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We present a unified theory for wave-packet dynamics of electrons in crystals subject to perturbations
varying slowly in space and time. We derive the wave-packet energy up to the first-order gradient correction
and obtain all kinds of Berry phase terms for the semiclassical dynamics and the quantization rule. For
electromagnetic perturbations, we recover the orbital magnetization energy and the anomalous velocity purely
within a single-band picture without invoking interband couplings. For deformations in crystals, besides a
deformation potential, we obtain a Berry-phase term in the Lagrangian due to lattice tracking, which gives rise
to new terms in the expressions for the wave-packet velocity and the semiclassical force. For multiple-valued
displacement fields surrounding dislocations, this term manifests as a Berry phase, which we show to be
proportional to the Burgers vector around each dislocafis0163-18209)07023-X

I. INTRODUCTION

~ e ~
Hef‘f:gO,n[_iV—‘r %A(X) y (12)

Our understanding of electronic properties of crystalline
solids is primarily based on the Bloch theory for periodic Which later came to be known as the Peierls substitution.
systemg. It has been of great interest to extend this theory toTwo decades later, Slafeand Luttingef gave a more rigor-
situations where crystals are perturbed in various ways. Seus derivation of the effective Hamiltonian for electromag-
far, the most useful description has been the semiclassicatic perturbations, by expanding the wave function in the
theory for electron dynamics within a band supplemented byasis of Wannier functions
the semiclassical quantization rule or the Boltzmann trans-
port equations. _For example, the _equations _of motion of \If(x,t)=2 f(OW(X—R)), 1.3
Bloch electrons in electromagnetic fields are giveR by [

where{R,} are the lattice positions. They showed that the
X= l I€on(k) envelope functionf(x,t), defined byf(R,,t)=f,(t) and a

N smooth interpolation between the atomic positions, satisfies
the effective Schidinger equation

fik=—eE—exXB, (1.1

iﬁifz[EOn[—inLEA(x) —e¢(x)]f, (1.4)
where & (k) is the energy of theath band of an unper- at ' h
turbed crystal. These equations have played a fundament@here (x) is a slowly varying scalar potential. The equa-
role in the physics of metals and semiconductors. tions of motion (1.1) then follow from Eq.(1.4) and the
The derivation of Eq(1.1) dates back to Bloch, Peierls, correspondence principle.
Jones and Zener in the early 1930By assuming that the  Further development of the theory was made by taking
transition probabilities to other bands are negligible, theyinto account the effects of interband coupling. Adéraz-
showed that Eqg1.1) describe the motion of a narrow wave tended the works of Slater and Luttinger to many-band op-
packet obtained by superposing the Bloch states of a bandrator formalism. Karplus, Luttinger, and Kohn derived a
Various extensions of the theory have been made to de@prrection to the velocity, known as the anomalous velocity,
with perturbations of more general nature and to obtain corand predicted a spontaneous Hall effect in ferromagnetic
rections to Egs(1.1) in high fields. material Later, Adams and Blouft® showed that this
Peierl$ pioneered the effort of constructing an effective term arises from the noncommutability between the Carte-
one-band Hamiltonian to describe the quantum dynamics ofjan components of the intraband position operator. Re-
a Bloch electron. By using the tight-binding model, he wascently, Chang and Nit*? related the anomalous velocity
able to show that the effective Hamiltonian in the presencegrrection to the Berry phase associated with the electron
of a magnetic field may be obtained by replacing the crystapotion in an energy band® Corrections to the effective
momentum#k by the gauge invariant momentum operator Hamiltonian as an asymptotic series in the field strength
[—iAV+eA(x)] in the unperturbed band energy were obtained by eliminating the interband matrix elements
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with unitary transformations by Kohn, Blount, and Roth in proportional to the Burgers vector around each dislocation,
the early 1960%° Later, Browrt’ extended the Wannier and thus, in a sense keeps track of the lattice position. We
function method to crystals under high magnetic fields usinglso discuss the consequences of the Berry phase term on
magnetic-translation symmetry. A decade later, a variant oélectron transport, and the Aharonov-Bohm-type effects in
the Wannier function method that treats position and modislocated crystals.
mentum in a symmetric way, known &-representation, The paper is organized as follows. We present our formal-
was developed by Za¥ Recently, Rammal and Bellissard ism in Sec. I, treat electromagnetic and deformational per-
used an algebraic approdthand Wilkinson an operator turbations in Secs. Ill and IV, respectively, and conclude
approach’ to derive the first-order field correction for the with a summary in Sec. V.
special case of the Harper's equatforf?

Another approach to this problem involves the use of the Il. FORMALISM
WKB expansion to derive a Hamilton-Jacobi equation, and ] . )
then making the correspondence from the classical variables We shall begin by constructing a basis local to the wave
to the quantum operators. This method was applied by mangacket and describe the wave packet in detail. Then we de-
researchers to understand the nature of the spectrum and tH¥ée the Lagrangian, the semiclassical equations of motion,
wave function of electrons described by the Harper's equa@nd Berry-phase correction to the semiclassical quantization,
tion, particularly in the semiclassical linff.A more general @nd discuss some aspects of formal quantization through the
treatment of the problem is based on a two-scale expansidifamiltonian formalism.
in which the electron coordinate and the slowly varying vec-
tor potential are regarded as independent variables. A. The local basis and the wave packet

