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We present a unified approach for calculating the properties of shallow donors inside or outside heterostruc-
ture quantum wells. The method allows us to obtain not only the binding energies of all localized states of any
symmetry, but also the energy width of the resonant states which may appear when a localized state becomes
degenerate with the continuous quantum well subbands. The approach is nonvariational, and we are therefore
also able to evaluate the wave functions. This is used to calculate the optical absorption spectrum, which is
strongly nonisotropic due to the selection rules. The results obtained from calculations for S#&iquan-
tum wells allow us to present the general behavior of the impurity states, as the donor position is varied from
the center of the well to deep inside the barrier. The influence on the donor ground state from both the
central-cell effect and the strain arising from the lattice mismatch is carefully considered.
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[. INTRODUCTION shifts is not possible within the traditional effective-mass
theory?® Nevertheless, several authors have considered the

Impurity states in heterostructures have been the subjecientral-cell effect in the bulk by introducing various short-
of detailed investigations during the last two decades. Tradirange pseudopotentials, which are adjusted to give agree-
tionally, impurities are considered to be purely detrimentalment with the experimental binding energiés? This ap-
by increasing the scattering rates. On the other hand, dopingroach has also been attempted in the quantum well*éase,
is essential to supply enough free carriers into the systenwhereas Muelleet al. have chosen to relate the QW central-
The strive has therefore been to remove the doping regiooell shift to the envelope function amplitudé.
from the active region by using modulation doping. The donor ground state naturally appears below the low-

Recently, however, impurities have been placed in the acest QW quantization level. As we will see, there are however
tive region of Si/SiGe quantum well structures to exploit Rydberg-like series of impurity states attached to each QW
their presence and properties for novel optical devices in thgeubband, as well as to the three-dimensional continuum. The
far-infrared or terahert¢THz) region!3 Si and Ge are non- situation is thus very similar to what has been observed in
polar materials with low intrinsic absorption at THz frequen- strong magnetic fields, where impurity states are attached to
cies. Taking into account also the possibilities for integrationeach Landau levef
with existing device technolodythese systems appear very It has been noted by several authors that in narrow quan-
attractive for optical applications in the THz region, which tum wells, the lowest antisymmetric impurity state, which is
recently has received a lot of attention in a variety of fi€lds. bound to the second QW subband, may become resonant
A detailed knowledge of the properties of impurity states inwith the continuum of the first subbafid Resonant states of
Si/SiGe heterostructures is therefore essential. this so-called Fano type, i.e., a discréead hence localized

Much effort has been spent on calculating the impuritystate degenerate with a continuum, are well known from
energy states in a quantum wé®W). The techniques, all atomic physic$? bulk semiconductor&"*°-33and quantum
within the effective-mass approximation, range from thewells34=3" If symmetry allows it, the localized state can
commonly employed variational techniqfie® to direct in- couple or hybridize with the continuous states. The resonant
tegration of the Schdinger equatiof and basis state is then characterized by an energy width, which is im-
expansions®>!® The systems considered have, to the best ofnediately related to its lifetim& It is of crucial importance
our knowledge, exclusively been IlI-V materials such asto determine this width in order to consider the effects of the
GaAs/AlLGa, _,As quantum wells, for both dond¥s"'*and  coupled impurity states on the optical and electrical proper-
acceptors?13151%and the results are found to agree reasonties of modulation-doped quantum wells.
ably well with experimentally obtained valués:?* Particu- When the impurity is placed outside the well, in the bar-
lar aspects such as image chafgesd the effect of screening rier, similar but entirely different resonant states may also be
of the impurity potential by the free carriers in the well formed from the usual shallow donor levels, and their widths
have also been investigated. can be evaluated by the resonant coupling meffiofit-

To allow for a more detailed comparison of the calculatedtempts have been made to apply an essentially equivalent
ground-state binding energy with experimental results, onenethod for the case of donors inside the Wef>“°It has
must also take into account the central-cell effect or thehowever been shown that the approximations made in this
chemical shift. Its physical origin is the absence of screening@pproach are rather severe, and the widths do not agree with
by the valence electrons at distances smaller than the outemore exact results obtained using the same method as will be
electronic shells, in which case effective-mass theory breakpresented in this papét.Only when the coupling between
down. In principle, therefore, a proper treatment of chemicathe impurity state and the quantum well is weak, can such
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perturbation methods be expected to yield accurate results. [l. THE BASIS EXPANSION METHOD
In this work we shall present a nonvariational approach
for calculating the energy levels of shallow donors, in which

we expr?nd thh? t.otal Ham|ltqn|an_ n-a compl_ete pa5|s. ITh' ossibly an electric field along the QW growth direction
tumns the Schrdinger equation into a matrix eigenvalue js 450" present. This field may be externally applied or
problem, which is diagonalized to yield all localized, hybrid- ,;iit-in due to charge redistribution in the structure. In the

ized, and continuous states. The approach has several befective-mass approximation, the total Hamiltonian can be
efits over the variational method. First of all, no assumptionsyritten as

are made regarding the form of the impurity wave functions,

but instead we obtain the correct e_nvelope func_tion, whic_:h |2|:|2|QW+ V(1) +eéz )
then can be employed for calculating, e.g., optical matrix o

elements. Second, the entire energy spectrum is treated &¥ith the quantum well Hamiltonidf

multaneously, and hence we also obtain a description of the 1
perturbed continuum and can observe the formation of the = [ 7 I Vi |+V(z).
hybridized resonant states, and calculate their energy widths. dzm.(z) 9z my(2)

Additionally, the difference in the effective mass in the well From a principal point of view, our method allows for the

and barriers is easily mc_luded, as \_Ne_ll as an e_lectnc_fleldquanwm well potential profil&/(z) to vary arbitrarily with
and we are able to considéout not limited t9 anisotropic  yhe positionz. We will however, for simplicity, choos¥/(z)
materials such as Si and Ge. It is furthermore possible 19, pe a constant band offset outside the wellwhich has
place the impurities in the barrier instead of in the well, andyiqth a) and zero inside it. The effect of strain due to the
we thus have a unified approach for treating impurities inattice mismatch between the well and barrier regions is as-
modulation-doped heterostructures. sumed to be incorporated in the band offset, except for the
We will specifically consider Si/$i ,Ge, quantum wells,  splitting of the donor ground state. This will be considered in
which are strained due to the lattice-constant mismatch. laletail in Sec. IV, along with the central-cell potential which
result, the sixfold degeneracy of the conduction-band bottonis not included in the effective-mass Hamiltonié).
and the donor states is partially lifted. Moveover, the impu- We wish to apply our method to anisotropic materials
rity ground state in bulk Si is known to be shifted and splitsuch as SiGe alloys. We have therefore split the kinetic-
by the central-cell effec?®*3We shall therefore also present energy operator into two terms, and let the effective mass
an approach for simultaneously taking the strain and thélepend on the direction, witt, and my denoting the re-
central-cell effect into account. spective masses perpendicular and parallel to the two-
One of the advantageous properties of a coupled resonafltmensional(2D) QW plane. Further, note that the parallel
state is the possibility of populating it by electrically pump- @nd perpendicular are both taken to depend on the coordinate
ing the carriers, from the bottom of the subband, until they? due to the presence of the heterobounﬂdarles. In result, the
reach the resonance enefgy**°They may then be captured Schralinger equation with the Hamiltonia o\, will not be
into the resonant state, and possibly make an optical transseparable.
tion to the ground state. If an inverted population could be The dependence of the parallel masg on z is usually
arranged between the resonant state and the ground state, dgidored in heterostructure calculations, since the electrons
could realize a laser based on this process. A particularijnvolved in in-plane transport are strongly confined to the
appealing point of such a device is that since the impurit W cha_nnel._ In the presgnt case, this simplification is not
states are attached to the QW levels, it is possible to contr@PPropriate since—especially for narrow wells—a large por-
the intraimpurity transition energy by varying the QW pa- tion of the |mp_ur|t.y wave function may appear in the barri-
rameters. Experimental evidence of optical transitions in=rs: and the binding energy depends critically on the expo-

volving coupled resonant states in quantum wells existsfrorrq'entlally decaying part of the wave function. The

both Raman scatteriffjand absorption spectroscdBynea- discontinuity of the parallel mass can alternatively be taken

ts. We theref | FIJ lat pth _ tyn b into account by introducing an effective well depth, which
surements. Vve therelore also calculate the impunty a SorFHepends on the in-plane momentfifrput this is not conve-
tion spectrum for arbitrary polarization.

