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Wave-packet dynamics in slowly perturbed crystals: Gradient corrections
and Berry-phase effects

Ganesh Sundaram and Qian Niu
Department of Physics, University of Texas at Austin, Austin, Texas 78712-1081

~Received 8 June 1998!

We present a unified theory for wave-packet dynamics of electrons in crystals subject to perturbations
varying slowly in space and time. We derive the wave-packet energy up to the first-order gradient correction
and obtain all kinds of Berry phase terms for the semiclassical dynamics and the quantization rule. For
electromagnetic perturbations, we recover the orbital magnetization energy and the anomalous velocity purely
within a single-band picture without invoking interband couplings. For deformations in crystals, besides a
deformation potential, we obtain a Berry-phase term in the Lagrangian due to lattice tracking, which gives rise
to new terms in the expressions for the wave-packet velocity and the semiclassical force. For multiple-valued
displacement fields surrounding dislocations, this term manifests as a Berry phase, which we show to be
proportional to the Burgers vector around each dislocation.@S0163-1829~99!07023-X#
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I. INTRODUCTION

Our understanding of electronic properties of crystall
solids is primarily based on the Bloch theory for period
systems.1 It has been of great interest to extend this theory
situations where crystals are perturbed in various ways.
far, the most useful description has been the semiclass
theory for electron dynamics within a band supplemented
the semiclassical quantization rule or the Boltzmann tra
port equations. For example, the equations of motion
Bloch electrons in electromagnetic fields are given by2

ẋ5
1

\

]E0,n~k!

]k
,

\ k̇52eE2eẋ3B, ~1.1!

where E0,n(k) is the energy of thenth band of an unper-
turbed crystal. These equations have played a fundame
role in the physics of metals and semiconductors.

The derivation of Eq.~1.1! dates back to Bloch, Peierls
Jones and Zener in the early 1930s.3 By assuming that the
transition probabilities to other bands are negligible, th
showed that Eqs.~1.1! describe the motion of a narrow wav
packet obtained by superposing the Bloch states of a b
Various extensions of the theory have been made to
with perturbations of more general nature and to obtain c
rections to Eqs.~1.1! in high fields.

Peierls4 pioneered the effort of constructing an effecti
one-band Hamiltonian to describe the quantum dynamic
a Bloch electron. By using the tight-binding model, he w
able to show that the effective Hamiltonian in the prese
of a magnetic field may be obtained by replacing the cry
momentum\k by the gauge invariant momentum opera

@2 i\¹1eA( x̂)# in the unperturbed band energy
PRB 590163-1829/99/59~23!/14915~11!/$15.00
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Ĥeff5E0,nF2 i¹1
e

\
A~ x̂!G , ~1.2!

which later came to be known as the Peierls substituti
Two decades later, Slater5 and Luttinger6 gave a more rigor-
ous derivation of the effective Hamiltonian for electroma
netic perturbations, by expanding the wave function in
basis of Wannier functions

C~x,t !5(
l

f l~ t !W~x2Rl !, ~1.3!

where $Rl% are the lattice positions. They showed that t
envelope functionf (x,t), defined by f (Rl ,t)5 f l(t) and a
smooth interpolation between the atomic positions, satis
the effective Schro¨dinger equation

i\
]

]t
f 5H E0,nF2 i¹1

e

\
A~x!G2ef~x!J f , ~1.4!

wheref(x) is a slowly varying scalar potential. The equ
tions of motion ~1.1! then follow from Eq. ~1.4! and the
correspondence principle.

Further development of the theory was made by tak
into account the effects of interband coupling. Adams7 ex-
tended the works of Slater and Luttinger to many-band
erator formalism. Karplus, Luttinger, and Kohn derived
correction to the velocity, known as the anomalous veloc
and predicted a spontaneous Hall effect in ferromagn
materials.8 Later, Adams and Blount9,10 showed that this
term arises from the noncommutability between the Ca
sian components of the intraband position operator.
cently, Chang and Niu11,12 related the anomalous velocit
correction to the Berry phase associated with the elec
motion in an energy band.13–15 Corrections to the effective
Hamiltonian as an asymptotic series in the field stren
were obtained by eliminating the interband matrix eleme
14 915 ©1999 The American Physical Society
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14 916 PRB 59GANESH SUNDARAM AND QIAN NIU
with unitary transformations by Kohn, Blount, and Roth
the early 1960s.16 Later, Brown17 extended the Wannie
function method to crystals under high magnetic fields us
magnetic-translation symmetry. A decade later, a varian
the Wannier function method that treats position and m
mentum in a symmetric way, known askq-representation,
was developed by Zak.18 Recently, Rammal and Bellissar
used an algebraic approach19 and Wilkinson an operato
approach20 to derive the first-order field correction for th
special case of the Harper’s equation.21,22