In this paper, we come back to the original consideratio_n Consider a wave packet centeredxatat a given time,
of a wave packet in a band and use a time-dependent varigith jts spread small compared to the length scale of the
tional principlé***to derive the wave-packet energy up to perturbations. Then the approximate Hamiltonian that the

first order in t_he gradient of th_e per_turbations gnd Berry{yave packet “feels” may be obtained by linearizing the per-
phase corrections to the semiclassical dynamics and thgpations about the wave-packet center as
guantization rule. We are able to obtain the magnetization

energy and the anomalous velocity entirely from the single- o sum of termsx
band point of view. Also, our method can be directly ex- H~H.+{ -~ , (2.1
tended to the case of slowly perturbed magnetic bands, (X_XC)'grad(c'Bi(XC't)

where methods based on the usual Wannier function ap-
proach break down because of the nonexistence of localize
Wannier functions for such bands in genéfal. .

This program was started with Chang and Nit?for the neighborhood of the wave paclfet and may be treated pertur-
special case of a two-dimensional periodic system in a strongatively. The local Hamiltoniaiti has the required period-
magnetic field. Here we establish a unified framework forlCity of the unperturbed crystal, and has an energy spectrum
slowly perturbed crystals whose Hamiltonian can be ex©f bands(Bloch bandswith Bloch wave eigenstates satisfy-
pressed in the form ing

here H,=H(X,p;{Bi(X:,t)}) will be called the local
amiltonian. The terms within the braces are small in the

He(Xe D] (X 0)) = Ec(Xe, QD [ #g(Xc D)), (2.2

whereq is the Bloch wave vector anf.(x.,q,t) is the band
where{gB;(x,t)} are the modulation functions characterizing energy. Since we will be concerned with only a single band,
the perturbations. They may represent either deformatiowe have omitted the band index for simplicity of notation.
strain fields, gauge potentials of electromagnetic fields, oWe note that both the wave-packet centgand timet en-
slowly varying impurity potentials. They also appear inters in the Bloch states and the band energy parametrically.
model potentials for modulated and incommensuratéNVe shall see that the dependency on the center position of
crystals?’ and for graded semiconductdfs. the wave packet will manifest as new types of Berry-phase

We shall illustrate our formalism with two special casesterms in the equations of motion.

of perturbations: electromagnetic fields and deformations in These eigenstates form a convenient basis to expand the
crystals. In the first case, in addition to the corrections ofwave packet. Specifically, we write
orbital magnetization energy and anomalous velocity men-
tioned above, we discuss the Peierls substitution, Berry-
phase-modified Landau levels, and Zak-phase-modified
Wannier-Stark levels. For deformational perturbations, we,
show that the deformation correction to the wave-packet en-
ergy can be obtained from the differential shift in the band
energy under uniform strain. Then we obtain for the La- J d3gla(q,bt)|?=(¥|¥)=1. (2.9
grangian a Berry phase term due to lattice tracking, which
gives rise to new terms in the expressions for the waveHere, we have taken the convention tha¥, |V )
packet velocity and the semiclassical force; for multiple-=5(q’—q). It is assumed that the distributida(q,t)|? is
valued displacement fields in the presence of dislocationsjarrow compared to the size of the Brillouin zone and has
this term manifests as a Berry phase, which we show to bthe mean wave vector

H[)’Z,ﬁ,ﬂl()},t), e vﬁr(s\(!t)]! (15)

|‘1’>=f d*qa(q,t)[¢q(xc 1), (2.3

herea(q,t) is the amplitude with the normalization
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—fd3 la(q,t)|? (2.5 xp'dqf e [l ) 45 | u
Q.= qqgjalq,t)|”. . rral R Ut =)+ X UIﬁxc'
To be consistent, the wave packet must yield the preassigned
center position The first term comes from the explicit time dependence of
¥c. The contribution from|a(q,t)| is zero because of the
XC:<\I,|;(|,I,>_ (2.6) normalization conditior(2.4) on the amplitude. The second

and third terms come about because of the dependence of the
This condition can be expressed in terms of other wavebasis functions on time explicitly and implicitly througf,
packet parameters as follows. Writing the amplitude in therespectively. Using the relation
form a(q,t)=|a(q,t)|exd —i¥(q,t)], and using the matrix

elements of position operatérbetween the Bloch stat¢gq. % = % — qc. % (2.12
(A1) of Appendix A], we find that ot dt o8
5 U and Eq.(2.8), Eq.(2.11) can be recast into the form
~ Y .
(\If|x|\lf>:Jd3q|a|2 2 Tiuli=g) | (2.7 Av dy, _ U
q q c
\I’IW :W—QCXC‘FQC’ UIﬁ
.o Cc
where [u)=[u(x.,q,t))=e"'9¥y4(xc,t)) is the periodic
part of the Bloch wave, and inner products involving the N O Ll (2.13
periodic partju) mean an integration over the unit-cell vol- Xer| U1 X U o) '

umewv with a factor of (27)/v., which implies the nor-
malization(ulu)=1. According to our assumption of a nar-
row wave packet in thg space, Eq(2.6) becomes

where y. appears only in a total time derivative.
The expectation value of the Hamiltonian, which gives
the wave-packet energy may be evaluated up to first order

dy §u> in the perturbation gradients using the linearized Hamil-
Cc .