The remainder of our paper is outlined as follows. In Secgliesr;; f;i gz;igﬁrﬁ:)Stingg gﬁg\(;/nﬁglgggqhv;tgndi?fg-
Il we present the nonvariational method for solving the &Xp ’ -
Schralinger equation of a shallow donor in a QW. Once theence in the parallel masses leads to nonparabolicity of the

A . . W subbands, but does not mix the different QW levels.
matrix eigenvalue problem is solved, the characterization o This is not to be confused with the nonparabolicity that
the eigenstates becomes an important issue, and this is d

i _ _ Bfises from coupling to the valence band; cf. the discussion
cussed in Sec. Ill. The influence of strain and the central-cel(l;“cter Eq.(6).]

effect is considered in Sec. IV, and in Sec. V we calculate the  The impurity potential is taken as the Coulomb potential
guantum well optical-absorption spectrum in the presence of

We shall consider the problem of a shallow donor, de-
scribed by the impurity potential.(r), in a quantum well.

coupled resonant states. The numerical results of the calcu- o2
lations for Si/Sj_,Ge, quantum wells are presented and dis- V.(p,2)=— > > 3)
cussed in Sec. VI, followed by a summary in Sec. VII. €(2)\Vp“+(z2—2p)
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(in CGS units as is appropriate for a shallow donor located

at (0,0z,). Herep is the radial vector in the QW plane. It V(=2 f dk Cq(k)[gk). )

has been demonstrated that the discontinuity in the dielectric a

constante is of importance in GaAs/AGa, _,As system.s". An important benefit of the chosen basis is thgtr) fulfills

To take this into account properly, one could introduce imagehe QW boundary conditions by construction.

charges, but to evaluate the matrix elements with the result- The spherical symmetry of the Coulomb potential is bro-

ing effective impurity potentialcf. Egs.(5) and(6) in Ref.  ken by the presence of the quantum well, and instead the
13) would lead to rather extensive calculations in our presenipta| system adopts a cylindrical symmetry around the QW

approach. Since the difference in the dielectric constant i@rovvth axisz. The total angular momentuft? is hence not

small between Si and Si/Si,Ge, for small x, we will as- . . A -
sume thate is a constant, independent of conserved, but its projection, on the growth axis is. The

Our method for solving the Schiinger equation eigenfunctions of, aree ™ with m=0,=1+2, ..., and
AW (r)=EW(r) with the total Hamiltonian(1) is based on they form a complete set. The same holds in Fourier space,

expanding the total wave functiofi(r) in a complete basis and hence we can write

and diagonalizing the Hamiltonian in this basis. As the basis, o
it is natural to use the quantum well eigenstates cq(k):cq(k,ak):m; i*me*'mﬁkcqm(k)_ (8)
ik-p

By inserting this into the expansion E() and performing

the angular integral, the eigenstates of the Hamiltorian
given by Eq.(1) can be expressed as

lak)= 5 —eq(2), (a'K'|ak)=8(k—k")Sqq  (4)

normalized as indicated, whegeenumerates the QW levels

andk is the wave vector for the in-plane motion. These states ) o
diagonalize Ymlp b,2) ="M SDq(Z)JO kdk Gym(K)JIm(kp), (9)
q
R K29 1 o 52 whereJ, is themth-order Bessel function.
Ho=| =5 =~ —~+V(@) |-V (5 incipl diagonalize the total Hamiltonid
2 9zm,(2) oz oW ¥ 2D In principle one can diagonalize the total Hamiltonidn
I

using this form of the wave function, but it leads to several
integrals that cannot be evaluated analytically. Instead, we

wherem“’|V is the effective mass inside the quantum well forinsert expansionf?), taking into account the angular separa-
the direction parallel to the QW plane. P ' g 9 b

(P - tion according to Eq.8), into the Schrdinger equation
The HamiltonianH, differs fromHg,y in that the parallel - _ L
. : HWY(r)=EW¥(r). As expected from the cylindrical symme-
effective massm does not depend on the coordinate. . : O
try, the subspaces belonging to different projectiomsre

Hence, in contrast to the case withyy, the Schrdinger ot coupled to each other. We can therefore solve the
equation with the Hamiltoniakl, is separable. To be com- problem—i.e., determine the expansion coefficients
plete, the basis must include both bound and unbound states,,,(k)—separately in each subspader a fixedm).
and we therefore enclose the system in a box of wititlin The basis expansion turns the Salinger equation into a
the z direction. The box is chosen large enough that it hasredholm integral equation of the second kind. It is custom-
negligible influence on the results. Nevertheless, the basis igry to symmetrize such equations by multiplying both sides
complete for any size of the box. The additional boundarypy \/E and define
condition thatep,(z) should vanish outside the box has to be
taken into account also for the bound states to make them Dgm(K)=VkCyn(K). (10
properly orthogonal to the unbound states.

The wave functionsey(z) can be found by standard
method<’® and the energy eigenvalues are given by

The integral equation then takes the final form

rpMm ’ ’

% fo dK’he (kK" )Dgrm(K')
Holgk)=Eylak), Eq=Eq+E, 6
olak) qk|q ) k™ EqT Ek (6) — (E—Eq0Dgn(k)

whereE, are the energies of the QW levels. In the simplest
case the QW subbands are parabolic Bpe h2k2/2m‘ﬁ’. In _E [Maq (K)+Eqqr 1D grm(K), (11
principle one can however introduce here the realistic band q’
dispersion, although it is necessary that the energy functiohere the Hermitian kernel
E\ depends only on the magnituteof k. We stress that the

discontinuity in the parallel effective masg, (see abovgis — e kK (=
. . o . . m N v .
a separate issue; any nonparabolicity in the dispersion of the hqq,(k,k )= 2—f dz ¢q(2)¢q(2)
basis states is due to coupling to the valence bands and/or e J-=
higher conduction bands. o amiMOn—|z—zglae (0)
Expanding in the complete orthonormal fgk), the total % dae € (12)
wave function can now be written as 0 e (0)
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was calculated using the 2D Fourier transform of the Couthe normalization condition of the corresponding wave func-
lomb potential. § is the angle betweerk and k', and tion ¢{)(r) becomegafter discretizatiorf dk— = ,Ak),
ae (0) = Vk?+k'?—2kk’ cosh. The quantity

m
m;(2)

B2 w 1=f P(i)(r)dr=27rAk§ IDGLK)I2. (18)
qu’(k): Wf dz ¢§(Z)¢q’(z) - :
2mem| Thus the wave functiorn//ﬁ']) will be properly normalized if
(13 the physical coefficient® (k) are taken as
takes care of the discontinuity of the parallel masgz), _
and the electric field& enters through 0 DNK)
Dgm(K) = —. (19
- 2wAk
€/=e€f dzel(2)z ¢q(2). 14
aa - #a(2)2 ¢q(2) (14 For the particular basis and QW potential profile we have
) ) ) ) _ chosen, most integrals that appear in the expressions above
To solve the integral equation we discretize kexis and  can be evaluated analytically, also when an electric field is
approximate the integral ovérby a discrete sum. This turns jncjuded, leaving only a numerical integral over the angjle
the ’|ntegral equatioifll) into a matrix eigenvalue problem The expressions are however much too lengthy to include
HEE,D= ED, whereD is a column vector of thérenormal-  here.
ized; see beloyvcoefficientsD (k). In the simplest(but
most convenientcase we choose an equal step sidefor lll. CHARACTERIZATION OF THE EIGENSTATES

the discretization, and the matrix elements are then given by The diagonalization of the matrix problem provides the

KK _ m , energies of all eigenstates of the Hamiltoni{dn and using
Haq = (Eqkda,qr + Maq (K)Eqq) dicse +hgq (K KAk, Eq. (9) the corresponding eigenvectors allow us to evaluate
(19 the wave functions and hence matrix elements such as opti-