Another approach to this problem involves the use of
WKB expansion to derive a Hamilton-Jacobi equation, a
then making the correspondence from the classical varia
to the quantum operators. This method was applied by m
researchers to understand the nature of the spectrum an
wave function of electrons described by the Harper’s eq
tion, particularly in the semiclassical limit.22 A more general
treatment of the problem is based on a two-scale expan
in which the electron coordinate and the slowly varying ve
tor potential are regarded as independent variables.23

In this paper, we come back to the original considerat
of a wave packet in a band and use a time-dependent v
tional principle24,25 to derive the wave-packet energy up
first order in the gradient of the perturbations and Ber
phase corrections to the semiclassical dynamics and
quantization rule. We are able to obtain the magnetiza
energy and the anomalous velocity entirely from the sing
band point of view. Also, our method can be directly e
tended to the case of slowly perturbed magnetic ban
where methods based on the usual Wannier function
proach break down because of the nonexistence of local
Wannier functions for such bands in general.26

This program was started with Chang and Niu11,12 for the
special case of a two-dimensional periodic system in a str
magnetic field. Here we establish a unified framework
slowly perturbed crystals whose Hamiltonian can be
pressed in the form

H@ x̂,p̂;b1~ x̂,t !, . . . ,b r~ x̂,t !#, ~1.5!

where$b i(x,t)% are the modulation functions characterizin
the perturbations. They may represent either deforma
strain fields, gauge potentials of electromagnetic fields
slowly varying impurity potentials. They also appear
model potentials for modulated and incommensur
crystals,27 and for graded semiconductors.28

We shall illustrate our formalism with two special cas
of perturbations: electromagnetic fields and deformations
crystals. In the first case, in addition to the corrections
orbital magnetization energy and anomalous velocity m
tioned above, we discuss the Peierls substitution, Be
phase-modified Landau levels, and Zak-phase-modi
Wannier-Stark levels. For deformational perturbations,
show that the deformation correction to the wave-packet
ergy can be obtained from the differential shift in the ba
energy under uniform strain. Then we obtain for the L
grangian a Berry phase term due to lattice tracking, wh
gives rise to new terms in the expressions for the w
packet velocity and the semiclassical force; for multip
valued displacement fields in the presence of dislocatio
this term manifests as a Berry phase, which we show to
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proportional to the Burgers vector around each dislocati
and thus, in a sense keeps track of the lattice position.
also discuss the consequences of the Berry phase term
electron transport, and the Aharonov-Bohm-type effects
dislocated crystals.

The paper is organized as follows. We present our form
ism in Sec. II, treat electromagnetic and deformational p
turbations in Secs. III and IV, respectively, and conclu
with a summary in Sec. V.

II. FORMALISM

We shall begin by constructing a basis local to the wa
packet and describe the wave packet in detail. Then we
rive the Lagrangian, the semiclassical equations of mot
and Berry-phase correction to the semiclassical quantizat
and discuss some aspects of formal quantization through
Hamiltonian formalism.

A. The local basis and the wave packet

Consider a wave packet centered atxc at a given time,
with its spread small compared to the length scale of
perturbations. Then the approximate Hamiltonian that
wave packet ‘‘feels’’ may be obtained by linearizing the pe
turbations about the wave-packet center as

Ĥ'Ĥc1H sum of terms}

~ x̂2xc!•gradxc
b i~xc ,t !J , ~2.1!

where Ĥc[H( x̂,p̂;$b i(xc ,t)%) will be called the local
Hamiltonian. The terms within the braces are small in t
neighborhood of the wave packet and may be treated pe
batively. The local HamiltonianĤc has the required period
icity of the unperturbed crystal, and has an energy spect
of bands~Bloch bands! with Bloch wave eigenstates satisfy
ing

Ĥc~xc ,t !ucq~xc ,t !&5Ec~xc ,q,t !ucq~xc ,t !&, ~2.2!

whereq is the Bloch wave vector andEc(xc ,q,t) is the band
energy. Since we will be concerned with only a single ba
we have omitted the band index for simplicity of notatio
We note that both the wave-packet centerxc and timet en-
ters in the Bloch states and the band energy parametric
We shall see that the dependency on the center positio
the wave packet will manifest as new types of Berry-pha
terms in the equations of motion.