Xe=——+{uli—
¢ I < ‘ 90
where|u) now stands fotu(x.,qc,t)), andy. for y(qc,t). E=(V|H[W)~(¥|H ) +(V[AHY), (.14

In writing down the expansioii2.3), we have assumed \yhere the gradient correctiah may be written &
that the wave packet that is initially in a band always lies in

(2.8)  tonian(2.1)

the same band. This is justified if the band is separated from o1l oM. oH. .

other bands by finite gaps, and if the time and the length AHzi (X—X¢) - &T+ P (x—=xg)|.  (2.15
scales of the perturbations are long compared to those asso- ¢ ¢

ciated with these gags. The expectation value of the local Hamiltonian is just the

band energy at the mean wave vector,

B. The Lagrangian and dynamics .
. . WIH|V)Y=E.(Xc,qc 1), 2.1
The dynamics of the mean positiop and the crystal (WIHCW)=EelX,Ge.t) (216

momentumf g, can in principle be derived from the Schro while the gradient correction requires some calculat(égs
dinger equation for the wave packet. It is more convenientlypendix A], but the result has the simple form
obtained using a time-dependent variational prinéfpte

Ju

rTqH

with the Lagrangian given by
where “®” denotes a scalar product between the vectors
formed by gradients with respect g andq.

AE=—1Im . (217

4=qc

ou &—H
— | e —
% (E&—Ho)

d .
L=<\If‘|&—H’\P>, (2.9
where and hereafter we use the conventiornl. We use
d/dt to mean the derivative with respect to the time depen-
dence of the wave function explicitly or implicitly through <
u

The Lagrangian thus takes the form
. A du _du
andq. . The partial derivative/ dt, is reserved for those with L=—&+ Q.- X+ qc-{ ufi (9—> + Xe+ < u IW> + < uli E> .
x. andq, held fixed. e c
Under the previously discussed conditions on the widths (2.18
of the wave packet, we can evaluate the Lagrangian as &here we have neglected a term of total time derivative
function ofx, andq., their time derivatives, and the tinte  d(y—X.-q.)/dt in the Lagrangian, as it does not affect the
equations of motion and the quantization rule. The last three
L~L(Xc,Xc,0c,0c,t)- (2.10  terms may be grouped into a single tefajidu/dt), which
turns out to be the net rate of change of Berry phase for
The terms involving higher moments of the wave packetwave-packet motion within the band. We note that under the
which specify its width and shape, are of higher order in thetransformations|u)—exgdi¢(x.,q,t)]ju) or g—gq+K, K
gradient of the perturbations and hence are negléfted. being a reciprocal lattice vector, the Lagrangian remains in-
Accordingly, we obtain for the first term in EG.9), variant up to a total time derivative of some functionxf,
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g., andt. The former corresponds to gauge invariance while

the latter to periodicity in the reciprocal space.

From the LagrangiafR.18 we obtain the following equa-

tions of semiclassical motion:

i€ o

Xe=— = (Qgu- Xo+ Qgq- de) + Ry,
e
. &5 bnd . «> .
QC:_X""(Qxx’xc"'ﬂxq'qa_ﬂtx- (219
C
The components of the tensﬁ'qq are defined by
B.).,=0 _[<(9u &u><&u &u>
@ = =| — s
qa’ap 9a9p dce | 9cp d0cg| 9ca
(2.20
and those of the vectd®,, by
O —q. =i dul du du |au 05
( tx)a= '[xLy=I E X - X g E ) ( . :D

where « and B are Cartesian indices. The other tensor

andﬁqx and the vecto),, are defined similarly.
These quantities are known as Berry curvatdfééWe note

Q><>< ,qu )
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In the simple case where the Berry-phase terms are zero,
these constraints becont®=q., and P,=0, and H=¢.
These suggest that we tread.(q.) as a canonical pair and
forget about the other degrees of freedom. By doing so, we
can indeed obtain the equations of motil9 from the
Hamilton equations. Having identified the canonical pair,
one can proceed with a formal procedure of quantization
(“requantization”), q.— —idldx., to obtain an effective
guantum Hamiltonian. A slightly more general case will be
encountered in the case of electromagnetic perturbations in
the next section of this article.

When Berry-phase terms are present, constrgiiad?
and (2.23 still imply some hidden canonical relations be-
tweenx, andq., but these are entangled in a complicated
manner that cannot be expressed explicitly in general. This
clearly shows the difficulty of the Hamiltonian formalism in
the presence of Berry-phase terms. If one insists on using the
Hamiltonian approach, one can employ the method of
Lagrange multipliers, which allows the spurious degrees of
freedom to be formally treated as independ®rend obtain
the equations of motiof2.19. The “requantization” proce-

sdure for this case is quite complicated and needs further in-

vestigation.
The semiclassical quantization, on the other hand, is quite

that these equations involve Berry curvatures between everSfraight forward. In order that stationary states and energy
pair of parameters and that they have symplectic symmetr&f’vels can be talked about, we shall restrict ourselves to static

in the absence of time dependence.