Due to the long-range nature of the Coulomb potential, £al dipolg-interaction §trengths. It_is .hpwever_ not immedi-
singularity appears in the kernel E42) for scattering in the ately. obvpus hpw to identify the individual eigenstates as
forward direction. We do not explicitly consider screening inl0c@lized impurity states, QW band states, or hybridized

this work; instead the divergence is handled by averagingt@€s, and we shall now address this question.
over small scattering anglé&In the case&k=k’=0 the en- We will adopt the notation of Ref. 9 and denote the case

tire kernel vanishes exactly, but for other valuekesfk’ we =~ M=0 by 2 and all other values byl. If the impurity is
placed in the center of the well, and there is no electric field

obtain present, the system is invariant under reflections—z, and
—e? Kk (= each eigenstate will also possess a quantum beddu for
h?q,(k,kh WJ' dz ¢5(2)¢q(2) even and odd parity, respectively. If this symmetry is broken,
o the only good quantum labels will ba and the energ¥. It
2m-AKKk @ iMO g |z—2ola(H) is however almost always possible to trace the eigenstates
xf de back to the symmetric situation, and we will therefore use
Akf2k il ) eigenstate labels such a8, even when asymmetry is
g2 present.
+——08,4  (k#0). (16) Our interest is particularly focused on the lowest antisym-
eV a4 metric impurity state, and we distinguish it from the other

o . _ states of the same symmetry by referring to it as Xje
A word on the normalization of the wave functions is giate. This state has been shown to be attached to the second
appropriate. The matrix eigenvalue problem is solved byow subband, and for narrow well widths it becomes reso-
standard numerical methods, which return the eigenvectorgant with the continuum of the firgtowes) subband® It
2 and eigenvalue€® for each eigen(is)tate 2Typically was further demonstrated that the= =1 or I, states do
such eigenvectors are normalized By,|D 4n(K)[“=1. Us-  not become resonant, but instead remain attached to the low-

ing the real-space density function est subband. We will therefore from now on specialize to the
casem=0 and often omit the labeh.
p(i)(r)EJ dr' [ (r)T* s(r—r" )yl (r) In the absence of an electric field, we can always identify
the states corresponding to the original QW levée sub-

o w0 band bottompsfrom the fact that these are the only eigen-
=f dk\/EJm(kp)f dk’ \/WJm(k’p) states with nonzero contribution from tlke=0 basis states.
0 0 To facilitate the further classification, we define for each
' ' eigenstata, with energyE;, a quantity
x 2 [D{(K DY (K ek (2)eq/(2),
qq’ * i
a7 dq(Ei)=2wf0 dkD{(k)|2, (20)
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FIG. 2. The contributiord,(E) of the second QW subband to
FIG. 1. Schematic picture, presenting the general behavior othe eigenstates in the energy range from the first QW leatell0
how the various impurity states evolve as we change the impurityneV) to the second ongt 40 meV. The width of the Si/SidGe, ;
position, for a donor placed inside or outside a heterostructuravell is a=50 A, and the three curves correspond to different im-

quantum well. The shaded areas represent the energy width of tHarity positionsz,: z,/a=0.05 (solid), 0.25 (dotted, and 0.45
resonant states. (dash-dox, z=0 is the middle of the well. In addition to the reso-

nances at 15-20 meV, similar ones resembling a Rydberg series
which measures the relative contribution to that eigenstatappear close to the bottom of the second sublgtorctlarity this is
from theqth basis statey(z); henceX  d,=1 for all states.  only shown forz,/a=0.05).
The lowest QW level is taken ap=0.
Studying the values ad4(E;) for a particular eigenstaie

now allows us to distinguish between three types of states. : i _
(1) Localized impurity statesnly have contributions from Separation between the firsj£0) and secondq=1) QW

higher QW levels, i.e., nonzerd, only for levels q with levels, this sta_te appears below the !owest QW level, and is
energyE,>E; . therefore Iocallzed._ It is, however, still attached to thel

(2) Continuous QW subband statesly have contribu- level. As the well width is decreased, thé state will there-
tions from lower levelsE,<E;. (This is valid also in the fore eventually appear in the continuum of the lowest QW

energy of the lowest resonant stafé is larger than the

case of a discontinuous parallel effective mpass. subband, and we obtain a Fano resonant state—a localized
(3) Hybridized (coupled) resonant statksive contribu- state degenerate with a continuum. Similar resonant states
tions from both higher and lower levels. can be formed from any excited impurity levelxcept those

Our method allows us to place the impurity anywhere inattached to the lowest subbarfdr suitable well parameters.
the system. Figure 1 summarizes the qualitative behavior ofve shall limit most of the discussion to tBg state, but our
localized and resonant impurity states, as we change the i”@:pproach can equally well be applied to any of the resonant
purity position from the middle of the quantum well to a states, of either parity.
remote location in the barrier. Some properties displayed as |ong as the impurity is placed in the center of the well,
schematically in this figure will be considered in more quan-ng hybridization or coupling can take place between impu-
titative details in Sec. VI, whereas the remainder of this secrjty states that are resonant with subbands of opposite parity.

tion will focus on the properties that characterize the variousrpo localized> * state is attached to thg=1 QW level, and

impurity states. _ thereforedy(Ex+)=0 in the symmetric situation. Moreover,
Any state appearing in the energy region below the lowest u

QW level must be localized. The lowest one will be the Without any hybridizationd,= &, for the continuous states
impurity ground state, which is split due to the central-cellP€/0nging to the lowest QW level. Coupling will however be

effect (cf. Sec. V). There are severdl, states attached to PréSent as soon as any asymmetry that breaks the parity con-

the lowest subband, and they form what resembles a Rydbe rvation is introduced—such as shifting the impurity posi-
on or applying an electric field. The localized state is then

series, with decreasing binding energies converging towards-. )
9 g 9 ang iluted” throughout a band of actual stationary states,

the lowest subband edge. Actually, such series of localize A ;
states appear below each subband, i.e., each QW level had/fose_profile is represented by a Lorentzian resonance

set of impurity states attached to(@f. Fig. 1). The binding c_urve.zg_This hyb:idization_ mixes a certain amount of con-
energy of a localized state is therefore to be understood d&uum into the{ state(giving do(Esx) #0), and the con-
the smallest energy required to place an initially localizedtinuous states acquire a partly localized charactlhr0).
electron into the corresponding QW subband. It is worth not-Thus the degree of hybridization is measured by the coeffi-
ing that these considerations also apply to the unbound QWientsd,(E;), and the resonance profile is exactly given by
levels. Hence if the well is so narrow that there exists nathese coefficients when plotted against the eigeneneEgies
second bound QW level, all the, states are still well de- in the region between the first and second QW le(&isFig.
fined, but attached to the 3D continuum. 2). If the electron is initially placed in the coupled resonant
If the quantum well is wide enough, so that the bindingimpurity state, it will autoionize with a mean lifetime
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=n/T" determined by the energy width of the resonant of both strain and the central-cell shift. Although there
state?® We can calculate this width by fitting a Lorentzian to would, in principle, be some central-cell splitting also of the
the resonance profile. excited states, this effect is expected to be very sfAdlhis

In the barrier, the binding energies—which are still mea-is especially true for the odd-parity states, since they have a
sured relative the corresponding QW levels—decrease tofanishing envelope function at the impurity position. Thus
wards zero, although not very rapidly. As the impurity is the energy of the resonalf; state, which in the bulk limit
moved further away from the well, each impurity state re-corresponds to thef® hydrogenic state, will not be affected,
mains bound to its initial QW level, with vanishing binding and we shall in this section only be concerned with the im-
energy. Hence, even at very large impurity distances, theurity ground state.
impurity “ground state” appears to be a deep state with an The conduction-band minimum in bulk Si lies at about
energy defined by the lowest QW level. This is counterintui-A, = (0,0,0.85) in units where th¥ point is (0,0,1), with six
tive; we expect the impurity ground state to be a shallowequivalent valleys. Hence the donos ground state would
state bound to the 3D continuum. However, the electron derbe sixfold degenerate. Experimentally, however, one instead
sity of the deep impurity states is actually localized close tawbserves three levels, with binding energigs+ A, (the
the center of the well, and not on the impurity. When thenondegenerate true ground siate,+A,— Ag (twofold de-
distance to the well increases, their wave functions becomgeneratg andE,+A,— At (threefold degenerateHereE,,
more and more symmetric around the center of the well angs the effective-mass binding energy, which according to
assume the shape of the QW basis functipgéz). At the  Kohn and Luttingel? is about 29 meV in Si. The energies
same time these wave functions are extended in the radial,, Az, andA+ are positive and, in contrast #,, depend
direction in the QW plane due to the smaller binding energyon the particular impurity species. This additional contribu-
This behavior can be understood from the fact that the eleaion to the binding energy is known as the central-cell effect
tronic density is determined by the effective potential in theor chemical shift, and is in general determined from com-
well, and when the impurity is far away, the tail of the Cou- parisons with experimental values. In the case of P donors in
lomb potential is much weaker than the QW ConfinementSi, AO’N" 16.6 meV (or 14.3 meV if one uses the effective-
potential. At large impurity distances, the Coulomb potentialmass valueE,=31.27 meV from the more elaborate calcu-
and the well are almostbut not completely decoupled, |ations by Faulknéf), Ag~13.0 meV and\t~11.7 meV>!
which means that the deep donor states essentially derive The chemical shift is usually considered as arising from a
from a single QW level, which can be verified by studying strong potential acting only very near the impurity center.
the COEfﬁCientqu. Similar observations have been made byA|th0ugh, as discussed in the Introduction, a proper treat-
Stopa and DasSarrfawho also use a nonvariational tech- ment is not strictly possible in effective-mass theory, one
nique to treat donors in GaAs quantum wells. could try to incorporate the central-cell effect by employing