These eigenstates form a convenient basis to expand
wave packet. Specifically, we write

uC&5E d3qa~q,t !ucq~xc ,t !&, ~2.3!

wherea(q,t) is the amplitude with the normalization

E d3qua~q,t !u25^CuC&51. ~2.4!

Here, we have taken the convention that^Cq8uCq&
5d(q82q). It is assumed that the distributionua(q,t)u2 is
narrow compared to the size of the Brillouin zone and h
the mean wave vector
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qc5E d3qqua~q,t !u2. ~2.5!

To be consistent, the wave packet must yield the preassig
center position

xc5^Cux̂uC&. ~2.6!

This condition can be expressed in terms of other wa
packet parameters as follows. Writing the amplitude in
form a(q,t)5ua(q,t)uexp@2ig(q,t)#, and using the matrix
elements of position operatorx̂ between the Bloch states@Eq.
~A1! of Appendix A#, we find that

^Cux̂uC&5E d3quau2F]g

]q
1 K uU i ]u

]qL G , ~2.7!

where uu&[uu(xc ,q,t)&5e2 iq• x̂ucq(xc ,t)& is the periodic
part of the Bloch wave, and inner products involving t
periodic partuu& mean an integration over the unit-cell vo
ume vc with a factor of (2p)3/vc , which implies the nor-
malization^uuu&51. According to our assumption of a na
row wave packet in theq space, Eq.~2.6! becomes

xc5
]gc

]qc
1 K uU i ]u

]qc
L , ~2.8!

whereuu& now stands foruu(xc ,qc ,t)&, andgc for g(qc ,t).
In writing down the expansion~2.3!, we have assumed

that the wave packet that is initially in a band always lies
the same band. This is justified if the band is separated f
other bands by finite gaps, and if the time and the len
scales of the perturbations are long compared to those a
ciated with these gaps.29

B. The Lagrangian and dynamics

The dynamics of the mean positionxc and the crystal
momentum\qc can in principle be derived from the Schro¨-
dinger equation for the wave packet. It is more convenien
obtained using a time-dependent variational principle24,25

with the Lagrangian given by

L5 K CU i d

dt
2ĤUC L , ~2.9!

where and hereafter we use the convention\51. We use
d/dt to mean the derivative with respect to the time dep
dence of the wave function explicitly or implicitly throughxc
andqc . The partial derivative]/]t, is reserved for those with
xc andqc held fixed.

Under the previously discussed conditions on the wid
of the wave packet, we can evaluate the Lagrangian a
function of xc andqc , their time derivatives, and the timet

L'L~xc ,ẋc ,qc ,q̇c ,t !. ~2.10!

The terms involving higher moments of the wave pack
which specify its width and shape, are of higher order in
gradient of the perturbations and hence are neglected.30

Accordingly, we obtain for the first term in Eq.~2.9!,
ed

-
e

m
h
so-

y

-

s
a

t,
e

K CU i dC

dt L 5
]gc

]t
1 K uU i ]u

]t L 1 ẋc• K uU i ]u

]xc
L .

~2.11!

The first term comes from the explicit time dependence
gc . The contribution fromua(q,t)u is zero because of the
normalization condition~2.4! on the amplitude. The secon
and third terms come about because of the dependence o
basis functions on time explicitly and implicitly throughxc ,
respectively. Using the relation

]gc

]t
5

dgc

dt
2q̇c•

]gc

]qc
~2.12!

and Eq.~2.8!, Eq. ~2.11! can be recast into the form

K CU i dC

dt L 5
dgc

dt
2q̇c•xc1q̇c• K uU i ]u

]qc
L

1 ẋc• K uU i ]u

]xc
L 1 K uU i ]u

]t L , ~2.13!

wheregc appears only in a total time derivative.
The expectation value of the Hamiltonian, which giv

the wave-packet energyE, may be evaluated up to first orde
in the perturbation gradients using the linearized Ham
tonian ~2.1!