C. Formal and semiclassical quantization

perturbations. For a wave-packet motion that is regular and
is described by closed orbits in the phase spaceq),
semiclassical energy levels are obtained using the quantiza-
tion procedur&® due to Einstein, Brillouin, and Keller,

We mentioned in the Introduction that the equations of

motion were usually derived from the effective Hamiltonian
upon using the correspondence principle. Here, we consider

14
m+ —|,

2 (2.2

fﬁ Py-dx.+ fﬁ P,-dg.=2m
c c

the reverse process to obtain the effective quantum Hamil-

tonian from the semiclassical dynamics. This requires avhereC denotes an orbit of constant ener§ym an integer
knowledge of canonical structure of the wave-packet dynamthat labels the eigenvalue, amdthe number of caustics tra-
ics. Following the standard procedure of analytical mechanversed. With Egs(2.22 and(2.23 for P, andP,, the above
ics, we introduce the canonical momenta conjugate to theondition reduces to

generalized coordinates

P_&L_ ~du 59
1—a—-)(c—qc+ Ula—xc ) (2.22
5 JL < _au> 2.23

=—=\Uujl —), .
2 oS 99

and the semiclassical Hamiltonigi by the Legendre trans-

formation

. . au
H=Xc-P1+0c- Pa—L=E(Xc,qc 7t)_<u [ E>
(2.29

The semiclassical Hamiltonian is independenPgfand P,

f{]c d c—271 |||+———( ) 22@
C X 4 2a | ( .
where
I'C)= éd i— )+ éd i —
( ) Xc+{ Ujl X . Qe Ul

is the Berry phase acquired by the wave packet upon going
round the closed orbit once. The Berry phase correction to
the quantization condition made its first appearance in
Wilkinson’s work®* on Harper's equation, in Kuratsuiji and
lida’s work® on adiabatic nuclear motion, and also recently
in the work of Chang and N#3 on wave-packet dynamics in
magnetic Bloch bands.

because the Lagrangian is linear in the generalized velocities.
Starting withH, regarded formally as a function of ,

d., P1, andP,, one cannot obtain the equations of motion

(2.19 from the Hamilton equations. This is because the Egs. So far, our treatment of perturbations has been in general

(2.22 and (2.23 definingP; and P, do not depend on the terms, and our results are in an abstract form. Their physical

generalized velocities, and hence they should be treated aseaning will become clear through the consideration of two

constraints between the canonical variables. special cases in this and the next section. For a class of

Ill. ELECTROMAGNETIC FIELDS
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perturbations for which the Hamiltonian is of the special . 0w -
form Xc=———Kk.XQ,
K¢
HO[X+B1(X!t)lp+ﬂZ(X’t)]+B3(X1t)i (31) kc: _eE_e)'(CX B, (38)

all the results can be expressed in terms of the unperturbed . . :
Bloch wave basis. In this section, we shall consider electro’/ere E=—grad ¢(x;.t) = dA(xc,)/dt is the electric

magnetic perturbations for whigh;(x,t)=0. field, and
(Q)azéeaﬁy(ﬁkk)ﬁ'y! (39)

are the components of the vector form of the antisymmetric
tensorQ), given by Eq.(2.20. In Eqg. (3.9 and henceforth,
repeated Cartesian indices are taken to be summed. Because
Q) occupies a similar position as the magnetic field in the
equations of motion, it will be called the reciprocal magnetic
field.

N - - The above equations differ from Egél.1) in two re-
H=Hola+eA(x.D)]-edp(x.1). (32 spects. Firstly, tr?e energy contains a cgrrection term from

playing the role of the modulation functions, and hence th?€en derived earlier as a first order correction in the theory of

A. The gauge invariant crystal momentum

Let I:|0(q) denote the Hamiltonian for the bare crystal,
with the eigenstatéu(q)) (the periodic part of the Bloch
wave and the band energsp(q) for a particular band. The
Hamiltonian gets modified by the gauge potentials
[A(X,1),é(x,t)] of an electromagnetic field to

local Hamiltonian must have the form Bloch electrons subject to magnetic fiefisA similar term
has also been found in the theory of electrons in incommen-
A - i ~d9,20 ; R _
A =Flo[q+eA(x.,t)]—ed(xc.b). 3.3 surate latticed®?° and in the theory of wave-packet dynam

ics in magnetic Bloch band$€.Secondly, the correction term

As eA(x,t) is only an additive constant to the crystal mo- to the velocity,— kX €, is the anomalous velocity that was
mentum g, the basis states have the forfu(x,q,t))  predicted to give rise to a spontaneous Hall conductivity in
=|u(k)), wherek=q+eA(x.,t) is the gauge invariant or ferromagnetic materiaf® In the context of the quantum
mechanical crystal momentum. In terms of the gauge invariHall effect, the integral of the Berry curvatuﬂakakﬂ over the

M=elm X (E—Ho(k))

L=—Ey+ed(Xe,t)+Xe ko= eXer A(Xe,t) +Ke- < u

B. The reciprocal magnetic field and orbital

E(xe ko) = Eo(K)— (X ). 3.4 logical invariani.3” Recently, Chang and Nt proved this
magnetization energy of the wave packet, The semiclassical Eq3.8) should be invariant under time

pose severe restrictions on the behavior of the reciprocal
Z_E>H 3.6 X k., andE are invariant. If the bare crystal is invariant
is the orbital magnetic moment of Bloch electrons. Third, the?2Nish atk=0. Under spatial inversiork, X, k, and the
single termkc-(u|iau/akc). Finally, the Lagrangian takes must haveQ(—k)=Q(K), andM(—Kk)=M(K). Finally, i

| — transform like vectors under these rotations.

