realize a laser based on this process. A particul
appealing point of such a device is that since the impu
states are attached to the QW levels, it is possible to con
the intraimpurity transition energy by varying the QW p
rameters. Experimental evidence of optical transitions
volving coupled resonant states in quantum wells exists fr
both Raman scattering46 and absorption spectroscopy47 mea-
surements. We therefore also calculate the impurity abs
tion spectrum for arbitrary polarization.

The remainder of our paper is outlined as follows. In S
II we present the nonvariational method for solving t
Schrödinger equation of a shallow donor in a QW. Once t
matrix eigenvalue problem is solved, the characterization
the eigenstates becomes an important issue, and this is
cussed in Sec. III. The influence of strain and the central-
effect is considered in Sec. IV, and in Sec. V we calculate
quantum well optical-absorption spectrum in the presenc
coupled resonant states. The numerical results of the ca
lations for Si/Si12xGex quantum wells are presented and d
cussed in Sec. VI, followed by a summary in Sec. VII.
16533
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II. THE BASIS EXPANSION METHOD

We shall consider the problem of a shallow donor, d
scribed by the impurity potentialVc(r ), in a quantum well.
Possibly an electric fieldE along the QW growth directionz
is also present. This field may be externally applied
built-in due to charge redistribution in the structure. In t
effective-mass approximation, the total Hamiltonian can
written as

Ĥ5ĤQW1Vc~r !1eEz, ~1!

with the quantum well Hamiltonian48

ĤQW52
\2

2 S ]

]z

1

m'~z!

]

]z
1

1

muu~z!
“2D

2 D1V~z!. ~2!

From a principal point of view, our method allows for th
quantum well potential profileV(z) to vary arbitrarily with
the positionz. We will however, for simplicity, chooseV(z)
to be a constant band offsetU outside the well~which has
width a) and zero inside it. The effect of strain due to th
lattice mismatch between the well and barrier regions is
sumed to be incorporated in the band offset, except for
splitting of the donor ground state. This will be considered
detail in Sec. IV, along with the central-cell potential whic
is not included in the effective-mass Hamiltonian~1!.

We wish to apply our method to anisotropic materia
such as SiGe alloys. We have therefore split the kine
energy operator into two terms, and let the effective m
depend on the direction, withm' and muu denoting the re-
spective masses perpendicular and parallel to the t
dimensional~2D! QW plane. Further, note that the parall
and perpendicular are both taken to depend on the coordi
z, due to the presence of the heteroboundaries. In result
Schrödinger equation with the HamiltonianĤQW will not be
separable.

The dependence of the parallel massmuu on z is usually
ignored in heterostructure calculations, since the electr
involved in in-plane transport are strongly confined to t
QW channel. In the present case, this simplification is
appropriate since—especially for narrow wells—a large p
tion of the impurity wave function may appear in the bar
ers, and the binding energy depends critically on the ex
nentially decaying part of the wave function. Th
discontinuity of the parallel mass can alternatively be tak
into account by introducing an effective well depth, whic
depends on the in-plane momentum,49 but this is not conve-
nient for our purposes. By diagonalizingĤQW within our
basis expansion method~see below!, we find that a differ-
ence in the parallel masses leads to nonparabolicity of
QW subbands, but does not mix the different QW leve
@This is not to be confused with the nonparabolicity th
arises from coupling to the valence band; cf. the discuss
after Eq.~6!.#

The impurity potential is taken as the Coulomb potent

Vc~r,z!52
e2

e~z!Ar21~z2z0!2
, ~3!
8-2
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~in CGS units! as is appropriate for a shallow donor locat
at (0,0,z0). Herer is the radial vector in the QW plane.
has been demonstrated that the discontinuity in the diele
constante is of importance in GaAs/AlxGa12xAs systems.9

To take this into account properly, one could introduce ima
charges, but to evaluate the matrix elements with the res
ing effective impurity potential„cf. Eqs.~5! and ~6! in Ref.
13… would lead to rather extensive calculations in our pres
approach. Since the difference in the dielectric constan
small between Si and Si/Si12xGex for small x, we will as-
sume thate is a constant, independent ofz.

Our method for solving the Schro¨dinger equation
ĤC(r )5EC(r ) with the total Hamiltonian~1! is based on
expanding the total wave functionC(r ) in a complete basis
and diagonalizing the Hamiltonian in this basis. As the ba
it is natural to use the quantum well eigenstates

uqk&5
eik•r

2p
wq~z!, ^q8k8uqk&5d~k2k8!dq,q8 ~4!

normalized as indicated, whereq enumerates the QW level
andk is the wave vector for the in-plane motion. These sta
diagonalize

Ĥ05F2
\2

2

]

]z

1

m'~z!

]

]z
1V~z!G2

\2

2muu
w
“2D

2 , ~5!

wheremuu
w is the effective mass inside the quantum well f

the direction parallel to the QW plane.
The HamiltonianĤ0 differs from ĤQW in that the parallel

effective massmuu does not depend on thez coordinate.
Hence, in contrast to the case withĤQW, the Schro¨dinger
equation with the HamiltonianĤ0 is separable. To be com
plete, the basis must include both bound and unbound st
and we therefore enclose the system in a box of widthLz in
the z direction. The box is chosen large enough that it h
negligible influence on the results. Nevertheless, the bas
complete for any size of the box. The additional bound
condition thatwq(z) should vanish outside the box has to
taken into account also for the bound states to make th
properly orthogonal to the unbound states.

The wave functionswq(z) can be found by standar
methods,49 and the energy eigenvalues are given by

Ĥ0uqk&5Eqkuqk&, Eqk5Eq1Ek , ~6!

whereEq are the energies of the QW levels. In the simpl
case the QW subbands are parabolic andEk5\2k2/2muu

w . In
principle one can however introduce here the realistic b
dispersion, although it is necessary that the energy func
Ek depends only on the magnitudek of k. We stress that the
discontinuity in the parallel effective massmuu ~see above! is
a separate issue; any nonparabolicity in the dispersion of
basis states is due to coupling to the valence bands an
higher conduction bands.

Expanding in the complete orthonormal setuqk&, the total
wave function can now be written as
16533
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C~r !5(
q
E dk Cq~k!uqk&. ~7!

An important benefit of the chosen basis is thatC(r ) fulfills
the QW boundary conditions by construction.

The spherical symmetry of the Coulomb potential is b
ken by the presence of the quantum well, and instead
total system adopts a cylindrical symmetry around the Q
growth axisz. The total angular momentumL̂2 is hence not
conserved, but its projectionL̂z on the growth axis is. The
eigenfunctions ofL̂z aree2 imu with m50,61,62, . . . , and
they form a complete set. The same holds in Fourier sp
and hence we can write

Cq~k!5Cq~k,uk!5 (
m52`

`

i 2me2 imukCqm~k!. ~8!

By inserting this into the expansion Eq.~7! and performing
the angular integral, the eigenstates of the HamiltonianĤ
given by Eq.~1! can be expressed as

cm~r,f,z!5e2 imf(
q

wq~z!E
0

`

kdk Cqm~k!Jm~kr!, ~9!

whereJm is themth-order Bessel function.
In principle one can diagonalize the total HamiltonianĤ

using this form of the wave function, but it leads to seve
integrals that cannot be evaluated analytically. Instead,
insert expansion~7!, taking into account the angular separ
tion according to Eq.~8!, into the Schro¨dinger equation
ĤC(r )5EC(r ). As expected from the cylindrical symme
try, the subspaces belonging to different projectionsm are
not coupled to each other. We can therefore solve
problem—i.e., determine the expansion coefficie
Cqm(k)—separately in each subspace~for a fixedm).