E5^CuĤuC&'^CuĤcuC&1^CuDĤuC&, ~2.14!

where the gradient correctionDĤ may be written as31

DĤ5
1

2
F ~ x̂2xc!•

]Ĥc

]xc
1

]Ĥc

]xc
•~ x̂2xc!G . ~2.15!

The expectation value of the local Hamiltonian is just t
band energy at the mean wave vector,

^CuĤcuC&5Ec~xc ,qc ,t !, ~2.16!

while the gradient correction requires some calculations@Ap-
pendix A#, but the result has the simple form

DE52ImF K ]u

]xc
UO~Ec2Ĥc!U]u

]qL GU
q5qc

, ~2.17!

where ‘‘O ’’ denotes a scalar product between the vect
formed by gradients with respect toxc andq.

The Lagrangian thus takes the form

L52E1qc• ẋc1q̇c• K uU i ]u

]qc
L 1 ẋc• K uU i ]u

]xc
L 1 K uU i ]u

]t L .

~2.18!
where we have neglected a term of total time derivat
d(g2xc•qc)/dt in the Lagrangian, as it does not affect th
equations of motion and the quantization rule. The last th
terms may be grouped into a single term^uu idu/dt&, which
turns out to be the net rate of change of Berry phase
wave-packet motion within the band. We note that under
transformationsuu&→exp@iw(xc ,q,t)#uu& or q→q1K , K
being a reciprocal lattice vector, the Lagrangian remains
variant up to a total time derivative of some function ofxc ,
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14 918 PRB 59GANESH SUNDARAM AND QIAN NIU
qc , andt. The former corresponds to gauge invariance wh
the latter to periodicity in the reciprocal space.

From the Lagrangian~2.18! we obtain the following equa
tions of semiclassical motion:

ẋc5
]E
]qc

2~VIqx• ẋc1VIqq•q̇c!1Vtq ,

q̇c52
]E
]xc

1~VIxx• ẋc1VIxq•q̇c!2Vtx . ~2.19!

The components of the tensorVIqq are defined by

~VIqq!ab[Vqaqb
[ i F K ]u

]qca
U ]u

]qcb
L 2 K ]u

]qcb
U ]u

]qca
L G ,
~2.20!

and those of the vectorVtx by

~Vtx!a[V txa
[ i F K ]u

]t U ]u

]xca
L 2 K ]u

]xca
U]u

]t L G , ~2.21!

where a and b are Cartesian indices. The other tenso
VIxx ,VIxq , andVIqx and the vectorVtq are defined similarly.
These quantities are known as Berry curvatures.13,14We note
that these equations involve Berry curvatures between e
pair of parameters and that they have symplectic symm
in the absence of time dependence.

C. Formal and semiclassical quantization

We mentioned in the Introduction that the equations
motion were usually derived from the effective Hamiltoni
upon using the correspondence principle. Here, we cons
the reverse process to obtain the effective quantum Ha
tonian from the semiclassical dynamics. This requires
knowledge of canonical structure of the wave-packet dyna
ics. Following the standard procedure of analytical mech
ics, we introduce the canonical momenta conjugate to
generalized coordinates

P15
]L

] ẋc

5qc1 K uU i ]u

]xc
L , ~2.22!

P25
]L

]q̇c

5 K uU i ]u

]qc
L , ~2.23!

and the semiclassical HamiltonianH by the Legendre trans
formation

H5 ẋc•P11q̇c•P22L5E~xc ,qc ,t !2 K uU i ]u

]t L .

~2.24!

The semiclassical Hamiltonian is independent ofP1 andP2,
because the Lagrangian is linear in the generalized veloci

Starting withH, regarded formally as a function ofxc ,
qc , P1, andP2, one cannot obtain the equations of moti
~2.19! from the Hamilton equations. This is because the E
~2.22! and ~2.23! defining P1 and P2 do not depend on the
generalized velocities, and hence they should be treate
constraints between the canonical variables.
e

s

ry
ry

f

er
il-
a
-
-
e

s.

s.

as

In the simple case where the Berry-phase terms are z
these constraints becomeP15qc , and P250, andH5E.
These suggest that we treat (xc ,qc) as a canonical pair and
forget about the other degrees of freedom. By doing so,
can indeed obtain the equations of motion~2.19! from the
Hamilton equations. Having identified the canonical pa
one can proceed with a formal procedure of quantizat
~‘‘requantization’’!, qc→2 i ]/]xc , to obtain an effective
quantum Hamiltonian. A slightly more general case will
encountered in the case of electromagnetic perturbation
the next section of this article.