where&y=Ey(ke) —M - B. andM null everywhere in the Brillouin zone. However, it is
magnetization energy (such as GaAs Investigations have been undertaken to see
ally from the above Lagrangian or directly from E@®.19 The Lagrangian3.7) and the equations of motiof8.8)

ant crystal momenturk, a number of simplifications can be pjjiouin zone was shown to be proportional to the Hall con-
obtained. First, the eigenenergy can be written in the form ductivity for a full band and to be quantizé@hern’s topo-
result semiclassically. It seems more appropriate to call this
Second, the gradient correcti@@.17 becomes the orbital t€rm Hall velocity than anomalous velocity.
reversal, spatial inversion, or certain rotations if these are
—M-B, (3.5  symmetries of the unperturbed crystal. Such symmetries im-
whereB=curl A(X;,t) is the magnetic field, and magnetic fieldQ and the magnetic momeM as functions
of k. Under time reversak., k., andB change sign while
au
<ﬁ under time reversal, we must ha¥®(—k)=—Q(k), and
k=ke M (—k)=—M(k), which implies in particular that they must
last three terms of the Lagrangié218 simply become the time derivatives of the last two change sigr_1 wHileemains
unchanged. If the bare crystal has inversion symmetry, we
the form the system is invariant under certain proper rotations, the
reciprocal magnetic field and the magnetic moment should
f9kc> For monatomic nonmagnetic crystals, both time reversal
(3.7 and spatial inversion symmetries are present, rendefing
not entirely justified to ignore these quantities for magnetic
crystals or nonmagnetic crystals without inversion symmetry
whether the presence of the reciprocal magnetic field and the
The equations of motion can either be derived variation-orbital magnetization lead to observable effects.
derived for the general case in the previous section. Thewere derived earlier by Chang and Rfdor perturbed mag-
have the form netic Bloch electrons in two dimensions in the gauge where
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¢(x,t)=0. They used a wave packet that gauges away thaniform electric field is described by the Hamiltonigt
vector potential locally so that their magnetic Bloch wave =¢&y(k;) +eEx. . It follows from the boundedness and the
vector is the same as the corresponding gauge invariant cryperiodicity of the band energy that the motion in real space is
tal momentumq+eA(X.,t)=k here. Their derivation was also bounded and periodic. Such a closed motion in the real
less general in that it is only for two dimensions and morespace is known as Bloch oscillations. In the reduced zone
general in that it provides a description of electrons in ratioscheme, the motion is closed also in the phase spac&d),

nal magnetic field8,, for which the flux through a unit cell which is a cylinder. Quantizing this motion according to Eq.
equals a rational fraction~O(1)] of the flux quantum (2.25 gives the condition

(h/e). However, our formalism can easily be generalized to

this situation, for a more general three-dimensional case, by w/a )=
assuming a background of constant rational magnetic field _J W/adkcxc( o) =27
By. All we need to do is to interprej as the wave vector of

magnetic Bloch states defined within a reduced Brillouinwherea stands for the lattice constant, and
zone (the magnetic Brillouin zone? and to replaceB in

(3.8 by B—B,. re f”’a dk<u

—mla

ot 31
mZ_E’ (3.1

.ou 31
e (3.16
C. Peierl bstituti d Landau level
elers stbstittion a_n andatfevers _ is known as the Zak phas®andx.(k.) is the constant en-
It follows frqm the Lagrangian(3.7) that the canonical ergy curve for themth energy level defined byw,,
momenta are given by =&o(ke) +eEX., mbeing an integer. Averaging this expres-
P =k — eA(xc 1), (3.10 sion over the orbit, we obtain from E@.15

P2=<u |;Tu> (3.11

and the Hamiltonian byH=&),(k;) —ed(x.,t). In the ab-
sence of the Berry-phase ter(8.11), we may obtain the
Hamiltonian as a function of the canonical pait, (P,) as

_ v T
Wm=50+eEa(—m—Z+ﬂ), (3.19

where&, is the average of the band energy over the Brillouin
zone, andnis any integer between o to o, since the mean
value ofx, can be anywhere on the cylinder. This spectrum,
known as the Wannier-Stark ladder, was first derived by
H=E[Py+eA(Xe, 1) ]—ed(Xc,1). (3.12 Wannief® without the Berry-phase term. The correction was
due to Zak, who later interpreted it as a Berry phtse.
The quantization of this Hamiltonian by setting,=

—idl9x, amounts to thg Peierls subst_itution. However, it is IV. DEFORMATIONS IN CRYSTALS
not clear how to deal with the case with a Berry-phase term
using the Hamiltonian approach. We shall now come to deformational perturbations. It

When only a uniform magnetic field is present, the twoturns out that the model Hamiltonian for a deformed crystal
equations of motior_@3.8) can b_e combined into a single one also has the special forr8.1) with B,(x,t)=0, which is
for thek-space motion. It is evident thatkaspace orbit must Ho[>A<+Bl(>A<,t).F3]+ﬁs(>A<,t), and hence all the corrections

lie in a plane normal t@® and must be on a constant energy gre expressible in terms of the undeformed basis for this case
surface ofe(k). If such an orbit is closed, known as a cyclo- 44

tron orbit, the EBK formula yields

1. e|B| 1 T(© A. The translated crystal basis
25 ﬁ;kCXdkC: h [m+ 2 2n } (3.13 A deformed crystal with atomic displacemerts} may
be described by the Hamiltoni#*?