As was stated above, there are also QW impurity stateg short-range pseudopotential. This, however, fails when ap-
attached to the 3D continuufof. the upper-right part of Fig. plied to a basis expansion method, since this potential now
1). When the impurity is in the barrier, these states are thenteracts not with the total wave functidas is the case in a
familiar ground and excited shallow donor states, with theyariational calculationbut with the individual basis states. If
electron density localized at the impurity position. We canpne adjusts the pseudopotential parameters to produce agree-
now study what happens to an initially decoupled shallowment with experimental binding energies for a certain well
donor as it is moved closer to the quantum well. Due to theyidth (such as a very wide one, close to bylthe param-
induced coupling, Rydberg-like series of impurity states—eters will not give any sensible results when the basis is
localized in the well—are pushed down from each con-different, say, for a narrow well. Instead, we will here show
tinuum edge, i.e., from each QW level. The lowered symmehow to relate the QW central-cell shift to the bulk shifts,
try due to the presence of the quantum well causes mixingurely by symmetry considerations.
between the hydrogenio and ¢ levels (actually only be- In the effective-mass approximation, the wave functions
tween levels for which\¢ is an even numbeh, and onlym  are written asb(r) = ¢(r)u(r), where the envelope function
remains as a good quantum label. The original shallow donog, varies slowly over interatomic distances, and the Bloch
state broadens due to the couplifighut remains bound to  function u is rapidly varying and describes the region close
the 3D continuum also when the impurity finally is located into the atomic nuclei. In Si there are six equivalent
the We” If the eIeCtron iS |n|t|a”y placed in the Sha”OW conduction-band minima or Va”eﬁ, which we index by
donor §tate outside a quantum_ WeII_, it v_viII after some f[ime€ ex 7y VZ?} (;is shorthand for-x). Hence one must
tunnel into the QW. The tunneling time is essentially given ener,aliy,cc')n,sider linear combinationér) =3 pavu,(r) of
by the energy width of the resonant shallow state, which cal e Bloch functionau, of each valley bottom. If we denote

be calculated within our basis expansion approach or as ifhe(unspecifiedcentral—cell potential by, the nonzero ma-

Ref. 38. trix elements between the valley bottom Bloch functions in
Si are”
IV. STRAIN AND CENTRAL-CELL EFFECTS
Vo, {= €,
In order to compare calculated results for the ground-state Vv =—¢
binding energy of donors in Si quantum wells with experi- (uelVlug)=14 Ve - (21
mental values, it is essential to take into account the effects Vi, |€]#]€].
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By evaluating the matrix elements! |V|®!.) for the six  The Bloch functions of the two states are the symmetric and
1s donor statesb’(r), we can relate the parametevg,  antisymmetric combinations of the twa, valleys. The

V¢, and V, to the observed impurity binding energies asquantum well envelope function amplitutigon(ro)|* is ob-
follows: tained from the basis expansion coefficients using (Ed).

We will return to the question how to correctly determine the
Vo| d1s(To)|?=(3A1+2A—6A,)/6, bulk amplitude| ¢,4(r)|? in Sec. VI.

The central-cell shifts are negative, which means that the
Vgl d1s(ro)|?=(2Ag—3A1)/6, (220 binding energies are increased. The impurity ground state

now corresponds to théhondegeneraje2A¢/3 state, since

Vi d1s(ro)|2= — AglB, A=A+ for typical donors(P, As, Sb in Si>! It is worth

noting that, since furthermor®g= A, the central-cell effect

wherer is the impurity position andys is the Is envelope in the quantum well case can be much smaller than in bulk

function. For further details, see Appendix A. Si, at least if the ratio of the wave functions is not too large.
We now consider donors placed in a Si quantum welljn bulk Si, the donor ground state is shifted hy,
grown pseudomorphically betweefunstrained Siy_,G& =17 meV, but in the QW the ground state shift for P donors

barriers. This case differs compared to bulk Si in two waysjs only A,—2Ag/3~8 meV, assuming that the envelope

First, the Si region will be strained due to the lattice-constantunction ratio in Eq.(23) is of the order unity. On the other

mismatch between Si and Ge. Second, the envelope functiafand, this ratio is expected to be above unity for narrow

is different due to the additional confinement. On the othekuells, due to the additional confinement, and so in this case

hand, it is reasonable to assume that the matrix elemants  the central-cell effect further increases the already enhanced

Vg, andV; are unchanged, since the central-cell potetial ground-state binding energy.

is appreciable only in a region much smaller than the well

width. Hence, we can still use the values of these parameters,

as obtained from Eq(22) using the bulk binding energies V- OPTICAL ABSORPTION

(determined byA,, Az andA+), but replacep,s by the QW If the impurity is placed exactly in the middle of the well

envelope function. (and no electric field is presenthe selection rules prohibit
By taking into account the effects of strain and thethe radiative decay from the lowest subband to the impurity

central-cell shifts simultaneously, one finds—in addition toground state by a dipole transition with polarization parallel

an overall shift—that fof001)-grown wells, the sixfold de- to the QW growth direction. However, if some asymmetry is

generate donor ground state splits into five energy leveldntroduced, the transition is allowed from the part of the

whereof one is twofold degenerdftThe details of this cal- subband which is hybridized with the resonant antisymmetric

culation are presented in Appendix B. The lattice constant ok} impurity state.

unstrained Si_,Ge, bulk alloy has been parametrizédrom In the dipole approximation, Fermi’'s golden rule gives the
experimental daf4 as probability per unit time of optical absorption, at the fre-
guencyw, between stateis(initial) andj (final) as

a(x)=a(Si)+0.020 032 &(1—x) +[a(Ge) —a(Si)]x?,

2w (e
where O<x=<1 anda(Si) anda(Ge) are the lattice constants Wi :%(—AO
of bulk Si and Ge(in nanometers Inserting this into Egs. mc
(5’4) and (B5)fWE find that tgehstrain ﬁomponent parallel t0 whereA, is the magnitude of the electromagnetic vector po-
the QW interfaces >0 and hence the strain parameter o a1 & is the photon polarization vecta, is the momen-
- _Eje\l(zclzlclﬁl)(e’ defined in Eq(B10) is negative. o, op’)erator, aFr)uEi is tfle energy of eigceﬁ'lstate
Here =, is the deformation potential ar@; are the compo- Assuming that the system contaiNsindependent impu-

nents of the stiffng;s tensor. Even With o.nlly a.small contenfiies, we may relate the absorption ratg to the absorption
x of Ge, the condition that the strain splitting is large Com'coeff'icientA as

pared to the central-cell shift€% A,) is fulfilled.>® There-
fore, from the results in Appendix B, the lowest valleys will N 2mhic
be A, , perpendicular to the QW interfaces, to which two Ahw)= = ——— E
donor states are attached. Four other donor states are associ- Q kw|Ag|? T
ated with the highen\, valleys, which are strain split from
A, by 3[¢|.

In our calculations we assume that the strain splitting o
the conduction band is included in the band offsketand

2
) |<j|é'6|i>|25(Ej_Ei_hw), (24)

Wi, (25)

where() is the total sample volume ard is the refraction
1index. In a quantum well, a more natural quantity to consider
is the absorption cross section

consider only the two lowest donor states belonging ta 2,2 A A 2
These two states are shifted from the QW effective-mass __ A} 477 D ’<J ep |>‘ (o —fhw)
valueE, by N K ] m hiw; '
(26)
2
M{_AOjL[ZAE/SH_ (23) Where w;; =(E;—E;)/% and a=¢e’/fic is the fine-structure
| h15(10)|? Ay constant.
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The summation in Eg(26) in principle involves, among dn dn dk 1 m\\llv
other things, final statgsin all valleys with any spin polar- — = =\,
ization. We can however ignore the fodrj valleys alto- dEc dkdEc Ak V2E,
gether, since the strain splitting is much larger than the imwhere the parabolic dispersion re|ati&ﬂ:ﬁ2k2/2mi’|" was
purity binding energy. We shall consider absorption onlyagain assumed. The presenceAdf will properly renormal-
from the ground state, and so the initial statis an equal jze the matrix element when this is evaluated from the dis-
mix of the twoA, valleys, as discussed in Sec. IV, with fixed cretized expansion coefficientsf. the discussion on normal-
(but arbitrary spin. The dipole operata p does not affect ization in Sec. Il. Now we may perform the integral over
spin and connects only the parts of the initial and final stategnergy to remove thé function, and the absorption cross
belonging to the same valley. This holds also when the temsection can be evaluated @t wj; for all eigenstate$. The
perature is large enough that the occupation probabilities ofesult is
the two statesi, andug (cf. Appendix B are roughly equal;