The basis expansion turns the Schro¨dinger equation into a
Fredholm integral equation of the second kind. It is custo
ary to symmetrize such equations by multiplying both sid
by Ak and define

Dqm~k![AkCqm~k!. ~10!

The integral equation then takes the final form

(
q8

E
0

`

dk8hqq8
m

~k,k8!Dq8m~k8!

5~E2Eqk!Dqm~k!

2(
q8

@Mqq8~k!1Eqq8#Dq8m~k!, ~11!

where the Hermitian kernel

hqq8
m

~k,k8!5
2e2Akk8

2pe E
2`

`

dz wq* ~z!wq8~z!

3E
0

2p

du
e2 imue2uz2z0uakk8(u)

akk8~u!
~12!
8-3
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was calculated using the 2D Fourier transform of the C
lomb potential. u is the angle betweenk and k8, and
akk8(u)5Ak21k8222kk8cosu. The quantity

Mqq8~k!5
\2k2

2m0muu
wE

2`

`

dz wq* ~z!wq8~z!S muu
w

muu~z!
21D

~13!

takes care of the discontinuity of the parallel massmuu(z),
and the electric fieldE enters through

Eqq85eEE
2`

`

dzwq* ~z!z wq8~z!. ~14!

To solve the integral equation we discretize thek axis and
approximate the integral overk by a discrete sum. This turn
the integral equation~11! into a matrix eigenvalue problem

Hqq8
kk8D5ED, whereD is a column vector of the~renormal-

ized; see below! coefficientsDqm(k). In the simplest~but
most convenient! case we choose an equal step sizeDk for
the discretization, and the matrix elements are then given

Hqq8
kk85~Eqkdq,q81Mqq8~k!1Eqq8!dk,k81hqq8

m
~k,k8!Dk.

~15!

Due to the long-range nature of the Coulomb potentia
singularity appears in the kernel Eq.~12! for scattering in the
forward direction. We do not explicitly consider screening
this work; instead the divergence is handled by averag
over small scattering angles.15 In the casek5k850 the en-
tire kernel vanishes exactly, but for other values ofk5k8 we
obtain

hqq8
m

~k,k!'
2e2Akk

2pe E
2`

`

dz wq* ~z!wq8~z!

3E
Dk/2k

2p2Dk/2k

du
e2 imu e2uz2z0uakk(u)

akk~u!

1
2e2

eAp
dq,q8 ~kÞ0!. ~16!

A word on the normalization of the wave functions
appropriate. The matrix eigenvalue problem is solved
standard numerical methods, which return the eigenvec
D ( i ) and eigenvaluesE( i ) for each eigenstatei. Typically
such eigenvectors are normalized by(qkuD qm

( i ) (k)u251. Us-
ing the real-space density function

P( i )~r ![E dr 8@cm
( i )~r 8!#* d~r2r 8!cm

( i )~r !

5E
0

`

dkAkJm~kr!E
0

`

dk8Ak8Jm~k8r!

3(
qq8

@Dqm
( i ) ~k!#* Dq8m

( i )
~k8!wq* ~z!wq8~z!,

~17!
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the normalization condition of the corresponding wave fun
tion cm

( i )(r ) becomes~after discretization*dk→(kDk),

15E P( i )~r !dr52pDk(
qk

uDqm
( i ) ~k!u2. ~18!

Thus the wave functioncm
( i ) will be properly normalized if

the physical coefficientsDqm
( i ) (k) are taken as

Dqm
( i ) ~k!5

D qm
( i ) ~k!

A2pDk
. ~19!

For the particular basis and QW potential profile we ha
chosen, most integrals that appear in the expressions a
can be evaluated analytically, also when an electric field
included, leaving only a numerical integral over the angleu.
The expressions are however much too lengthy to incl
here.

III. CHARACTERIZATION OF THE EIGENSTATES

The diagonalization of the matrix problem provides t
energies of all eigenstates of the Hamiltonian~1!, and using
Eq. ~9! the corresponding eigenvectors allow us to evalu
the wave functions and hence matrix elements such as o
cal dipole-interaction strengths. It is however not imme
ately obvious how to identify the individual eigenstates
localized impurity states, QW band states, or hybridiz
states, and we shall now address this question.

We will adopt the notation of Ref. 9 and denote the ca
m50 by S and all other values byP. If the impurity is
placed in the center of the well, and there is no electric fi
present, the system is invariant under reflectionsz→2z, and
each eigenstate will also possess a quantum labelg andu for
even and odd parity, respectively. If this symmetry is brok
the only good quantum labels will bem and the energyE. It
is however almost always possible to trace the eigenst
back to the symmetric situation, and we will therefore u
eigenstate labels such asSg even when asymmetry is
present.

Our interest is particularly focused on the lowest antisy
metric impurity state, and we distinguish it from the oth
states of the same symmetry by referring to it as theSu*
state. This state has been shown to be attached to the se
QW subband, and for narrow well widths it becomes re
nant with the continuum of the first~lowest! subband.8,9 It
was further demonstrated that them561 or Pu states do
not become resonant, but instead remain attached to the
est subband. We will therefore from now on specialize to
casem50 and often omit the labelm.

In the absence of an electric field, we can always iden
the states corresponding to the original QW levels~the sub-
band bottoms! from the fact that these are the only eige
states with nonzero contribution from thek50 basis states
To facilitate the further classification, we define for ea
eigenstatei, with energyEi , a quantity

dq~Ei !52pE
0

`

dkuDq
( i )~k!u2, ~20!
8-4
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which measures the relative contribution to that eigens
from theqth basis statewq(z); hence(qdq51 for all states.
The lowest QW level is taken asq50.

Studying the values ofdq(Ei) for a particular eigenstatei
now allows us to distinguish between three types of stat

~1! Localized impurity statesonly have contributions from
higher QW levels, i.e., nonzerodq only for levels q with
energyEq.Ei .

~2! Continuous QW subband statesonly have contribu-
tions from lower levels,Eq,Ei . ~This is valid also in the
case of a discontinuous parallel effective mass.!

~3! Hybridized (coupled) resonant stateshave contribu-
tions from both higher and lower levels.

Our method allows us to place the impurity anywhere
the system. Figure 1 summarizes the qualitative behavio
localized and resonant impurity states, as we change the
purity position from the middle of the quantum well to
remote location in the barrier. Some properties displa
schematically in this figure will be considered in more qua
titative details in Sec. VI, whereas the remainder of this s
tion will focus on the properties that characterize the vario
impurity states.

Any state appearing in the energy region below the low
QW level must be localized. The lowest one will be t
impurity ground state, which is split due to the central-c
effect ~cf. Sec. IV!. There are severalSg states attached to
the lowest subband, and they form what resembles a Ryd
series, with decreasing binding energies converging towa
the lowest subband edge. Actually, such series of locali
states appear below each subband, i.e., each QW level h
set of impurity states attached to it~cf. Fig. 1!. The binding
energy of a localized state is therefore to be understoo
the smallest energy required to place an initially localiz
electron into the corresponding QW subband. It is worth n
ing that these considerations also apply to the unbound
levels. Hence if the well is so narrow that there exists
second bound QW level, all theSu states are still well de-
fined, but attached to the 3D continuum.