where

p A~ . . A~ .
o= fﬁcdk' < ! ':Tu> (3.14 H= 2+ Vo[ X~ U(X) ]+ Sap(X) Vepl X~ U], (4.1
C
_ where u(x) is a smooth displacement fiéfdl satisfying
is the B_erry phasg accumulated by the wave packet UPOR(R,+u)=u,, and Sap=0U,/0x5 is the unsymmetrized
completing a circuit along the loop, and we have restored girain. The justification of the above Hamiltonian and an ex-
the Planck constant. The left-hand side of E313 is just  pjicit expression for the last term are given in Appendix B.
thek-space area enclosed by the oitAs this phase influ-  \whjle the last term of the Hamiltonian, being proportional to
ences energy levels, it affects the density of states. It ighe strain, can be treated perturbatively, the other terms are
shown in Ref. 12 thal’ plays an important role in determin-  of the form Eq.(1.5), with the displacement field playing the
ing the spectral splitting pattern of magnetic bands. role of the modulation function. The local Hamiltonian is
then given by

D. Zak phase and Wannier-Stark ladder
02
: . . : . - P R
In _th|s subgectlgn, we restrict our d.|scu33|o.n to one di Flo= o Vo[ X—u(x0)]. 4.2)
mension for simplicity. The semiclassical motion under a

2m
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This is nothing but the Hamiltonian of an undeformed crystalwith

shifted in position by the displacement field at the center of

the wave packetu(x;). The band energy is therefore the Dgﬂ=m[vavﬁ—(8aﬁﬁ>]+(fﬁﬂ). (4.9

same as that of the undeformed crys£g(k), and the eigen- , , ) ) .

states are the translated Bloch waveg[x—u(x,)]}. We note that_ th|_s quantity v_anl_shes in the free—_electrqn limit
Our wave packet will thus be formed out of these trans{Yo—0), which is quite satisfying from a physical point of

lated Bloch states of the undeformed but translated crystaY!€W: @ wave packet should not feel the effect of a deforma-
This procedure is valid so long as the strain is weak, so thafon of the lattice in the absence of electron-lattice couplmg.
the variation of the displacement within the spatial width of Further, from the differential band structfiteinder a uni-
the wave packet is small. When the first-order corrections t¢°rm straine,
the Hamiltonian are taken into account, our method should b ~ A -
give the same physical resulte the same ordgas obtained € (K') = &(K) = €agD o 5(K) = €45 — Mo 0 ) +(Vep)],
using a strained basis. However, our formulation should be (4.9
simpler and easier to interpret, because it avoids the neces- LT a1 .
sity of transformation between the lab and lattice frames ofivgnerek =(1+7%)""-k A€ can be determined by the rela-
reference.

Altho_ugh t_he s_mall §tr_ain regim_e covers the vast major_ity DY =D +mu v, (4.10
of practical situations, it is some times necessary to consider ap = Tab o B
the effect of large strains. In the case where a large unifornaccording to Eqs(4.8) and (4.9). The same expression has
and static strain is superposed on top of a small varyingpeen obtained for the deformation potential for electron-
strain, our formulation can still be applied; one only needs tghonon interaction at long wavelengths, showing the equiva-
interpret the basis as that of the uniformly strained crystallence of the latter with our wave-packet deformation poten-
There can be a third possibility in which the strain variationtial (4.7).°
is large over large distances but is small over the size of the
wave packet. In this case, it is more appropriate to use a C. Equations of motion and lattice tracking

strained local basis, that is, a basis of a homogeneously ) .
strained crystal with the strain value given by the actual B€fore we proceed further, let us first make the displace-

strain at the center of the wave packet. ments time depender{tu(t)}, as we are discussing the dy-
namical aspect. Accordingly, we extend the results of the

previous subsections with the replacemen{x)— u(x,t)

ands,g(x) —s,z(x,t), and with the Bloch wave basis given
The wave-packet energy is obtained by summing the expy the stateqg ¢ [ x—u(x¢,t)]}.

B. The crystal deformation potential

pectation values of the local Hamiltoni&#4.2), the gradient As for the Lagrangian, the functional form of the basis
correction(2.15), and the last term of Eq4.1). Because of  states imply that the last two terms of its general expression
the functional form of the basis states, we have (2.18 become

W[H W)= Ey(ke), (4.3 au au, au au,

(YR =Eolke uli—)=f,—=, {uli=)=f, =%, (4.1))
while the gradient correction becomes IXe IXe ot at

~ ~ L n where
_mSaB(XC)[<UavB>_<Ua><vﬁ>]- (44)

The angular brackets in the above expression represent the (k)= m (9_50_ﬁk (4.12
expectation value of the enclosed operators in the Bloch state h ok ’ ’

atk=k, andvA“:aH(k)/ak“ 1S th_e velocity operator.. ASIS iy which # has been restored. The reader is warned that the
well known, (v,)=3d&/dk,=v, is the group velocity of  gisplacement fieldy or u,) should not be confused with the
Bloch electrons. As .for the last term of the Ham_llton!an periodic part of the Bloch statgy). The quantityf(k), being
(4.1), we may write, in accordance with our approximation the difference between the group momentum of a Bloch elec-
[Eq. (2.10], tron and the momentum of a free electron, denotes that part
. - of the momentum arising from the lattice interaction alone. It
(V]Sap(X) Vapl V) ~Sap(Xc)(Vap), (4.5 has the desired property of vanishing in the free electron
limit, where the lattice deformation should not be felt. By

c _ _ . .
Where 5=Vl (X~ u(X;)]. We again write the energy of substituting Eq(4.11) into Eq. (2.18, we obtain

the wave packet in the form

£=Eglke) + A8 ko), .6 L= ekt k.. < y

where, this time, the correctiahé, which is to be called the
deformation potential for the wave pacKéthas two contri-  whereu denotesdu/dt. The last term is new and represents
butions[Egs.(4.4) and(4.5)]. As the latter is proportional to the rate of change of the Berry phase due to lattice tracking.
the local deformation, it may be written in the form We shall see below that there is a tendency for the lattice to
drag the electron with its displacement motion, hence the
AE=5,5(Xc)Dyg(Ke), (4.7 word “tracking.” This term also gives rise to the Burgers