(29

in this case we must also average over the two states. Thus 2P N2hm) 5
the sum overj can be restricted to a sum over the final 0= 3,2|<J|Dz|'>| . (30)

X N . KAK 7(m%)2e3
energyE and the different cylindrical subspaces. It is further- L2
more enough to evaluate the matrix element between the
envelope functions only, as long as we replace the electrogt
massm by the effective massn* in the direction parallel
to p.*°
Since one would most naturally place the donors inside . 2 imem')e . o 0

the QW for optical applications of this kind, we assume that {iPli)= fo do e 2 (q |pzlq>f0 dk Dgm(k)
the relevant effective masses are those of the well, and write a9

By using the form Eq(9) of the wave function for the
ates andj (belonging to the subspacesandm’, respec-
tively), the remaining matrix element becomes

x[DY (k)]*. (31

qrmr

e-p cosép, sinép,
—= 0 (27)  since the first integral yields26,, » , we obtain the selec-
tion rule Am=0 for this polarization. The integral ovkrcan
where ¢ is the angle between the photénvector and the be evaluated from the matrix eigenvect@rstaking the nor-
QW growth directionz. The light is assumed to be plane malization relation Eq(19) into account. We can further-

* W Y
m mH m;

polarized in the plane spanned by the normal to the QWmore use the commutat@ﬂQW,z]=—ihf)z/ml(z) and the
plane and the photok vector. Thex axis is defined as the fact that the stateg andq’ are eigenstates ¢?|QW, defined
intersection of this plane and the QW interface planes. in Eq. (2), to rewrite

In principle Eq.(27) allows for interference between the
two terms when inserted into Eq26). The interference i i ®
terms are essentiallfi|p,|j)(j|p,|i) or the complex conju- (a'[pza)= 7 (Eq —Eq) J_m@q'(z)zmi(z)%(z)dz-
gate thereof, to be summed over all final stgtéserei is the (32
impurity ground state, which belongs to the=0 cylindri-
cal subspace. The sum over final states can be split into two Next we considex polarization, for which the selection
parts, where we first consider all stajeis a particular sub- rule isAm==1, as will be demonstrated shortly. We will
spacem;, and then sum over all subspaces. The first factor iSocus on the energy region between the first and second QW
<i|ﬁx|j>oc5m.’m_tl, which follows from the selection rule Subbands, where the lowest resonant stdteappears. Since

P there are no resonant states witlx= =1 in this region, and

R , - , since the ground state belongs to the-0 subspace, we can
<J|pz|'>°‘5mj .m, SinceAm=0 for p,. Thus, the interference jgnore mixing of the QW subbands and represent the final

Am= *+1 (see belowfor the p, operator. On the other hand,

terms vanish, and we may write states as normalized plane waves belonging to the first sub-
. bandq=0:
o=0,C05 0+ 0,Sirte, (29)
which defineso, and o,. As we will see in Sec. VI, the . _expik®-p)
: . ) pri i)=——F¢a=0(2), (33

absence of interference is a contributing factor to producing
a symmetric absorption peak.

Let us first considerz polarization. To eliminate the
symbol in Eq.(26) we turn the sum over final statgsto an
integral. However, we have to consider that the relevant de
sity of final states in this case is not the usual 2D density o
states. If we double the “size” of our systemAk— Ak/2)
we only get twice as many eigenstates, since the discretiz

where £ is the normalization length.

To derive the selection rule, one may rewrite the momen-
Aum operatorp, in cylindrical coordinates and act on the
gylindrical expansion of a plane wave elkr
=3.iMe ™¥J (kp), whered is the angle between the vec-
Jorsk andp. One then obtains

tion in Sec. Il is carried out over the magnituklef k. Hence 0 o
the density of states ik space isdn/dk=1/Ak, and in en- ey TR c® (ki 5 34
eray Space (ilpdi)=—7—CGlok) X on.r (39
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which shows the selection rule explicitly; the summation is  With a sparser basis set it naturally becomes impossible to
trivial and gives a factor of 2. As beforerefers to the donor resolve all the(infinitely many) excited impurity states close
ground state, represented by an expansion of f@mltis  to the bottom of each subband. These states are however

not surprising that the momentum operapgrpicks up thex ~ usually well separated from the lowest resonant states that
component of the final wave vect&f; the result Eq(34) ~ We are mainly interested in. Nevertheless, if the situation

can of course also be obtained by acting witron the plane occurs when there are several impurity levels in very close

wave e’k P without changing to cylindrical coordinates. But vicinity of each other, e.g., if the binding energy of the
in that case the selection rule will not appear, since it is noground state is very small, the basis must naturally be chosen

actually present in the final result, after the summation in Eqdenser, SO that aII.states of interest are resolved. Furthermore,
(34) has been carried out. the density o_1k points must always be Iarg_e enough th_at the
We remove thes function in Eq.(26) by integrating with resonance width is covered by more than just a few points. In
the usual 2D density of states per sgRMY/27h2. In re- the re;ults presented below, these issues have been carefully
Sult. we arrive at I taken into account. _
' Quite a large range & values is needed to reach conver-
5 gence, especially in the ground-state wave-function ampli-
:277 @ fiKq-o; |D(i) (Kaeoi)]? (35) tude, since the expansion coefficients decay rather slowly,
kAk m|!w;; =01"a=0J70 - roughly ask ™35, This means that, since at the same time one
) ) ) . wishes to keepAk as small as possible for accuracy, the
whereK; is defined from the energy conservation relation v N matrix problem becomes fairly huggypically N will be
between 1000 and 20R0The size of the matrix problem
which can be diagonalized is a limiting factor, and it is not
always possible to obtain optimal accuracy, especially for
very wide wells. Nevertheless, we have made sure that the
whereE; is the energy of the donor ground state dflis  errors in the results presented here are less than 1%. The only
the energy of thegth QW level. The expansion coefficient exceptions are the energy width of the resonant state when
Dg')(qu) can be found by interpolating the matrix eigenvec-the impurity is deep inside the barriéin which case the

Ox

212
7Kg,

2m|V‘V

E|+ﬁw“=Eq+ y (36)

tors overk. width itself is very sma)l and the ground-state wave-
function amplitude; here the errors may be up to 5%. How-
VI. RESULTS ever, the accuracy in thlsatio of the wave—fu_nction am_pli—
_ tude to the corresponding bulk value—which really is the
A. Numerical aspects quantity of interest—is much better than the accuracy of the

In this section we present numerical results for shallow@Mplitude itself. The wave-function amplitudes are also more
Coulombic donors in(001)-grown Si/Si_,Ge, quantum Sensitive to the S|ze.of the outer bad (wh|_ch normalizes
wells. The electronic paramete(effective masses, band off- the “continuum” basis functionsthan the eigenvalues are.
sets, and deformation potentiptsf these systems are known A_galn, the convergence can be controlled by increasing this
from the systematic study by Rieger and VBYWe make SiZ€ as much as needed.
the approximation, as discussed in Sec. Il, that the difference
in the dielectric constant can be ignored, and use that of bulk
Si throughout. Furthermore, although the nonparabolicity of
the subbands in strained Si quantum wells has been found to In agreement with variational calculations, we find that
be considerable, we take the basis subbands to be paraboltB€ binding energies are generally increased due to the addi-
since the nonparabolicity parameter is not well knawror  tional confinement presented by the quantum well potential,
small contentsc of Ge the effective masses are very similar both for the ground and the excited statef Figs. 3 and 4
for the well and barrier regions, and therefore the discontiFurthermore, since th&} state is attached to the second
nuity in the parallel effective mass turns out to have no ob-QW level, it appears at higher and higher energies as the
servable influence on the results for these particular systemigvel separation increases with smaller well widths. This

For the matrix problem to be of finite order we must limit holds until the well becomes very narrow, when the binding
the number of QW levels to include in the basis, and also the€nergies decrease again, as shown in Fig. 3. When the well
integration(sum overk must be cut off somewhere. This is width is much smaller than the radius of the impurity state,
the only real approximation in the methoadther than those one can view the system as an impurity situated in the 3D
inherent in effective-mass thegryTherefore, in order to as- bulk, slightly perturbed by the narrow quantum well. For a
sure the numerical accuracy of our results, we always includganishingly narrow well the binding energies therefore ap-
all bound QW levels, and increase the number of unboungproach the values corresponding to the bulk barrier material.
levels until the eigenvalues do not change. The same procddoreover, below a certain well width there is no bound odd-
dure is applied to determine the required density and rangparity QW level, and th&; state then becomes attached to
of k values. The contribution from the unbound states dropshe continuum, which does not move as the well width is
off rapidly with increasing energy, although for narrower changed. These effects on the ground- and resonant-state
wells it is naturally important to include more unbound binding energies have also been observed in variational
states. calculations’**