If the quantum well is wide enough, so that the bindi

3D continuum

2D continuous subband

QW level

Localized impurity
ground state in the well

Lowest resonant state

Shallow impurity 
ground and 
excited states in 
the barrier

E
ne

rg
y

Impurity 
position

Impurity states 
are attached to 
each QW level

Conduction-
band edge

Shallow resonant state
Quantum well

(QW)

FIG. 1. Schematic picture, presenting the general behavio
how the various impurity states evolve as we change the impu
position, for a donor placed inside or outside a heterostruc
quantum well. The shaded areas represent the energy width o
resonant states.
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energy of the lowest resonant stateSu* is larger than the
separation between the first (q50) and second (q51) QW
levels, this state appears below the lowest QW level, an
therefore localized. It is, however, still attached to theq51
level. As the well width is decreased, theSu* state will there-
fore eventually appear in the continuum of the lowest Q
subband, and we obtain a Fano resonant state—a loca
state degenerate with a continuum. Similar resonant st
can be formed from any excited impurity level~except those
attached to the lowest subband! for suitable well parameters
We shall limit most of the discussion to theSu* state, but our
approach can equally well be applied to any of the reson
states, of either parity.

As long as the impurity is placed in the center of the we
no hybridization or coupling can take place between imp
rity states that are resonant with subbands of opposite pa
The localizedSu* state is attached to theq51 QW level, and
therefored0(ES

u*
)50 in the symmetric situation. Moreove

without any hybridization,dq5dq,0 for the continuous state
belonging to the lowest QW level. Coupling will however b
present as soon as any asymmetry that breaks the parity
servation is introduced—such as shifting the impurity po
tion or applying an electric field. The localized state is th
‘‘diluted’’ throughout a band of actual stationary state
whose profile is represented by a Lorentzian resona
curve.29 This hybridization mixes a certain amount of co
tinuum into theSu* state„giving d0(ES

u*
)Þ0…, and the con-

tinuous states acquire a partly localized character (d1Þ0).
Thus the degree of hybridization is measured by the coe
cientsd1(Ei), and the resonance profile is exactly given
these coefficients when plotted against the eigenenergieEi
in the region between the first and second QW levels~cf. Fig.
2!. If the electron is initially placed in the coupled resona
impurity state, it will autoionize with a mean lifetimet

of
ty
re
he

FIG. 2. The contributiond1(E) of the second QW subband t
the eigenstates in the energy range from the first QW level~at 10
meV! to the second one~at 40 meV!. The width of the Si/Si0.9Ge0.1

well is a550 Å, and the three curves correspond to different i
purity positionsz0 : z0 /a50.05 ~solid!, 0.25 ~dotted!, and 0.45
~dash-dot!; z50 is the middle of the well. In addition to the reso
nances at 15–20 meV, similar ones resembling a Rydberg se
appear close to the bottom of the second subband~for clarity this is
only shown forz0 /a50.05).
8-5
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5\/G determined by the energy widthG of the resonant
state.29 We can calculate this width by fitting a Lorentzian
the resonance profile.

In the barrier, the binding energies—which are still me
sured relative the corresponding QW levels—decrease
wards zero, although not very rapidly. As the impurity
moved further away from the well, each impurity state
mains bound to its initial QW level, with vanishing bindin
energy. Hence, even at very large impurity distances,
impurity ‘‘ground state’’ appears to be a deep state with
energy defined by the lowest QW level. This is counterint
tive; we expect the impurity ground state to be a shall
state bound to the 3D continuum. However, the electron d
sity of the deep impurity states is actually localized close
the center of the well, and not on the impurity. When t
distance to the well increases, their wave functions beco
more and more symmetric around the center of the well
assume the shape of the QW basis functionswq(z). At the
same time these wave functions are extended in the ra
direction in the QW plane due to the smaller binding ener
This behavior can be understood from the fact that the e
tronic density is determined by the effective potential in t
well, and when the impurity is far away, the tail of the Co
lomb potential is much weaker than the QW confinem
potential. At large impurity distances, the Coulomb poten
and the well are almost~but not completely! decoupled,
which means that the deep donor states essentially de
from a single QW level, which can be verified by studyin
the coefficientsdq . Similar observations have been made
Stopa and DasSarma14 who also use a nonvariational tec
nique to treat donors in GaAs quantum wells.

As was stated above, there are also QW impurity sta
attached to the 3D continuum~cf. the upper-right part of Fig
1!. When the impurity is in the barrier, these states are
familiar ground and excited shallow donor states, with
electron density localized at the impurity position. We c
now study what happens to an initially decoupled shall
donor as it is moved closer to the quantum well. Due to
induced coupling, Rydberg-like series of impurity states
localized in the well—are pushed down from each co
tinuum edge, i.e., from each QW level. The lowered symm
try due to the presence of the quantum well causes mix
between the hydrogenicn and , levels ~actually only be-
tween levels for whichD, is an even number14!, and onlym
remains as a good quantum label. The original shallow do
state broadens due to the coupling,38 but remains bound to
the 3D continuum also when the impurity finally is located
the well. If the electron is initially placed in the shallo
donor state outside a quantum well, it will after some tim
tunnel into the QW. The tunneling time is essentially giv
by the energy width of the resonant shallow state, which
be calculated within our basis expansion approach or a
Ref. 38.

IV. STRAIN AND CENTRAL-CELL EFFECTS

In order to compare calculated results for the ground-s
binding energy of donors in Si quantum wells with expe
mental values, it is essential to take into account the effe
16533
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of both strain and the central-cell shift. Although the
would, in principle, be some central-cell splitting also of t
excited states, this effect is expected to be very small.42 This
is especially true for the odd-parity states, since they hav
vanishing envelope function at the impurity position. Th
the energy of the resonantSu* state, which in the bulk limit
corresponds to the 2p0 hydrogenic state, will not be affected
and we shall in this section only be concerned with the i
purity ground state.

The conduction-band minimum in bulk Si lies at abo
D15(0,0,0.85) in units where theX point is ~0,0,1!, with six
equivalent valleys. Hence the donor 1s ground state would
be sixfold degenerate. Experimentally, however, one inst
observes three levels, with binding energiesEb1D0 ~the
nondegenerate true ground state!, Eb1D02DE ~twofold de-
generate!, andEb1D02DT ~threefold degenerate!. HereEb
is the effective-mass binding energy, which according
Kohn and Luttinger42 is about 29 meV in Si. The energie
D0 , DE , andDT are positive and, in contrast toEb , depend
on the particular impurity species. This additional contrib
tion to the binding energy is known as the central-cell eff
or chemical shift, and is in general determined from co
parisons with experimental values. In the case of P donor
Si, D0'16.6 meV ~or 14.3 meV if one uses the effective
mass valueEb531.27 meV from the more elaborate calc
lations by Faulkner50!, DE'13.0 meV andDT'11.7 meV.51

The chemical shift is usually considered as arising from
strong potential acting only very near the impurity cent
Although, as discussed in the Introduction, a proper tre
ment is not strictly possible in effective-mass theory, o
could try to incorporate the central-cell effect by employi
a short-range pseudopotential. This, however, fails when
plied to a basis expansion method, since this potential n
interacts not with the total wave function~as is the case in a
variational calculation! but with the individual basis states. I
one adjusts the pseudopotential parameters to produce a
ment with experimental binding energies for a certain w
width ~such as a very wide one, close to bulk!, the param-
eters will not give any sensible results when the basis
different, say, for a narrow well. Instead, we will here sho
how to relate the QW central-cell shift to the bulk shift
purely by symmetry considerations.

In the effective-mass approximation, the wave functio
are written asF(r )5f(r )u(r ), where the envelope function
f varies slowly over interatomic distances, and the Blo
function u is rapidly varying and describes the region clo
to the atomic nuclei. In Si there are six equivale
conduction-band minima or valleys,, which we index by
,P$x,x̄,y,ȳ,z,z̄% ( x̄ is shorthand for2x). Hence one must
generally consider linear combinationsu(r )5(,a,u,(r ) of
the Bloch functionsu, of each valley bottom. If we denote
the ~unspecified! central-cell potential byV, the nonzero ma-
trix elements between the valley bottom Bloch functions
Si are52

^u,uVuu,8&5H V0 , ,5,8

Vg , ,52,8

Vf , u,uÞu,8u.
~21!
8-6
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By evaluating the matrix elements^F1s
i uVuF1s

i & for the six
1s donor statesF1s

i (r ), we can relate the parametersV0 ,
Vf , and Vg to the observed impurity binding energies
follows:

V0uf1s~r0!u25~3DT12DE26D0!/6,

Vguf1s~r0!u25~2DE23DT!/6, ~22!