When Berry-phase terms are present, constraints~2.22!
and ~2.23! still imply some hidden canonical relations b
tweenxc and qc , but these are entangled in a complicat
manner that cannot be expressed explicitly in general. T
clearly shows the difficulty of the Hamiltonian formalism i
the presence of Berry-phase terms. If one insists on using
Hamiltonian approach, one can employ the method
Lagrange multipliers, which allows the spurious degrees
freedom to be formally treated as independent,32 and obtain
the equations of motion~2.19!. The ‘‘requantization’’ proce-
dure for this case is quite complicated and needs further
vestigation.

The semiclassical quantization, on the other hand, is q
straight forward. In order that stationary states and ene
levels can be talked about, we shall restrict ourselves to s
perturbations. For a wave-packet motion that is regular
is described by closed orbits in the phase space (xc ,qc),
semiclassical energy levels are obtained using the quan
tion procedure33 due to Einstein, Brillouin, and Keller,

R
C
P1•dxc1 R

C
P2•dqc52pFm1

n

4G , ~2.25!

whereC denotes an orbit of constant energyE, m an integer
that labels the eigenvalue, andn the number of caustics tra
versed. With Eqs.~2.22! and~2.23! for P1 andP2, the above
condition reduces to

R
C
qc•dxc52pFm1

n

4
2

G~C!
2p G , ~2.26!

where

G~C!5 R
C
dxc•K uU i ]u

]xc
L 1 R

C
dqc•K uU i ]u

]qc
L

~2.27!

is the Berry phase acquired by the wave packet upon go
round the closed orbit once. The Berry phase correction
the quantization condition made its first appearance
Wilkinson’s work34 on Harper’s equation, in Kuratsuji an
Iida’s work35 on adiabatic nuclear motion, and also recen
in the work of Chang and Niu12 on wave-packet dynamics in
magnetic Bloch bands.

III. ELECTROMAGNETIC FIELDS

So far, our treatment of perturbations has been in gen
terms, and our results are in an abstract form. Their phys
meaning will become clear through the consideration of t
special cases in this and the next section. For a clas
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perturbations for which the Hamiltonian is of the spec
form

H0@ x̂1b1~ x̂,t !,p̂1b2~ x̂,t !#1b3~ x̂,t !, ~3.1!

all the results can be expressed in terms of the unpertu
Bloch wave basis. In this section, we shall consider elec
magnetic perturbations for whichb1( x̂,t)50.

A. The gauge invariant crystal momentum

Let Ĥ0(q) denote the Hamiltonian for the bare crysta
with the eigenstateuu(q)& ~the periodic part of the Bloch
wave! and the band energyE0(q) for a particular band. The
Hamiltonian gets modified by the gauge potenti
@A(x,t),f(x,t)# of an electromagnetic field to

Ĥ5H0@q1eA~ x̂,t !#2ef~ x̂,t !. ~3.2!

This has the form~1.5! and ~3.1!, with the gauge potentials
playing the role of the modulation functions, and hence
local Hamiltonian must have the form

Ĥc5Ĥ0@q1eA~xc ,t !#2ef~xc ,t !. ~3.3!

As eA(xc ,t) is only an additive constant to the crystal m
mentum q, the basis states have the formuu(xc ,q,t)&
5uu(k)&, wherek5q1eA(xc ,t) is the gauge invariant o
mechanical crystal momentum. In terms of the gauge inv
ant crystal momentumk, a number of simplifications can b
obtained. First, the eigenenergy can be written in the for

Ec~xc ,k,t !5E0~k!2ef~xc ,t !. ~3.4!

Second, the gradient correction~2.17! becomes the orbita
magnetization energy of the wave packet,

2M•B, ~3.5!

whereB[curlxc
A(xc ,t) is the magnetic field, and

M5eImF K ]u

]k U3~E02Ĥ0~k!!U]u

]kL GU
k5kc

~3.6!

is the orbital magnetic moment of Bloch electrons. Third,
last three terms of the Lagrangian~2.18! simply become the
single term k̇c•^uu i ]u/]kc&. Finally, the Lagrangian take
the form

L52EM1ef~xc ,t !1 ẋc•kc2eẋc•A~xc ,t !1 k̇c• K uU i ]u

]kc
L ,

~3.7!

whereEM[E0(kc)2M•B.