B. Binding energy and resonant-state energy width

165338-9



BLOM, ODNOBLYUDOQYV, YASSIEVICH, AND CHAO PHYSICAL REVIEW B 68, 165338 (2003

60 T T T T T 10

,ﬁ
w
S

50

EE:‘ E gg (meV)
=
Iy
=]

T 50 3
g . £
- 1 1 L e
0 50 100 150 200 -
‘%D 30 ki Well width (A) é 6
E e 3
o | e Q
é 201 i R g 4y
I :
10} & 5l
0 y ' : : : :
0 50 100 150 200 250 300 0 \ \ . ) e L
Well width (A) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

- . Impurity offset / Well width
FIG. 3. The binding energy of the ground stételid curve and

the X7 state (dashed curvefor a Si/SpgGey, quantum well of FIG. 5. The energy widtl" of the resonanB} state for the

varying width. The impurity is located in the middle of the well, same quantum wells as in Fig. 4, with the same symbols for the
and the central-cell shift is not included. For wide wells the bindingcyrves.

energies approach the bulk valug9 meV and 7 meV, respec-

tively), indicated by the dotted lines. The inset shows the energy . ) . .
separation between tf* state and the ground stat&S). the QW levels, in particular if the central-cell effect is also
taken into accountsee below.
) L The decay of the binding energies in the barrier is very
For wide wells, the ground-state binding energy con-gio |t follows a power-law dependence, but there does not

verges to the effective-mass value of the bulk hydrogesic 1 appear to exist any common exponent; for the curves shown
donor state in Si at a width of about 250 A, which is faster;, Fig. 4 the exponents are:0.7—0.8 for the ground state

than for GaAs/AIGa,  As quantum wellS. Clearly, the rea-  anq 0.2-0.4 for the resonant state. Nevertheless, at very large
son is the smaller radius of the impurity states in Si COM-yistances the impurity states coalesce with the quantum well
pared to GaAs. By the same reasoning, the convergence @i e|s; see the discussion in Sec. Ill regarding the impurity
the excited | state to the corresponding bulk stateds  \ave functions when the donor is placed in the barrier.
slower than for the ground state, since the smaller binding Figure 5 shows the energy widih of the resonant*
energy of the excited state corresponds to a larger radius @ate As the impurity is moved away from the center of the

the state. From Fig. 4 we further note that for uniformly well, the width increases due to the enhanced couplling
doped wells, one effectively obtains broad bands of impurityi,creased asymmetrythis could also be seen from Fig. 2.

energies, instead of a set of sharp levels. The bandwidth Qfhen we continue to move towards the barriéreaches a

the ground state can be almost comparable to the spacing ffaximum value at about 35% offset. After that, it decreases
due to the reduced overlap between the two lowest QW basis

1.0 functions. In the barrier, the width continues to decay accord-
£ ing to a power-law dependence with an expon@vtiich is
g 108 ~ not common for different well widthsof the order 2—3. This
5 T is in contrast to the resonant state formed from the shallow
éﬂ 106 € donor states when the impurity is in the bariighown in the
£ e upper-right part of Fig. 1 for which the width decays
8 1% L exponentially?®
é 4 o2 = For the same relative impurity offset, the resonance is
£ ’ broader in wider wells, which is an effect of the fact that the
0 A N IPON 3% state appears closer to the bottom of the band. In Fig. 2
00 02 04 06 08 10 12 14 the same can be observed for the higher exciigdesonant
Impurity offset / Well width states, which are narrower the higher energy they have. We

FIG. 4. The impurity ground-state binding energeft-hand furthermpre see from Fig. 2 that a widening of the resonance
vertical axig for Si/Si, §Ge&, , wells of widths(from top to botton cguse§ its amplitude to. decreasg. Th‘? smaller. the energy
a=30A 40 A 50 A and 60 A, and for the same widths and width is, the more localized the impurity state is, but the
symbols the position of the resonadf state(right-hand vertical ~€ff€Ct On scattering and optical properties can still be pro-
axis. The right-hand vertical scale is normalized so that 0 corre-"0UNced since the amplitude of the resonance at the same
sponds to the first QW level, and 1 to the second one. The QW levdiMme is larger.
energies are, from the narrowe80 A) to the widest(60 A) well: The behavior of the resonance position for the widest well
E,=26.8, 17.1, 11.8, 8.7 meV anl,=102.7, 67.1, 46.8, 34.4 (a=60 A) is slightly different from the other curves in Fig.
meV. The vertical line marks the edge of the well, and the impurity4. For this well width, the resonance is close to the subband
offset is measured from the middle of the well. The central-cell shiftbottom for central impurity positions. Therefore, the reso-
is not included. nance profile becomes rather asymmetric, since it cannot be
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bulk value, at the impurity positionry, for three different

FIG. 6. The surface plot is the differente,s|2—|yqul? for a Si/Si.eGe, » wells of widths(from top to bottom a=30 A, 50 A,
wide (200 A) Si/S, ¢Gey, quantum well, and the inset shows the gnd ?O A Thel vertical line marks the.edge of the well, and the
QW envelope functioerW(z)F (solid) and the bulk variational |mpu_r|ty off_set is. measured from the mu_jdl_e of the vi/ell. The bulk
function | 14(2)|? (dashed for p=0. Both functions are normal- amplitude is defined as the wide-well limit (0.023 A®) of the

ized and give the Si bulk binding energg9 meV; cf. Fig. 3. inset plot, which shows the QW envelope function amplitude as a
function of the well width. The amplitude closely follows the varia-

continued below the lowest subband. The amplitude of thdon ©f the ground-state binding energyf. Fig. 3, also for very
narrow wells when both the binding energy and the amplitude again

resonance, as measured Oy(Esx), is furthermore very

“u approach the bulk value.
small as long as the resonance is close to the band bottom. At
the same t|me. the resonance W|q1h|s the largest for this the variational functionp;<(p,2) given by Eq.(37) may dif-
well W|§jth,.at intermediate |mpur|tyloffset_s. To accommo- ¢, substantially from the wave functiopqu(p,z) obtained
date this width, the resonance pos!tlon shifts away from theiih the basis expansion method, although they both repro-
subband bottom more quickly in this case than for the othef ;ce the same binding energy. The two envelope functions

well widths. do however agree very well in the exponentially decaying
tail, which is precisely the part that determines the binding
C. The central-cell effect energy.

The results discussed above for the ground-state binding I'” th]? ins_et of Fi?.‘ 7& the vr?lug of the q”"’?r?‘“m. welll en(;
energy indirectly contain the effect of strain, since this gives € op;a unptlonfarﬂp Itu "e, "f‘(tjth ec|:mpur|ty_ posmck)]n, IS pgotte
rise to the QW band offset, but do not include the central-celfS @ function of the well width. Comparing wit Fig. 3 we

effect, and therefore represent the effective-mass binding erye€ that at a width of 250 A, the ground-state binding energy

ergy. To take the central cell into account for the two donor’S extremely close to the variational value, which is reason-

states attached to the lowest valleys is however straight- gble §ince the W?" s much wider than the radius of the
forward by using Eq(23). The bulk shiftsAg, Ag, andA+ Impurity state(e;tlmated pya and.b). However, Fhe QW
depend on the particular impurity speciemlues for phos- envelope2 function arpsplltude differs substantially from
phorus are given in Sec. )Y and in addition we need to |‘€15(0’O)| =0.0365 nm”. Instead, as the well begoames
wider, the amplitude converges to a value~e®.023 nm °,

know the ratio of the QW and bulk envelope functions at the
impurity position. Q P which we therefore will take as the value for the bulk ampli-

i i imagindude|®as(ro)%.
Regarding the bulk envelope function, one could |mag|netu s\ 0 . .
using a variational wave function, such as the normalized ©Once the bulk amplitude thus has been determined, we

nonisotropic “hydrogenic” function can use th_e ratio of the QW and bu_Ik env_elope functions,
shown in Fig. 7, to evaluate the chemical shift for any well’s
5 width and impurity position. When the impurity is close to
o1(p,2)= 1 exn — P_+ z 37) the center of the well, the QW wave function in narrow wells
st Jma?b a2 b2 is strongly enhanced at the impurity position, whereas for
wider wells it approaches the bulk value. On the other hand,
originally used by Kohn and Lutting&to obtain the value moving the impurity to the edge of the well leads to a rapid
29 meV for the effective-mass binding energy in(Bie en-  reduction of the ratio. It was mentioned in Sec. Il that when
ergy is minimized bya=2.478 nm andb=1.420 nm). we place the donor in the barrier, the wave function of the
However, although variational functions may produce rathedeep impurity states is localized in the well and not on the
accurate estimates of the energy, they do not, in general, givienpurity. Now we find that even when the impurity is still
a correct picture of the wave function. This is illustrated byinside the well, the wave-function maximum does not ex-
Fig. 6, where we see that in the region close to the impurityactly coincide with the impurity position for asymmetric lo-