Vf uf1s~r0!u252DE/6,

wherer0 is the impurity position andf1s is the 1s envelope
function. For further details, see Appendix A.

We now consider donors placed in a Si quantum w
grown pseudomorphically between~unstrained! Si12xGex
barriers. This case differs compared to bulk Si in two wa
First, the Si region will be strained due to the lattice-const
mismatch between Si and Ge. Second, the envelope func
is different due to the additional confinement. On the ot
hand, it is reasonable to assume that the matrix elementsV0 ,
Vg , andVf are unchanged, since the central-cell potentiaV
is appreciable only in a region much smaller than the w
width. Hence, we can still use the values of these parame
as obtained from Eq.~22! using the bulk binding energie
~determined byD0 , DE andDT), but replacef1s by the QW
envelope function.

By taking into account the effects of strain and t
central-cell shifts simultaneously, one finds—in addition
an overall shift—that for~001!-grown wells, the sixfold de-
generate donor ground state splits into five energy lev
whereof one is twofold degenerate.43 The details of this cal-
culation are presented in Appendix B. The lattice constan
unstrained Si12xGex bulk alloy has been parametrized53 from
experimental data54 as

a~x!5a~Si!10.020 032 6x~12x!1@a~Ge!2a~Si!#x2,

where 0<x<1 anda(Si) anda(Ge) are the lattice constan
of bulk Si and Ge~in nanometers!. Inserting this into Eqs.
~B4! and ~B5! we find that the strain component parallel
the QW interfaceseuu.0 and hence the strain parameterj
52Jueuu(2C12/C1111)/3 defined in Eq.~B10! is negative.
HereJu is the deformation potential andCi j are the compo-
nents of the stiffness tensor. Even with only a small cont
x of Ge, the condition that the strain splitting is large co
pared to the central-cell shifts (j@D0) is fulfilled.53 There-
fore, from the results in Appendix B, the lowest valleys w
be D' , perpendicular to the QW interfaces, to which tw
donor states are attached. Four other donor states are as
ated with the higherD uu valleys, which are strain split from
D' by 3uju.

In our calculations we assume that the strain splitting
the conduction band is included in the band offsetU, and
consider only the two lowest donor states belonging toD' .
These two states are shifted from the QW effective-m
valueEb by

ucQW~r0!u2

uf1s~r0!u2
F2D01H 2DE/3

DT
J G . ~23!
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The Bloch functions of the two states are the symmetric a
antisymmetric combinations of the twoD' valleys. The
quantum well envelope function amplitudeucQW(r0)u2 is ob-
tained from the basis expansion coefficients using Eq.~17!.
We will return to the question how to correctly determine t
bulk amplitudeuf1s(r )u2 in Sec. VI.

The central-cell shifts are negative, which means that
binding energies are increased. The impurity ground s
now corresponds to the~nondegenerate! 2DE/3 state, since
DE.DT for typical donors~P, As, Sb! in Si.51 It is worth
noting that, since furthermoreDE.D0, the central-cell effect
in the quantum well case can be much smaller than in b
Si, at least if the ratio of the wave functions is not too larg
In bulk Si, the donor ground state is shifted byD0
517 meV, but in the QW the ground state shift for P dono
is only D022DE/3'8 meV, assuming that the envelop
function ratio in Eq.~23! is of the order unity. On the othe
hand, this ratio is expected to be above unity for narr
wells, due to the additional confinement, and so in this c
the central-cell effect further increases the already enhan
ground-state binding energy.

V. OPTICAL ABSORPTION

If the impurity is placed exactly in the middle of the we
~and no electric field is present!, the selection rules prohibi
the radiative decay from the lowest subband to the impu
ground state by a dipole transition with polarization para
to the QW growth direction. However, if some asymmetry
introduced, the transition is allowed from the part of t
subband which is hybridized with the resonant antisymme
Su* impurity state.

In the dipole approximation, Fermi’s golden rule gives t
probability per unit time of optical absorption, at the fr
quencyv, between statesi ~initial! and j ~final! as

Wji 5
2p

\ S eA0

mc D 2

u^ j uê•p̂u i &u2d~Ej2Ei2\v!, ~24!

whereA0 is the magnitude of the electromagnetic vector p
tential, ê is the photon polarization vector,p̂ is the momen-
tum operator, andEi is the energy of eigenstatei.

Assuming that the system containsN independent impu-
rities, we may relate the absorption rateWji to the absorption
coefficientA as

A~\v!5
N

V

2p\c

kvuA0u2 (
j

Wji , ~25!

whereV is the total sample volume andk is the refraction
index. In a quantum well, a more natural quantity to consi
is the absorption cross section

s5
AV

N
5

4p2\2a

k (
j
U K jUê•p̂

m
U i L U2

d~\v j i 2\v!

\v j i
,

~26!

where v j i 5(Ej2Ei)/\ and a[e2/\c is the fine-structure
constant.
8-7
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The summation in Eq.~26! in principle involves, among
other things, final statesj in all valleys with any spin polar-
ization. We can however ignore the fourD uu valleys alto-
gether, since the strain splitting is much larger than the
purity binding energy. We shall consider absorption on
from the ground state, and so the initial statei is an equal
mix of the twoD' valleys, as discussed in Sec. IV, with fixe
~but arbitrary! spin. The dipole operatorê•p̂ does not affect
spin and connects only the parts of the initial and final sta
belonging to the same valley. This holds also when the te
perature is large enough that the occupation probabilitie
the two statesu2 andu6 ~cf. Appendix B! are roughly equal;
in this case we must also average over the two states. T
the sum overj can be restricted to a sum over the fin
energyE and the different cylindrical subspaces. It is furthe
more enough to evaluate the matrix element between
envelope functions only, as long as we replace the elec
massm by the effective massm* in the direction parallel
to p̂.49

Since one would most naturally place the donors ins
the QW for optical applications of this kind, we assume th
the relevant effective masses are those of the well, and w

ê•p̂

m*
5

cosu p̂x

muu
w

1
sinu p̂z

m'
w

, ~27!

whereu is the angle between the photonk vector and the
QW growth directionz. The light is assumed to be plan
polarized in the plane spanned by the normal to the Q
plane and the photonk vector. Thex axis is defined as the
intersection of this plane and the QW interface planes.

In principle Eq.~27! allows for interference between th
two terms when inserted into Eq.~26!. The interference
terms are essentiallŷi u p̂xu j &^ j u p̂zu i & or the complex conju-
gate thereof, to be summed over all final statesj. Herei is the
impurity ground state, which belongs to themi50 cylindri-
cal subspace. The sum over final states can be split into
parts, where we first consider all statesj in a particular sub-
spacemj , and then sum over all subspaces. The first facto

^ i u p̂xu j &}dmj ,mi61, which follows from the selection rule

Dm561 ~see below! for the p̂x operator. On the other hand

^ j u p̂zu i &}dmj ,mi
sinceDm50 for p̂z . Thus, the interference

terms vanish, and we may write

s5sxcos2u1szsin2u, ~28!

which definessx and sz . As we will see in Sec. VI, the
absence of interference is a contributing factor to produc
a symmetric absorption peak.