B. The reciprocal magnetic field and orbital
magnetization energy

The equations of motion can either be derived variati
ally from the above Lagrangian or directly from Eq.~2.19!
derived for the general case in the previous section. T
have the form
l

ed
-

e

i-

e

-

y

ẋc5
]EM

]kc
2 k̇c3V,

k̇c52eE2eẋc3B, ~3.8!

where E[2gradxc
f(xc ,t)2]A(xc ,t)/]t is the electric

field, and

~V!a[ 1
2 eabg~VIkk !bg , ~3.9!

are the components of the vector form of the antisymme
tensorVIkk given by Eq.~2.20!. In Eq. ~3.9! and henceforth,
repeated Cartesian indices are taken to be summed. Bec
V occupies a similar position as the magnetic field in t
equations of motion, it will be called the reciprocal magne
field.

The above equations differ from Eqs.~1.1! in two re-
spects. Firstly, the energyE contains a correction term from
the magnetic moment~3.6! of Bloch electron. This term has
been derived earlier as a first order correction in the theor
Bloch electrons subject to magnetic fields.36 A similar term
has also been found in the theory of electrons in incomm
surate lattices,19,20 and in the theory of wave-packet dynam
ics in magnetic Bloch bands.12 Secondly, the correction term
to the velocity,2 k̇c3V, is the anomalous velocity that wa
predicted to give rise to a spontaneous Hall conductivity
ferromagnetic materials.8,9 In the context of the quantum
Hall effect, the integral of the Berry curvatureVkakb

over the
Brillouin zone was shown to be proportional to the Hall co
ductivity for a full band and to be quantized~Chern’s topo-
logical invariant!.37 Recently, Chang and Niu12 proved this
result semiclassically. It seems more appropriate to call
term Hall velocity than anomalous velocity.

The semiclassical Eq.~3.8! should be invariant under time
reversal, spatial inversion, or certain rotations if these
symmetries of the unperturbed crystal. Such symmetries
pose severe restrictions on the behavior of the recipro
magnetic fieldV and the magnetic momentM as functions
of k. Under time reversal,ẋc , kc , andB change sign while
xc , k̇c , andE are invariant. If the bare crystal is invarian
under time reversal, we must haveV(2k)52V(k), and
M (2k)52M (k), which implies in particular that they mus
vanish atk50. Under spatial inversion,E, xc , kc , and the
time derivatives of the last two change sign whileB remains
unchanged. If the bare crystal has inversion symmetry,
must haveV(2k)5V(k), andM (2k)5M (k). Finally, if
the system is invariant under certain proper rotations,
reciprocal magnetic field and the magnetic moment sho
transform like vectors under these rotations.

For monatomic nonmagnetic crystals, both time rever
and spatial inversion symmetries are present, renderingV
andM null everywhere in the Brillouin zone. However, it i
not entirely justified to ignore these quantities for magne
crystals or nonmagnetic crystals without inversion symme
~such as GaAs!. Investigations have been undertaken to s
whether the presence of the reciprocal magnetic field and
orbital magnetization lead to observable effects.

The Lagrangian~3.7! and the equations of motion~3.8!
were derived earlier by Chang and Niu12 for perturbed mag-
netic Bloch electrons in two dimensions in the gauge wh
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f(x,t)50. They used a wave packet that gauges away
vector potential locally so that their magnetic Bloch wa
vector is the same as the corresponding gauge invariant c
tal momentumq1eA(xc ,t)5k here. Their derivation was
less general in that it is only for two dimensions and mo
general in that it provides a description of electrons in ra
nal magnetic fieldsB0, for which the flux through a unit cel
equals a rational fraction@;O(1)# of the flux quantum
(h/e). However, our formalism can easily be generalized
this situation, for a more general three-dimensional case
assuming a background of constant rational magnetic fi
B0. All we need to do is to interpretq as the wave vector o
magnetic Bloch states defined within a reduced Brillou
zone ~the magnetic Brillouin zone!,12 and to replaceB in
~3.8! by B2B0.

C. Peierls substitution and Landau levels

It follows from the Lagrangian~3.7! that the canonica
momenta are given by

P15kc2eA~xc ,t !, ~3.10!