2
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405 FIG. 9. The profile of the absorption cross sectiofor a 40-A
wide Si/Sp g5, 15 quantum well, with the impurity offget A from
the center of the well. The electron is initially assumed to be in the
. . impurity ground state; the central-cell shift has however not been
FIG; 8. The solid curve shows t_he energy widtrof the réSO-  taken into account for the photon energy scale. For the actual values
n;_ant_Eu state, as we apply a Stat'c_ transyerse electric f'?ld 0 %t the cross section, see Fig. 10. The coordinate system for the
Si/Si G&, » well of width 55 A. The |mpur|t|gs are placed in the incidence angled is defined in Sec. V.
center of the well. Also the energy separati@iashed curvebe-
tween the resonant state and the GS is presented.

0 1 1 I 1 2 I 1 2
0 10 20 30 40 50 60 70 80 90
Electric field (kV/cm)

the resonank;; state—both of which have odd parity with-

; ; o - : out any applied field—are practically unaffected by the field.
cations. By studying the probability density one finds that theon thg o?hper hand. the IoF\)Nest QV\>// level and th)é impurit
wave _functic_m is pushed toward§ the cgnter of the well. One round state(even ;Jarity statosare deflected downwarr)ds. y
fﬁ; t\)/;;/ive';gls as the wave function being reflected away b ence, as the field is applied, the resonance appears at higher

For wells. wider than 50 A, the ratio of the bulk and QW energies relative to the subband bottom. We noted above that
wave-function amplitudes is (;Iose to unity, and hence, as wat;ped (tege(g)t/ Wildth bistsmallirr].forﬁhigther—gqﬁrgy resonanc?ﬁ,
mentioned in Sec. IV, the central-cell shift is substantiallyar?dth fe n ?rr]p a)t/ etween :'.5 efrect an te [[rrl]cre?ste n te
smaller in the quantum well than in bulk Si. For off-center V! rom the stronger coupling gives rise to the plateau a
impurity position this applies to even narrower wet Fig about 50—70 kV/cm. At yet higher fields, the enhancement of
7). Note also that for very wide wells, the shift as calculétedthe coupling will however dominate and the width increases
frém Eq. (23 is different from that O’f bulk Si. due to the again. Alternatively, one can consider that the electric field
strain. fhus we can expect that the centralicell shifts ar%f;?Shef?" tthe \évgve ;unctionsttﬁwarcli.s gze 3!2‘3 of ttlhe V\k'f"r']
smaller in strained bulk Si than in the unstrained materialmﬂ'jeiczg fhg ov:rrrapel;/:t\r/‘vje?n E‘Eﬁesf:?st gn dIsZ::?)r;lo)Ith\\;vllcev
Since the chemical shift is much larger for impurities placed I i . - o
in the center of the well than for positions close to the bar-e'S(’j ?Rd this is an essen{!al factor in determining the coupling
rier, the effective band of impurity energies mentioned abovénd e resonance position.

- : Finally we have also calculated the absorption cross sec-
is furthermore widened by the central-cell effect. : . :
y tion o (cf. Figs. 9 and 1pfrom the donor ground state in the
* . )
D. Electric field and optical absorption case when th& state is coupled to the first subband by

placing the impurity asymmetrically in the well. According
When a static electric field is applied across the quantunto the dipole selection rules, discussed in Sec. V, there is no

well, the parity symmetry is broken even when the impuritiesabsorption from the ground state to the unperturbed first sub-
are placed in the center of the well, as in the case shown in

Fig. 8. The energy width" of the resonant} state—and
hence the degree of coupling—can be controlled by varying
the electric field. Also the transition energy from the resonant
state to the ground state can be fine-tuned in the same way,
but the tuning range is small compared to the resonance
width. By varying the QW parameters, on the other hand,
this energy can be tuned over a vast range, as shown in the
inset of Fig. 3.

As the electric field is increased from zero, the resonance
width naturally also increases due to the induced coupling
between the resonant state and the continuum. Still, the de-
tailed behavior of the curves in Fig. 8 warrants further com-
ments. If we take the energy of the zero-field conduction- Photon energy (meV)
band bottom as a fixed reference, we can study the field
dependence of the energy positions of the impurity states and FIG. 10. For the same system as in Fig. 9 we here show the
the quantum well leveléwhich are also shifted by the pres- absorption cross section for some selected incidence afigfesm
ence of the fielgl The positions of the second QW level and top to bottom#=0°, 30°, 60°, and 90°.

[

—
T

Absorption crosssection (10_15 cm? )

=]

30 40 50 60 70 8 9 100 110 120
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band @=0) if the incoming light is linearly polarized along through the parameters of the split donor states in bulk Si,
the QW growth direction. However, when tR&, state hy- and the amplitude ratio of the QW envelope function to the
bridizes with this subband, it mixes a certain amount of thebulk one, it was shown that—depending on the impurity po-
second QW subbandjE& 1) into the continuous states of the sition and the well width—the QW shift can be either smaller
first subband, and thus,#0. Hence in an energy region, or larger compared to the bulk case.
determined by the width’, around the resonant state, ab- We have also compared the commonly used variational
sorption is allowed even at normal incidenae<90°). This  function for donors in bulk Si, to the ground-state wave func-
is seen in the figures as the narrow peak at about 55 meV.tion obtained with the basis expansion. Even though both
The shape of the normal incidence absorption peak igunctions give the same energy if the well is wide enough,
symmetric. This follows from the fa(;t that due to the intra_— they are far from identical. No assumption regarding the
subband selection rules, as shown in Sec. V, there is no inshape of the wave function is made in our nonvariational
terferenqe between the matrix elements for gpsorption int?hethod, and we therefore conclude that the “hydrogenic”
the localized and continuous parts of the hybridized resonant, tjo is not capable of giving a correct description of the
state, re_spectlvely. Given this, aﬂd the energy-mdependeratonor wave function. Instead we obtain the correct envelope
2D density of states, the absorptlor_l spectrum will have .th?unctions of the localized, resonant and continuum eigen-
same shape as the resonance profile, which is symmetric Qates, and can then evaluate various matrix elements. As an
the dlsplayec{anq nearly all qthe)rcases.. Hence the. asym- example we present the ground-state optical-absorption spec-
metry that often |§59§)7$erved in absorption spectra mvolvmg[rum, which shows a strong dependence on the direction of
Fano resonanceéy IS abse_nt In our case. the incident photon compared to the quantum well axis due
For angles#<90°, absorption is aIsc_) allowed for po_Iar- to the selection rules.
ization parallel to the QW interfaces, given by, and this The possibility to populate the resonant state by electri-

gives rise to the broad background peak. Furthermore, aéally pumping the electrons in the QW subbands could be

about 85 meV photon energy, absorption into the second QWgeq to create a conduction-band resonant-state laser in a Si
subband also becomes possible;

) .in t_his case the Sele‘?t'%antum well. Provided the carriers can reach the resonance
rules allow absorption for any polarization. The cross sectloqenergy without being scattered by other mechanisms, they

is finite at the second subband edge, reflecting the Steplik@an—through the hybridization—be captured into the local-

2D density qf states. . . ized part of the resonant state. They may then make an op-
The amplitude of the resonant-state absorption peak is NGf| transition to the impurity ground state, a transition that

very Iarge _compared toothe background, except for neal particularly strong, or to some excited localized state.
normal incidence ~90°). Nevertheless, the absorption gjnce as was shown, the impurity states are attached to the
cross sectionr, is still of the same order as the cross sectiongyy jevels, it is possible to tune the intraimpurity transition
for impurity absorption in bulk Si° It is expected that the energies by varying the well parameters. The tuning range
considered intraimpurity transition is particularly strong, ¢, the ground-state transition was shown to extend from 25
since the transition is analogous to the so-called resonangg 150 mev by changing the Si well width between 2 and 15

line (2p— 1s) in atomic hydrogen. nm (the central-cell effect increases this range somewhat
Additionally, some fine-tuning could possibly be achieved by
VII. SUMMARY AND DISCUSSION applying a transverse electric field.