Let us first considerz polarization. To eliminate thed
symbol in Eq.~26! we turn the sum over final statesj into an
integral. However, we have to consider that the relevant d
sity of final states in this case is not the usual 2D density
states. If we double the ‘‘size’’ of our system (Dk→Dk/2)
we only get twice as many eigenstates, since the discre
tion in Sec. II is carried out over the magnitudek of k. Hence
the density of states ink space isdn/dk51/Dk, and in en-
ergy space
16533
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dEk
5

dn

dk

dk

dEk
5

1

\Dk
Amuu

w

2Ek
, ~29!

where the parabolic dispersion relationEk5\2k2/2muu
w was

again assumed. The presence ofDk will properly renormal-
ize the matrix element when this is evaluated from the d
cretized expansion coefficients~cf. the discussion on normal
ization in Sec. II!. Now we may perform the integral ove
energy to remove thed function, and the absorption cros
section can be evaluated atv5v j i for all eigenstatesj. The
result is

sz5
2p2a

kDk

A2\muu
w

\~m'
w!2v j i

3/2
u^ j u p̂zu i &u2. ~30!

By using the form Eq.~9! of the wave function for the
statesi and j ~belonging to the subspacesm andm8, respec-
tively!, the remaining matrix element becomes

^ j u p̂zu i &5E
0

2p

df e2 i (m2m8)f(
qq8

^q8u p̂zuq&E
0

`

dk Dqm
( i ) ~k!

3@Dq8m8
( j )

~k!#* . ~31!

Since the first integral yields 2pdm,m8 , we obtain the selec-
tion ruleDm50 for this polarization. The integral overk can
be evaluated from the matrix eigenvectorsD, taking the nor-
malization relation Eq.~19! into account. We can further
more use the commutator@ĤQW,z#52 i\ p̂z /m'(z) and the
fact that the statesq andq8 are eigenstates ofĤQW, defined
in Eq. ~2!, to rewrite

^q8u p̂zuq&5
i

\
~Eq82Eq!E

2`

`

wq8
* ~z!zm'~z!wq~z!dz.

~32!

Next we considerx polarization, for which the selection
rule is Dm561, as will be demonstrated shortly. We wi
focus on the energy region between the first and second
subbands, where the lowest resonant stateSu* appears. Since
there are no resonant states withm561 in this region, and
since the ground state belongs to them50 subspace, we can
ignore mixing of the QW subbands and represent the fi
states as normalized plane waves belonging to the first
bandq50:

u j &5
exp~ ik( j )

•r!

L wq50~z!, ~33!

whereL is the normalization length.
To derive the selection rule, one may rewrite the mom

tum operatorp̂x in cylindrical coordinates and act on th
cylindrical expansion of a plane wave eik•r

5(mi me2 imqJm(kr), whereq is the angle between the vec
tors k andr. One then obtains

^ j u p̂xu i &5
p\kx

( j )

L Cq50
( i ) ~k( j )! (

m52`

`

dm,61 ~34!
8-8
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which shows the selection rule explicitly; the summation
trivial and gives a factor of 2. As before,i refers to the donor
ground state, represented by an expansion of form~9!. It is
not surprising that the momentum operatorp̂x picks up thex
component of the final wave vectork( j ); the result Eq.~34!

can of course also be obtained by acting withp̂x on the plane
waveeik•r without changing to cylindrical coordinates. Bu
in that case the selection rule will not appear, since it is
actually present in the final result, after the summation in
~34! has been carried out.

We remove thed function in Eq.~26! by integrating with
the usual 2D density of states per spinL 2muu

w/2p\2. In re-
sult, we arrive at

sx5
2p2a

kDk

\Kq50,j

muu
wv j i

uDq50
( i ) ~Kq50,j !u2, ~35!

whereKq j is defined from the energy conservation relatio

Ei1\v j i 5Eq1
\2Kq j

2

2muu
w

, ~36!

whereEi is the energy of the donor ground state andEq is
the energy of theqth QW level. The expansion coefficien
D q

( i )(Kq j) can be found by interpolating the matrix eigenve
tors overk.

VI. RESULTS

A. Numerical aspects

In this section we present numerical results for shall
Coulombic donors in~001!-grown Si/Si12xGex quantum
wells. The electronic parameters~effective masses, band off
sets, and deformation potentials! of these systems are know
from the systematic study by Rieger and Vogl.53 We make
the approximation, as discussed in Sec. II, that the differe
in the dielectric constant can be ignored, and use that of b
Si throughout. Furthermore, although the nonparabolicity
the subbands in strained Si quantum wells has been foun
be considerable, we take the basis subbands to be para
since the nonparabolicity parameter is not well known.55 For
small contentsx of Ge the effective masses are very simi
for the well and barrier regions, and therefore the disco
nuity in the parallel effective mass turns out to have no
servable influence on the results for these particular syste

For the matrix problem to be of finite order we must lim
the number of QW levels to include in the basis, and also
integration~sum! over k must be cut off somewhere. This
the only real approximation in the method~other than those
inherent in effective-mass theory!. Therefore, in order to as
sure the numerical accuracy of our results, we always incl
all bound QW levels, and increase the number of unbo
levels until the eigenvalues do not change. The same pr
dure is applied to determine the required density and ra
of k values. The contribution from the unbound states dr
off rapidly with increasing energy, although for narrow
wells it is naturally important to include more unboun
states.
16533
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With a sparser basis set it naturally becomes impossibl
resolve all the~infinitely many! excited impurity states close
to the bottom of each subband. These states are how
usually well separated from the lowest resonant states
we are mainly interested in. Nevertheless, if the situat
occurs when there are several impurity levels in very clo
vicinity of each other, e.g., if the binding energy of th
ground state is very small, the basis must naturally be cho
denser, so that all states of interest are resolved. Furtherm
the density ofk points must always be large enough that t
resonance width is covered by more than just a few points
the results presented below, these issues have been car
taken into account.

Quite a large range ofk values is needed to reach conve
gence, especially in the ground-state wave-function am
tude, since the expansion coefficients decay rather slo
roughly ask23.5. This means that, since at the same time o
wishes to keepDk as small as possible for accuracy, theN
3N matrix problem becomes fairly huge~typically N will be
between 1000 and 2000!. The size of the matrix problem
which can be diagonalized is a limiting factor, and it is n
always possible to obtain optimal accuracy, especially
very wide wells. Nevertheless, we have made sure that
errors in the results presented here are less than 1%. The
exceptions are the energy width of the resonant state w
the impurity is deep inside the barrier~in which case the
width itself is very small! and the ground-state wave
function amplitude; here the errors may be up to 5%. Ho
ever, the accuracy in theratio of the wave-function ampli-
tude to the corresponding bulk value—which really is t
quantity of interest—is much better than the accuracy of
amplitude itself. The wave-function amplitudes are also m
sensitive to the size of the outer boxLz ~which normalizes
the ‘‘continuum’’ basis functions! than the eigenvalues are
Again, the convergence can be controlled by increasing
size as much as needed.