P25 K uU i ]u

]kc
L , ~3.11!

and the Hamiltonian byH5EM(kc)2ef(xc ,t). In the ab-
sence of the Berry-phase term~3.11!, we may obtain the
Hamiltonian as a function of the canonical pair (xc ,P1) as

H5EM@P11eA~xc ,t !#2ef~xc ,t !. ~3.12!

The quantization of this Hamiltonian by settingP15
2 i ]/]xc amounts to the Peierls substitution. However, it
not clear how to deal with the case with a Berry-phase te
using the Hamiltonian approach.

When only a uniform magnetic field is present, the tw
equations of motion~3.8! can be combined into a single on
for thek-space motion. It is evident that ak-space orbit must
lie in a plane normal toB and must be on a constant ener
surface ofE(k). If such an orbit is closed, known as a cycl
tron orbit, the EBK formula yields

1

2
B̂• R

C
kc3dkc5

euBu
\ Fm1

1

2
2

G~C!
2p G , ~3.13!

where

G~C!5 R
C
dk• K uU i ]u

]kc
L ~3.14!

is the Berry phase accumulated by the wave packet u
completing a circuit along the loopC, and we have restore
the Planck constant. The left-hand side of Eq.~3.13! is just
thek-space area enclosed by the orbitC. As this phase influ-
ences energy levels, it affects the density of states. I
shown in Ref. 12 thatG plays an important role in determin
ing the spectral splitting pattern of magnetic bands.

D. Zak phase and Wannier-Stark ladder

In this subsection, we restrict our discussion to one
mension for simplicity. The semiclassical motion under
e

s-

e
-

o
y

ld

n

is

i-

uniform electric field is described by the HamiltonianH
5E0(kc)1eExc . It follows from the boundedness and th
periodicity of the band energy that the motion in real spac
also bounded and periodic. Such a closed motion in the
space is known as Bloch oscillations. In the reduced z
scheme, the motion is closed also in the phase space (xc ,kc),
which is a cylinder. Quantizing this motion according to E
~2.25! gives the condition

2E
2p/a

p/a

dkcxc~kc!52pS m1
n

4
2

G

2p D , ~3.15!

wherea stands for the lattice constant, and

G5E
2p/a

p/a

dkK uU i ]u

]kL ~3.16!

is known as the Zak phase,38 andxc(kc) is the constant en-
ergy curve for the mth energy level defined byWm
5E0(kc)1eExc , m being an integer. Averaging this expre
sion over the orbit, we obtain from Eq.~3.15!

Wm5 Ē01eEaS 2m2
n

4
1

G

2p D , ~3.17!

whereĒ0 is the average of the band energy over the Brillou
zone, andm is any integer between2` to `, since the mean
value ofxc can be anywhere on the cylinder. This spectru
known as the Wannier-Stark ladder, was first derived
Wannier39 without the Berry-phase term. The correction w
due to Zak, who later interpreted it as a Berry phase.40

IV. DEFORMATIONS IN CRYSTALS

We shall now come to deformational perturbations.
turns out that the model Hamiltonian for a deformed crys
also has the special form~3.1! with b2( x̂,t)50, which is
H0@ x̂1b1( x̂,t),p̂#1b3( x̂,t), and hence all the correction
are expressible in terms of the undeformed basis for this c
too.

A. The translated crystal basis

A deformed crystal with atomic displacements$ul% may
be described by the Hamiltonian41,42

H5
p̂2

2m
1V0@ x̂2u~ x̂!#1sab~ x̂!Vab@ x̂2u~ x̂!#, ~4.1!

where u(x) is a smooth displacement field43 satisfying
u(Rl1ul)5ul , and sab5]ua /]xb is the unsymmetrized
strain. The justification of the above Hamiltonian and an e
plicit expression for the last term are given in Appendix
While the last term of the Hamiltonian, being proportional
the strain, can be treated perturbatively, the other terms
of the form Eq.~1.5!, with the displacement field playing th
role of the modulation function. The local Hamiltonian
then given by

Ĥc5
p̂2

2m
1V0@ x̂2u~xc!#. ~4.2!
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This is nothing but the Hamiltonian of an undeformed crys
shifted in position by the displacement field at the center
the wave packet,u(xc). The band energy is therefore th
same as that of the undeformed crystal,E0(k), and the eigen-
states are the translated Bloch waves$ck@x2u(xc)#%.