) - For the Si wells we have considered, the resonance width

In this paper we have presented a unified approach fogan pe as large as 10 meV, which gives a very short lifetime
calculating the energy levels of shallow donors in heteroyt apout 0.1 ps. One may therefore expect that the resonant

structure quantum wells. By turning the Sofliger — states can have a strong influence not only on the mobility,
equation—containing both the QW profile and the impurity from the pronounced resonant scattering mechanism that ap-
potential—into a matrix eigenvalue problem, we obtain ayesrsin a narrow-energy region, but also on the noise spec-
complete description of the entire energy spectrum for alkym, due to the capture and reemission process. These fea-
donor positions, both inside and outside the well. tures are in fact present even when the impurities are placed
Applying this method to Si/Si.,Ge, quantum wells, we o side the well, since there is coupling also between the

have calculated the binding energies of the ground state angha|iow barrier donor state and the QW subbands.
the lowest antisymmetric resonant state for several well

widths and impurity positions. The dependencies of the
binding energies on the QW parameters follow the same
general behavior found in variational calculations of
GaAs/ALGa, _4As systems. When the donor is placed asym-  This work was performed within the Nanometer Consor-
metrically in the well, or a transverse electric field is applied,tium at Lund University, and was supported by grants of the
the resonant state can hybridize with the continuous subSwedish Foundation for Strategic Research, the Swedish Re-
bands, and we can within our method evaluate the resonanéearch Council(Grant No. TFR-THZ 2000-403 NorFA
state energy width, which is directly related to the lifetime. (Grant No. 00038% INTAS (Grant No. YSF 2002-95 the
Si/Si _,Ge, quantum wells are strained due to the latticeRussian Foundation for Basic Research, the Russian Acad-
mismatch, and this was investigated in detail, along with theemy of Science, and the Russian Ministry of Science. I.N.Y.
central-cell effect. By expressing the QW central-cell shiftis grateful for the support from the Wenner-Gren Foundation.
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APPENDIX A: RELATING THE CENTRAL-CELL (VoW 1) =] (1) [2(Vo—Vg) = — Ag+Ar .

PARAMETERS TO THE BINDING ENERGIES _ S
. o _Inverting these relationships gives HG2).
In the effective-mass approximation, the wave function

close to each conduction band minimum, i.e., in each valley i

¢, is assumed to be of the forga,(r)=b(r)u.(r), with a APPENDIX B: DONOR STATES IN STRAINED SILICON
common envelope functiop. Hereu, is the Bloch function The strain Hamiltonian for the conduction band in Si can
of the valley bottom, which can be written as,(r)  be written a8’

=exp(k,-r)Uy (r), wherek, is the wave vector of the re-

spective conduction-band minimum, adds a function with Heyain= EqTr(e) + (k- e-k), (B1)

the periodicity of the lattice. where Tr means the trace amdis the strain tensor. The

In bulk Si the six conduction-band minimal . . -
constantE  and =, are the deformation potentials, akds

e{x,x,y,y,z,z} are _degenerate. Therefore we write the Wavey unit vector along one of the equivalent valleys
function of each % impurity state as

{X,X,¥,y,z,z} in the unstrained material. In the basis of the

DL (N =i(ui(r) (i=1,....6), (A1)  Vvalley bottom Bloch functiongcf. Appendix A),
with 1 0 00 O 0
01 00 O 0
Ui(r) =2 @ ug(r). (A2) - 0010 0 0
_ . _ Hstrain:?(el\_ei) 000 1 0O 0
Using the valley bottom Bloch functions, as a basis, the
Bloch functionsu; can thus be represented as vectors of the 0 000-20
coefficientsa | 0 000 0 -2
However, we also know that the sixs ktates transform as .
I/Cr?ttgn gréosup, and hence their Bloch functions can be n Ed(26||+el)+%(2e”+eg 1 (B2)
Ua=(1,1,1,1,1,1/ /6 The second term represents an overall shift and can be ig-
AT ’ nored altogether. Herg is the 6< 6 unit matrix.
u®=(1,1-1,—1,0,0/2 For a pseudomorphicall001)-grown strained layer, the
E T e strain tensor takes the form
u®=(1,1,1,1-2-2)/2\3, (A3) e 0 0
u=(1,-1,0,0,0,0/V2, e=| 0 & 0], (B3)
0 0 e

(2)— _
ur’=(00.1; 100742, wheree) ande, are the strain tensor components parallel

3)_ 2 and perpendicular, respectively, to the interface planes. These
uy’=(0,0,0,0,1-1)/v2. can be expressed in terms of the unstrained lattice constants

The labelA refers to the nondegenerate ground state witiPf the layera, and the substratas, by evaluating the new

energy — A, relative to the effective-mass valug, is the lattice constants in the strained lafer

doublet state with energy-Ag+Ag, and T is the triplet

state with energy-Ag+Ar+. aj=a;, a =a
Since the envelope function is assumed to vary slowly

over distances comparable to the range of the central-ce\lillhereC

potentialVV, we can write

2Cqo
Cll

&
q

1—

) e

ij are the components of the stiffness tensor. We then
have

<q)ils|v|q)ils>:|¢1s(ro)|2<ui|v|ui>1 (A4) a a, 2C12

_a A g
wherer, is the position of the impurity. The overlap matrix Sy Loe a ! Cy, ol (B5)

elements between Bloch functions from different valléys
are given in Eq(21). By inserting the Bloch functions given
in Eq. (A3) into Eq.(A4), we can express the donor energies
in terms ofV,, Vg, andV; as follows:

from which we see that the two components have opposite
signs.

In order to take the effects of strain and the central cell
into account simultaneously, we make a unitary transforma-

(WAIVW )= (1) |2(Vo+ Vg +4Vi)=— Ay, tion of Fgyain to the basis given by the stateg, uf’, and
u$) defined in Appendix A, and add the central-cell contri-
(lI’E|V|\I’E>:|¢(ro)|2(V0+Vg_2Vf):_A0+AE, bution
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00 0 0 0 O
0A¢ 0O 0 0 O
0 0 A 0 0 O
He=—21+ 0 0 o0 Ay 0 o0 |-
00 0 0 Ar O
00 0 0 0 A

(B6)

which naturally is diagonal in this basis.
The resulting Hamiltonian matrix is, apart from a com-
mon diagonal constant A,

0 0 —J2¢ o0 0 0

0 Ag—¢ O 0 0 0
—J2¢6 0 Ag+é O 0 0

0 0 0 Ar—¢& O 0 ’

0 0 0 0 A—¢ 0

0 0 0 0 0 A;+2¢

(B7)

PHYSICAL REVIEW B 68, 165338 (2003

The Bloch functions of the six eigenstates®are

u;=(1,1,-1,-1,0,0/2,
Up=(aupt+u®)/\1+a?,
Uz=(Up— au®)/\1+a?,

u,=(1,-1,0,0,0,0/12,

(B11)

us=(0,0,1-1,0,0/+/2,

ug=1(0,0,0,0,1;-1)/+/2,

expressed in the valley bottom Bloch function basis Ap-
pendix A with u, andu® given in Eq.(A3), and

B —2x\/§
“ 14+ X+ 14+ 2x+9x2

If the strain splitting= (e, —€) is much larger than the
central-cell splittingAg, as is the typical situation in Si
grown on a Si_,Ge, substraté® x>1 anda~—1/4/2. In
this limit the eigenfunctionsl, andu; become

(B12)

which is easily diagonalized; the once sixfold degenerate do-

nor ground state splits into four nondegenerate and one two-

fold degenerate statéRef. 43, Sec. 3 with energies

€1=—Apt+Ag—¢,

A
€29= — Ao+ 7E(x+ 1+ 1+ 2x+9%2),

(B8)

€15= —AptAr—¢,

€g= _A0+ AT+ 2§

To abbreviate the expressions we have introduced

2Cy,
S|

x=¢&lAg, (B9)

—_—
—
— U

3 —+1.

B10
Co (B10)

E=E (e —g)B3=—

u,~(0,0,0,0,1,1/1/2,

(B13
uz~(1,1,1,1,0,0/2,
with energies
E
€,~2E— Ayt 3
(B14)
E
Egm_f—AO‘F ?

Thus in this case the six states separate into two groups,
whereu, andug are comprised of the twk, valleys, and the
four other states are not coupled to these valleys at all.

In the opposite limit, if the strain is very smal<1 and
we see thati; andu, originate from the doublet anda; from
the ground state.
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