B. Binding energy and resonant-state energy width

In agreement with variational calculations, we find th
the binding energies are generally increased due to the a
tional confinement presented by the quantum well poten
both for the ground and the excited states~cf. Figs. 3 and 4!.
Furthermore, since theSu* state is attached to the secon
QW level, it appears at higher and higher energies as
level separation increases with smaller well widths. T
holds until the well becomes very narrow, when the bindi
energies decrease again, as shown in Fig. 3. When the
width is much smaller than the radius of the impurity sta
one can view the system as an impurity situated in the
bulk, slightly perturbed by the narrow quantum well. For
vanishingly narrow well the binding energies therefore a
proach the values corresponding to the bulk barrier mate
Moreover, below a certain well width there is no bound od
parity QW level, and theSu* state then becomes attached
the continuum, which does not move as the well width
changed. These effects on the ground- and resonant-
binding energies have also been observed in variatio
calculations.9,14
8-9
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For wide wells, the ground-state binding energy co
verges to the effective-mass value of the bulk hydrogenics
donor state in Si at a width of about 250 Å, which is fas
than for GaAs/AlxGa12xAs quantum wells.9 Clearly, the rea-
son is the smaller radius of the impurity states in Si co
pared to GaAs. By the same reasoning, the convergenc
the excitedSu* state to the corresponding bulk state 2p0 is
slower than for the ground state, since the smaller bind
energy of the excited state corresponds to a larger radiu
the state. From Fig. 4 we further note that for uniform
doped wells, one effectively obtains broad bands of impu
energies, instead of a set of sharp levels. The bandwidt
the ground state can be almost comparable to the spacin

FIG. 3. The binding energy of the ground state~solid curve! and
the Su* state ~dashed curve! for a Si/Si0.8Ge0.2 quantum well of
varying width. The impurity is located in the middle of the we
and the central-cell shift is not included. For wide wells the bind
energies approach the bulk values~29 meV and 7 meV, respec
tively!, indicated by the dotted lines. The inset shows the ene
separation between theSu* state and the ground state~GS!.

FIG. 4. The impurity ground-state binding energy~left-hand
vertical axis! for Si/Si0.8Ge0.2 wells of widths~from top to bottom!
a530 Å, 40 Å, 50 Å, and 60 Å, and for the same widths a
symbols the position of the resonantSu* state~right-hand vertical
axis!. The right-hand vertical scale is normalized so that 0 cor
sponds to the first QW level, and 1 to the second one. The QW l
energies are, from the narrowest~30 Å! to the widest~60 Å! well:
E0526.8, 17.1, 11.8, 8.7 meV andE15102.7, 67.1, 46.8, 34.4
meV. The vertical line marks the edge of the well, and the impu
offset is measured from the middle of the well. The central-cell s
is not included.
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the QW levels, in particular if the central-cell effect is als
taken into account~see below!.

The decay of the binding energies in the barrier is ve
slow. It follows a power-law dependence, but there does
appear to exist any common exponent; for the curves sh
in Fig. 4 the exponents are'0.7–0.8 for the ground stat
and 0.2–0.4 for the resonant state. Nevertheless, at very l
distances the impurity states coalesce with the quantum
levels; see the discussion in Sec. III regarding the impu
wave functions when the donor is placed in the barrier.

Figure 5 shows the energy widthG of the resonantSu*
state. As the impurity is moved away from the center of t
well, the width increases due to the enhanced coupling~the
increased asymmetry!; this could also be seen from Fig. 2
When we continue to move towards the barrier,G reaches a
maximum value at about 35% offset. After that, it decrea
due to the reduced overlap between the two lowest QW b
functions. In the barrier, the width continues to decay acco
ing to a power-law dependence with an exponent~which is
not common for different well widths! of the order 2–3. This
is in contrast to the resonant state formed from the shal
donor states when the impurity is in the barrier~shown in the
upper-right part of Fig. 1!, for which the width decays
exponentially.38

For the same relative impurity offset, the resonance
broader in wider wells, which is an effect of the fact that t
Su* state appears closer to the bottom of the band. In Fig
the same can be observed for the higher excitedSu resonant
states, which are narrower the higher energy they have.
furthermore see from Fig. 2 that a widening of the resona
causes its amplitude to decrease. The smaller the en
width is, the more localized the impurity state is, but t
effect on scattering and optical properties can still be p
nounced since the amplitude of the resonance at the s
time is larger.

The behavior of the resonance position for the widest w
(a560 Å) is slightly different from the other curves in Fig
4. For this well width, the resonance is close to the subb
bottom for central impurity positions. Therefore, the res
nance profile becomes rather asymmetric, since it canno

y

-
el

y
t

FIG. 5. The energy widthG of the resonantSu* state for the
same quantum wells as in Fig. 4, with the same symbols for
curves.
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continued below the lowest subband. The amplitude of
resonance, as measured byd1(ES

u*
), is furthermore very

small as long as the resonance is close to the band bottom
the same time the resonance widthG is the largest for this
well width, at intermediate impurity offsets. To accomm
date this width, the resonance position shifts away from
subband bottom more quickly in this case than for the ot
well widths.

C. The central-cell effect

The results discussed above for the ground-state bin
energy indirectly contain the effect of strain, since this giv
rise to the QW band offset, but do not include the central-c
effect, and therefore represent the effective-mass binding
ergy. To take the central cell into account for the two don
states attached to the lowestD' valleys is however straight
forward by using Eq.~23!. The bulk shiftsD0 , DE , andDT
depend on the particular impurity species~values for phos-
phorus are given in Sec. IV!, and in addition we need to
know the ratio of the QW and bulk envelope functions at
impurity position.

Regarding the bulk envelope function, one could imag
using a variational wave function, such as the normaliz
nonisotropic ‘‘hydrogenic’’ function

w1s~r,z!5
1

Apa2b
expS 2Ar2

a2
1

z2

b2D ~37!

originally used by Kohn and Luttinger42 to obtain the value
29 meV for the effective-mass binding energy in Si~the en-
ergy is minimized by a52.478 nm andb51.420 nm).
However, although variational functions may produce rat
accurate estimates of the energy, they do not, in general,
a correct picture of the wave function. This is illustrated
Fig. 6, where we see that in the region close to the impur

FIG. 6. The surface plot is the differenceuw1su22ucQWu2 for a
wide ~200 Å! Si/Si0.8Ge0.2 quantum well, and the inset shows th
QW envelope functionucQW(z)u2 ~solid! and the bulk variational
function uw1s(z)u2 ~dashed! for r50. Both functions are normal
ized and give the Si bulk binding energy~29 meV; cf. Fig. 3!.
16533
e

At

e
r

g
s
ll
n-
r

e

e
d

r
ve

y,

the variational functionw1s(r,z) given by Eq.~37! may dif-
fer substantially from the wave functioncQW(r,z) obtained
with the basis expansion method, although they both rep
duce the same binding energy. The two envelope functi
do however agree very well in the exponentially decay
tail, which is precisely the part that determines the bind
energy.

In the inset of Fig. 7, the value of the quantum well e
velope function amplitude, at the impurity position, is plott
as a function of the well width. Comparing with Fig. 3 w
see that at a width of 250 Å, the ground-state binding ene
is extremely close to the variational value, which is reas
able since the well is much wider than the radius of t
impurity state~estimated bya and b). However, the QW
envelope function amplitude differs substantially fro
uw1s(0,0)u250.0365 nm23. Instead, as the well become
wider, the amplitude converges to a value of'0.023 nm23,
which we therefore will take as the value for the bulk amp
tude uf1s(r0)u2.

Once the bulk amplitude thus has been determined,
can use the ratio of the QW and bulk envelope functio
shown in Fig. 7, to evaluate the chemical shift for any we
width and impurity position. When the impurity is close
the center of the well, the QW wave function in narrow we
is strongly enhanced at the impurity position, whereas
wider wells it approaches the bulk value. On the other ha
moving the impurity to the edge of the well leads to a rap
reduction of the ratio. It was mentioned in Sec. III that wh
we place the donor in the barrier, the wave function of t
deep impurity states is localized in the well and not on
impurity. Now we find that even when the impurity is sti
inside the well, the wave-function maximum does not e
actly coincide with the impurity position for asymmetric lo

FIG. 7. The ratio of the QW envelope function amplitude to t
bulk value, at the impurity positionr0, for three different
Si/Si0.8Ge0.2 wells of widths~from top to bottom! a530 Å, 50 Å,
and 70 Å. The vertical line marks the edge of the well, and
impurity offset is measured from the middle of the well. The bu
amplitude is defined as the wide-well limit (0.023 nm23) of the
inset plot, which shows the QW envelope function amplitude a
function of the well width. The amplitude closely follows the vari
tion of the ground-state binding energy~cf. Fig. 3!, also for very
narrow wells when both the binding energy and the amplitude ag
approach the bulk value.
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BLOM, ODNOBLYUDOV, YASSIEVICH, AND CHAO PHYSICAL REVIEW B68, 165338 ~2003!
cations. By studying the probability density one finds that
wave function is pushed towards the center of the well. O
can view this as the wave function being reflected away
the barriers.