“aul\ .
Iﬁ_kc +u-f(ky), (4.13
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Ju
keeps track of the lattice position. i&7> = fﬁcdu-f(kc)~b~f(k),
C

vector when integrated around a dislocation, so in a sense it
I'= 3€ dx.-{u
Similarly, the Berry curvatures in E@2.19 take values ¢

(4.19
Oy =~ xk:&uy afy'
P Bl Xep IKeg where we have assumedi|idu/dk) to be zer8® and the
corrections arising from the changes in the wave vector to be
0., =— af, ‘917 —Q. =0 (4.14 negligible. In other words, the action integral of the last term
K™ kg, Ot T T XeXp T of Eq. (4.13 around a dislocation gives us a Berry phase that

is proportional to the Burgers vector.
Note that this Berry phase is independent of the path as
long as it encloses the dislocation line. What we have is a

and by expression&4.6) and (4.7) for &, the equations of
motion become

i 9, DY ) . afg situation similar to the Aharonov-Bohm effetwith the
xcaszrsﬁyTy—(kcx Q)a—uﬁm, (4.159  dislocation playing the role of the solenoid, and the Berry
co co co curvatureQ,, the role of the magnetic field. Just as in the
93 ot case of the solenoidal field2,,=0 everywhere except for
v _ ’}/ T . . .
Keo=— Dvﬁv“/ax_m_sﬁ“ak_k”' (4.16  the core region where it should be taken to be singular.

cy The Berry phas¢4.19 affects the scattering of electrons

. . 0
In the above equations, the semiclassical force has twlY & dislocatiorf” and our resuilt can be used to compute the

contributions: the first term arises from the deformation po-Shift in the scattering fringe pattern due the Berry phase. The

tential, and the second term, which arises from the latticdntensity distribution has interference terms of the form
tracking term, will be called the tracking force. For uniform €0S@+1') due to each pair of paths along the two sides of the

strains the semiclassical force vanishes, so khds a good ~ dislocation, wheref is given by the path length difference
quantum number in such a case. per wave length of the incident beam. The Berry phase and

The velocity has three contributions in addition to the hence the shift are maximal when the incident wave vector
usual term given by the gradient of the band energy. Thés such thaf(k)=mv—7#k is parallel to the Burgers vector
second term corresponds to the group velocity arising fronb. To fix ideas, let us make the assumption thi&t For an
the deformation potential, and the third term, as was seesdge dislocation, wherb lies in the normal plane of the
earlier in Eq.(3.8) of Sec. llI, is the Hall velocity. The last dislocation axis, we expect that maximal effect of the Berry
term arises from the lattice tracking term of the Lagrangianphase is seen when the direction of the incident beam is
and will be similarly called the tracking velocity. To under- perpendicular to the axis and coincide with the direction of
stand this term better, let us rewrite the term using@dl9 . For a screw dislocation, the maximal Berry phase occurs

as whenk is parallel to the axis along which lies. However,
. . 26, since the beam must pass the dislocation in order to produce
Uy —MUg————. (4.17 the interference pattern, the maximal Berry-phase effect
IKepKea should actually occur whek is along some finite angle

In the free-electron limit, where electrons and lattice de-2away from the axis.
couple, the adiabatic velocity vanishes identically, for The Berry phase can also affect the electron diffraction
pattern of a deformed crystal with or without a dislocation.
7*& Oap When an electron beam of wave vectois sent through a
akwakcﬁ_’?' (4.18 crystal, it propagates as Bloch waves in different bands of
. o the crystal, all with the same Bloch wave vector, which is
On the other hand, when the band under consideration is full 4| 1ok modulo a reciprocal lattice vector. Because of the
fche S?CO”d term of Ecﬁ4._17) a\_/eraged over the band_|s zero, energy differences of the bands, the Bloch waves grow out of
implying a complete adiabatic following of the lattice mo- phase from one another as they propagate. Therefore, when
tion, which confirms an earlier result on adiabatic particle . ) ' '
transport” f[he_y exit the crystal, they rec_omblne to produce not only the
incident beam but also the diffracted beams. For a deformed
) ) crystal, the phase change of a Bloch wave is given by the
D. Dislocations and Berry phase time integral of the Lagrangiaf@.13. The contribution from