For wells wider than 50 Å, the ratio of the bulk and Q
wave-function amplitudes is close to unity, and hence, as
mentioned in Sec. IV, the central-cell shift is substantia
smaller in the quantum well than in bulk Si. For off-cent
impurity position this applies to even narrower wells~cf. Fig.
7!. Note also that for very wide wells, the shift as calculat
from Eq. ~23! is different from that of bulk Si, due to the
strain. Thus we can expect that the central-cell shifts
smaller in strained bulk Si than in the unstrained mater
Since the chemical shift is much larger for impurities plac
in the center of the well than for positions close to the b
rier, the effective band of impurity energies mentioned abo
is furthermore widened by the central-cell effect.

D. Electric field and optical absorption

When a static electric field is applied across the quan
well, the parity symmetry is broken even when the impurit
are placed in the center of the well, as in the case show
Fig. 8. The energy widthG of the resonantSu* state—and
hence the degree of coupling—can be controlled by vary
the electric field. Also the transition energy from the reson
state to the ground state can be fine-tuned in the same
but the tuning range is small compared to the resona
width. By varying the QW parameters, on the other ha
this energy can be tuned over a vast range, as shown in
inset of Fig. 3.

As the electric field is increased from zero, the resona
width naturally also increases due to the induced coup
between the resonant state and the continuum. Still, the
tailed behavior of the curves in Fig. 8 warrants further co
ments. If we take the energy of the zero-field conductio
band bottom as a fixed reference, we can study the fi
dependence of the energy positions of the impurity states
the quantum well levels~which are also shifted by the pres
ence of the field!. The positions of the second QW level an

FIG. 8. The solid curve shows the energy widthG of the reso-
nant Su* state, as we apply a static transverse electric field t
Si/Si0.8Ge0.2 well of width 55 Å. The impurities are placed in th
center of the well. Also the energy separation~dashed curve! be-
tween the resonant state and the GS is presented.
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the resonantSu* state—both of which have odd parity with
out any applied field—are practically unaffected by the fie
On the other hand, the lowest QW level and the impur
ground state~even parity states! are deflected downwards
Hence, as the field is applied, the resonance appears at h
energies relative to the subband bottom. We noted above
the energy width is smaller for higher-energy resonanc
and the interplay between this effect and the increase in
width from the stronger coupling gives rise to the plateau
about 50–70 kV/cm. At yet higher fields, the enhancemen
the coupling will however dominate and the width increas
again. Alternatively, one can consider that the electric fi
‘‘pushes’’ the wave functions towards the side of the we
This affects odd and even states slightly differently, whi
influences the overlap between the first and second QW
els, and this is an essential factor in determining the coup
and the resonance position.

Finally we have also calculated the absorption cross s
tion s ~cf. Figs. 9 and 10! from the donor ground state in th
case when theSu* state is coupled to the first subband b
placing the impurity asymmetrically in the well. Accordin
to the dipole selection rules, discussed in Sec. V, there is
absorption from the ground state to the unperturbed first s

a

FIG. 9. The profile of the absorption cross sections for a 40-Å
wide Si/Si0.85Ge0.15quantum well, with the impurity offset 4 Å from
the center of the well. The electron is initially assumed to be in
impurity ground state; the central-cell shift has however not b
taken into account for the photon energy scale. For the actual va
of the cross section, see Fig. 10. The coordinate system for
incidence angleu is defined in Sec. V.

FIG. 10. For the same system as in Fig. 9 we here show
absorption cross section for some selected incidence anglesu: from
top to bottomu50°, 30°, 60°, and 90°.
8-12
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band (q50) if the incoming light is linearly polarized alon
the QW growth direction. However, when theSu* state hy-
bridizes with this subband, it mixes a certain amount of
second QW subband (q51) into the continuous states of th
first subband, and thusszÞ0. Hence in an energy region
determined by the widthG, around the resonant state, a
sorption is allowed even at normal incidence (u590°). This
is seen in the figures as the narrow peak at about 55 me

The shape of the normal incidence absorption peak
symmetric. This follows from the fact that due to the intr
subband selection rules, as shown in Sec. V, there is no
terference between the matrix elements for absorption
the localized and continuous parts of the hybridized reson
state, respectively. Given this, and the energy-indepen
2D density of states, the absorption spectrum will have
same shape as the resonance profile, which is symmetr
the displayed~and nearly all other! cases. Hence the asym
metry that often is observed in absorption spectra involv
Fano resonances29,35–37is absent in our case.

For anglesu,90°, absorption is also allowed for pola
ization parallel to the QW interfaces, given bysx , and this
gives rise to the broad background peak. Furthermore
about 85 meV photon energy, absorption into the second
subband also becomes possible; in this case the sele
rules allow absorption for any polarization. The cross sect
is finite at the second subband edge, reflecting the step
2D density of states.

The amplitude of the resonant-state absorption peak is
very large compared to the background, except for ne
normal incidence (u'90°). Nevertheless, the absorptio
cross sectionsz is still of the same order as the cross sect
for impurity absorption in bulk Si.56 It is expected that the
considered intraimpurity transition is particularly stron
since the transition is analogous to the so-called resona
line (2p→1s) in atomic hydrogen.

VII. SUMMARY AND DISCUSSION

In this paper we have presented a unified approach
calculating the energy levels of shallow donors in hete
structure quantum wells. By turning the Schro¨dinger
equation—containing both the QW profile and the impur
potential—into a matrix eigenvalue problem, we obtain
complete description of the entire energy spectrum for
donor positions, both inside and outside the well.

Applying this method to Si/Si12xGex quantum wells, we
have calculated the binding energies of the ground state
the lowest antisymmetric resonant state for several w
widths and impurity positions. The dependencies of
binding energies on the QW parameters follow the sa
general behavior found in variational calculations
GaAs/AlxGa12xAs systems. When the donor is placed asy
metrically in the well, or a transverse electric field is applie
the resonant state can hybridize with the continuous s
bands, and we can within our method evaluate the reson
state energy width, which is directly related to the lifetim

Si/Si12xGex quantum wells are strained due to the latti
mismatch, and this was investigated in detail, along with
central-cell effect. By expressing the QW central-cell sh
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through the parameters of the split donor states in bulk
and the amplitude ratio of the QW envelope function to t
bulk one, it was shown that—depending on the impurity p
sition and the well width—the QW shift can be either smal
or larger compared to the bulk case.

We have also compared the commonly used variatio
function for donors in bulk Si, to the ground-state wave fun
tion obtained with the basis expansion. Even though b
functions give the same energy if the well is wide enoug
they are far from identical. No assumption regarding t
shape of the wave function is made in our nonvariatio
method, and we therefore conclude that the ‘‘hydrogen
function is not capable of giving a correct description of t
donor wave function. Instead we obtain the correct envel
functions of the localized, resonant and continuum eig
states, and can then evaluate various matrix elements. A
example we present the ground-state optical-absorption s
trum, which shows a strong dependence on the direction
the incident photon compared to the quantum well axis d
to the selection rules.