Our formalism is also applicable to dislocation strainthex.-k. term may be dropped, because it is independent of
fields, which are well defined except in a region of a fewthe band index. For weak strains, we may also neglect the
atomic spacings around the line of dislocation. Outside thigleformation potential and the third term in E¢.13. The
region, the displacement field(x) is a smooth but multiple dominant correction to the dynamical phase arises from the
valued function. The change in the displacement field alondast term:Au-f(k), whereAu is the change in the displace-

a closed loop around the line of dislocatiomlu  ment field over the path of propagation of the Bloch waves.
= [cdX,duldx,=b, is known as the Burgers vector; it To show the soundness of these general ideas, we have cal-
equals one of the Bravais lattice vectors. On account of thisulated the diffraction pattern from a thin slab of crystal
multiple-valuedness, a wave packet of incident wave vectocontaining a screw dislocation, correctly reproducing earlier
k taken around the line of dislocation acquires a Berry phasexperimental and theoretical resuits.
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V. SUMMARY e pra)
c , c
We provide a unified framework for wave-packet dynam- < nal gx. '/’”’q’> =d(q-q )< Un s u”'>
ics of electrons in slowly perturbed crystals, which consists
of constructing a wave packet using the Bloch states belong- , Ungq
ing to a single band of the local periodic Hamiltonian, ob- =8(a—09")| (&en—Eenr) TXC Un'q
tained by replacing the perturbations by their value at the
center of the wave packet, and deriving its dynamics in a dEen
general form, based on the time-dependent variational prin- +(9_XC5””’ ' (A2)

ciple. We derive the wave-packet energy up to first order in . . .

the gradient of the perturbations and all kinds of Berry-phas&/hich are easily verified. _
corrections to the semiclassical dynamics and the quantiza- F'0mM EGs.(Al), (A2), and the completeness relation
tion rule. Also, we give a discussion of a formal quantization

procgdure throu_gh the Hamiltor]ian formalism with the semi- z f d3Q|¢nq><¢nq| =1, (A3)
classical dynamics as the starting point. n

- We illustrate our fram_ewc_)rk with two cases of perturb_a-We can show that

tions. For electromagnetic fields, previous results of orbital

magnetization and anomalous velocity are obtained purely P

from a single-band point of view. For deformations in crys- <1//nq —2.x lﬂnq'>

tals, we obtain a Berry-phase term in the Lagrangian due to X

lattice tracking, which gives to the new terms of tracking 9o .

velocity and force in the equations of motion of the wave =&T-(1pnq|x| Ung)

packet. For multiple-valued displacement fields in the pres- ¢

ence of dislocations, this term manifests as a Berry phase, | dUng o | dung

which we show to be proportional to the Burgers vector +I< e “(Een—Ho) 9 >5(q—q’). (A4)

around each dislocation. Also, we relate the deformation cor-
rection to the wave-packet energy to the shift in band energy |t e assume that the wave packet is constructed from the
under uniform strain, which turns out to be the same as th@|och states of thath band. we have
deformation potential for electron-phonon interaction at long
€, €,
‘I’>:Jd3q|a|2 cn: cn

wavelengths.
R4
IXe X

Cc
IXe

The combined effects of electromagnetic and deforma-
tional perturbations are yet to be studied. Given that the per-

turbed Hamiltonian is of the form E@3.1), the equations of .
. ) : as only the second term of EGA2) contribute to the expec-
motion for the wave-packet dynamics can be completely de tion value. By the same token, from E¢85) and (Ad).

termined in terms of the properties of the unperturbed crystatla
Ju au
=i = “q>
X 99 [{4_q

and the fields of perturbations. Such a theory will provide ave obtain
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APPENDIX B: THE DEFORMED CRYSTAL POTENTIAL

dation. tal potential regarded as a function of the coordinates of the
electron and the equilibrium atomic positions BYX;{R,
APPENDIX A: THE GRADIENT CORRECTION A€ +u}). If the displacements are small, we can expand the

potential in powers ofu;} and do away with the perturbation
In the derivation below, the band indices for the Blochtheory. When they are large, we have to adopt a different

states and the energy bands have been restored. ~  technique. For this purpose, we introduce a smooth displace-
We b(oagln with the matrix elements of the position ment fieldu(x) such thatu(R,+u;)=u,, and write the po-
operatort tential as
i 9 Uy, VIX=u(X);{R+u—u(x)}], (BY)
<l/fnq|X| ‘ﬂn'q'):{' %5““'+<u” ' aq Hg(q — ), where we have used the invariance property of a potential

(A1) under a simultaneous translation of electronic and atomic
positions. We may now expand the potential in powers of
and the identity u —u(x) as
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dition holds for metals because of Coulomb screening; it has
Vo[X—U(X)HEI [u—u(X)]aViat---.  (B2)  peen argued thaV,, is short ranget also for nonpolar
semiconductors and insulators.
whereVy(x—u)=V(x—Uu;{R}) is the potential used in the Under such a condition, we may write
deformable ion model in which the approximated potential at
x equals the undeformed crystal potential at the undeformed Ujo=U X+ R+u—Xx)

electron coordinat&—u(x), and
~ ua(x) + ( R| +u— X)ﬁsaﬁ(x) ~ ua(x)

:aV[x—u(x);{R|}]
ta™ iRy,

The equality in the last equation is meant to suggest that th/nence the summation in E(82) can be put into the form
center of fall off of V,, is at the zero of the expression SagYap With
X—Uu(x)—R,, viz.,, x=u+R,.

The expansion(B2) is meaningful only ifV,, decreases VY Ix—u(x)]= R+ u(x)—x1.V B5
sufficiently rapidly with increasingx— u(x) —R,|. This con- apl X~ U] E| [RiFuCO=x]gVia- (B5)

:V|a[X_U(X)_R|]. (83) +[R|+U(X)_X]ﬂSaB(X), (B4)
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