The possibility to populate the resonant state by elec
cally pumping the electrons in the QW subbands could
used to create a conduction-band resonant-state laser in
quantum well. Provided the carriers can reach the resona
energy without being scattered by other mechanisms, t
can—through the hybridization—be captured into the loc
ized part of the resonant state. They may then make an
tical transition to the impurity ground state, a transition th
is particularly strong, or to some excited localized sta
Since, as was shown, the impurity states are attached to
QW levels, it is possible to tune the intraimpurity transitio
energies by varying the well parameters. The tuning ra
for the ground-state transition was shown to extend from
to 150 meV by changing the Si well width between 2 and
nm ~the central-cell effect increases this range somewh!.
Additionally, some fine-tuning could possibly be achieved
applying a transverse electric field.

For the Si wells we have considered, the resonance w
can be as large as 10 meV, which gives a very short lifeti
of about 0.1 ps. One may therefore expect that the reso
states can have a strong influence not only on the mobi
from the pronounced resonant scattering mechanism tha
pears in a narrow-energy region, but also on the noise s
trum, due to the capture and reemission process. These
tures are in fact present even when the impurities are pla
outside the well, since there is coupling also between
shallow barrier donor state and the QW subbands.
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APPENDIX A: RELATING THE CENTRAL-CELL
PARAMETERS TO THE BINDING ENERGIES

In the effective-mass approximation, the wave functi
close to each conduction band minimum, i.e., in each va
,, is assumed to be of the formc,(r )5f(r )u,(r ), with a
common envelope functionf. Hereu, is the Bloch function
of the valley bottom, which can be written asu,(r )
5exp(ik,•r )Uk,

(r ), wherek, is the wave vector of the re
spective conduction-band minimum, andU is a function with
the periodicity of the lattice.

In bulk Si the six conduction-band minima,

P$x,x̄,y,ȳ,z,z̄% are degenerate. Therefore we write the wa
function of each 1s impurity state as

F1s
i ~r !5f1s~r !ui~r ! ~ i 51, . . . ,6!, ~A1!

with

ui~r !5(
,

a ,
i u,~r !. ~A2!

Using the valley bottom Bloch functionsu, as a basis, the
Bloch functionsui can thus be represented as vectors of
coefficientsa ,

i .
However, we also know that the six 1s states transform a

the Td group, and hence their Bloch functionsui can be
written as43

uA5~1,1,1,1,1,1!/A6,

uE
(1)5~1,1,21,21,0,0!/2,

uE
(2)5~1,1,1,1,22,22!/2A3, ~A3!

uT
(1)5~1,21,0,0,0,0!/A2,

uT
(2)5~0,0,1,21,0,0!/A2,

uT
(3)5~0,0,0,0,1,21!/A2.

The labelA refers to the nondegenerate ground state w
energy2D0 relative to the effective-mass value,E is the
doublet state with energy2D01DE , and T is the triplet
state with energy2D01DT .

Since the envelope function is assumed to vary slo
over distances comparable to the range of the central
potentialV, we can write

^F1s
i uVuF1s

i &5uf1s~r0!u2^ui uVuui&, ~A4!

wherer0 is the position of the impurity. The overlap matr
elements between Bloch functions from different valleys,
are given in Eq.~21!. By inserting the Bloch functions given
in Eq. ~A3! into Eq.~A4!, we can express the donor energi
in terms ofV0 , Vg , andVf as follows:

^CAuVuCA&5uf~r0!u2~V01Vg14Vf !52D0 ,

^CEuVuCE&5uf~r0!u2~V01Vg22Vf !52D01DE ,
16533
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^CTuVuCT&5uf~r0!u2~V02Vg!52D01DT .

Inverting these relationships gives Eq.~22!.

APPENDIX B: DONOR STATES IN STRAINED SILICON

The strain Hamiltonian for the conduction band in Si c
be written as57

Ĥstrain5JdTr~e!1Ju~ k̂•e• k̂!, ~B1!

where Tr means the trace ande is the strain tensor. The
constantsJd andJu are the deformation potentials, andk̂ is
a unit vector along one of the equivalent valle

$x,x̄,y,ȳ,z,z̄% in the unstrained material. In the basis of th
valley bottom Bloch functions~cf. Appendix A!,

Ĥstrain5
Ju

3
~euu2e'!S 1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 22 0

0 0 0 0 0 22

D
1FJd~2euu1e'!1

Ju

3
~2euu1e'!G1. ~B2!

The second term represents an overall shift and can be
nored altogether. Here1 is the 636 unit matrix.

For a pseudomorphically~001!-grown strained layer, the
strain tensor takes the form

e5S euu 0 0

0 euu 0

0 0 e'

D , ~B3!

whereeuu and e' are the strain tensor components para
and perpendicular, respectively, to the interface planes. Th
can be expressed in terms of the unstrained lattice cons
of the layeral and the substrateas , by evaluating the new
lattice constants in the strained layer58

auu5as , a'5alF12
2C12

C11
S auu

al
21D G , ~B4!

whereCi j are the components of the stiffness tensor. We th
have

euu5
auu

al
21, e'5

a'

al
2152

2C12

C11
euu , ~B5!

from which we see that the two components have oppo
signs.

In order to take the effects of strain and the central c
into account simultaneously, we make a unitary transform
tion of Ĥstrain to the basis given by the statesuA , uE

( i ) , and
uT

( i ) defined in Appendix A, and add the central-cell cont
bution
8-14
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Ĥcc52D011S 0 0 0 0 0 0

0 DE 0 0 0 0

0 0 DE 0 0 0

0 0 0 DT 0 0

0 0 0 0 DT 0

0 0 0 0 0 DT

D ,

~B6!

which naturally is diagonal in this basis.
The resulting Hamiltonian matrix is, apart from a com

mon diagonal constant2D0,

S 0 0 2A2j 0 0 0

0 DE2j 0 0 0 0

2A2j 0 DE1j 0 0 0

0 0 0 DT2j 0 0

0 0 0 0 DT2j 0

0 0 0 0 0 DT12j

D ,

~B7!

which is easily diagonalized; the once sixfold degenerate
nor ground state splits into four nondegenerate and one
fold degenerate states~Ref. 43, Sec. 37!, with energies

e152D01DE2j,

e2,352D01
DE

2
~x116A112x19x2 ! , ~B8!

e4,552D01DT2j,

e652D01DT12j.

To abbreviate the expressions we have introduced

x5j/DE , ~B9!

j5Ju~e'2euu!/352
Ju

3
euuS 2C12

C11
11D . ~B10!
d

.
.N

16533
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The Bloch functions of the six eigenstates are59

u15~1,1,21,21,0,0!/2,

u25~auA1uE
(2)!/A11a2,

u35~uA2auE
(2)!/A11a2, ~B11!

u45~1,21,0,0,0,0!/A2,

u55~0,0,1,21,0,0!/A2,

u65~0,0,0,0,1,21!/A2,

expressed in the valley bottom Bloch function basis~cf. Ap-
pendix A! with uA anduE

(2) given in Eq.~A3!, and

a5
22xA2

11x1A112x19x2
. ~B12!

If the strain splittingJu(e'2euu) is much larger than the
central-cell splittingDE , as is the typical situation in S
grown on a Si12xGex substrate,53 x@1 anda'21/A2. In
this limit the eigenfunctionsu2 andu3 become

u2'~0,0,0,0,1,1!/A2,
~B13!

u3'~1,1,1,1,0,0!/2,

with energies

e2'2j2D01
2DE

3
,

~B14!

e3'2j2D01
DE

3
.

Thus in this case the six states separate into two gro
whereu2 andu6 are comprised of the twokz valleys, and the
four other states are not coupled to these valleys at all.

In the opposite limit, if the strain is very small,x!1 and
we see thatu1 andu2 originate from the doublet andu3 from
the ground state.
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