Our wave packet will thus be formed out of these tra
lated Bloch states of the undeformed but translated crys
This procedure is valid so long as the strain is weak, so
the variation of the displacement within the spatial width
the wave packet is small. When the first-order correction
the Hamiltonian are taken into account, our method sho
give the same physical results~to the same order! as obtained
using a strained basis. However, our formulation should
simpler and easier to interpret, because it avoids the ne
sity of transformation between the lab and lattice frames
reference.

Although the small strain regime covers the vast majo
of practical situations, it is some times necessary to cons
the effect of large strains. In the case where a large unifo
and static strain is superposed on top of a small vary
strain, our formulation can still be applied; one only needs
interpret the basis as that of the uniformly strained crys
There can be a third possibility in which the strain variati
is large over large distances but is small over the size of
wave packet. In this case, it is more appropriate to us
strained local basis, that is, a basis of a homogeneo
strained crystal with the strain value given by the act
strain at the center of the wave packet.

B. The crystal deformation potential

The wave-packet energy is obtained by summing the
pectation values of the local Hamiltonian~4.2!, the gradient
correction~2.15!, and the last term of Eq.~4.1!. Because of
the functional form of the basis states, we have

^CuĤcuC&5E0~kc!, ~4.3!

while the gradient correction becomes

2msab~xc!@^v̂av̂b&2^v̂a&^v̂b&#. ~4.4!

The angular brackets in the above expression represen
expectation value of the enclosed operators in the Bloch s
at k5kc , andv̂a5]Ĥ(k)/]ka is the velocity operator. As is
well known, ^v̂a&5]E0 /]ka[va is the group velocity of
Bloch electrons. As for the last term of the Hamiltonia
~4.1!, we may write, in accordance with our approximati
@Eq. ~2.10!#,

^Cusab~ x̂!V̂abuC&'sab~xc!^V̂ab
c &, ~4.5!

whereV ab
c 5Vab@(x2u(xc)#. We again write the energy o

the wave packet in the form

E5E0~kc!1DE~xc ,kc!, ~4.6!

where, this time, the correctionDE, which is to be called the
deformation potential for the wave packet,44 has two contri-
butions@Eqs.~4.4! and~4.5!#. As the latter is proportional to
the local deformation, it may be written in the form

DE5sab~xc!Dab
w ~kc!, ~4.7!
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Dab
w 5m@vavb2^v̂av̂b&#1^V̂ab

c &. ~4.8!

We note that this quantity vanishes in the free-electron li
(V0→0), which is quite satisfying from a physical point o
view: a wave packet should not feel the effect of a deform
tion of the lattice in the absence of electron-lattice couplin

Further, from the differential band structure45 under a uni-
form straineJ,

E8~k8!2E0~k!5eabDab
b ~k!5eab@2m^v̂av̂b&1^V̂ab

c &#,

~4.9!

wherek85( 1I1 sI)21
•k DE can be determined by the rela

tion

Dab
w 5Dab

b 1mvavb , ~4.10!

according to Eqs.~4.8! and ~4.9!. The same expression ha
been obtained for the deformation potential for electro
phonon interaction at long wavelengths, showing the equ
lence of the latter with our wave-packet deformation pote
tial ~4.7!.46

C. Equations of motion and lattice tracking

Before we proceed further, let us first make the displa
ments time dependent,$ul(t)%, as we are discussing the dy
namical aspect. Accordingly, we extend the results of
previous subsections with the replacementsu(x)→u(x,t)
andsab(x)→sab(x,t), and with the Bloch wave basis give
by the states$ck@x2u(xc ,t)#%.

As for the Lagrangian, the functional form of the bas
states imply that the last two terms of its general express
~2.18! become

K uU i ]u

]xc
L 5 f a

]ua

]xc
, K uU i ]u

]t L 5 f a

]ua

]t
, ~4.11!

where

f~k!5
m

\

]E0

]k
2\k, ~4.12!

in which \ has been restored. The reader is warned that
displacement field (u or ua) should not be confused with th
periodic part of the Bloch state,uu&. The quantityf(k), being
the difference between the group momentum of a Bloch e
tron and the momentum of a free electron, denotes that
of the momentum arising from the lattice interaction alone
has the desired property of vanishing in the free elect
limit, where the lattice deformation should not be felt. B
substituting Eq.~4.11! into Eq. ~2.18!, we obtain

L52E1 ẋc•kc1 k̇c• K uU i ]u

]kc
L 1u̇•f~kc!, ~4.13!

whereu̇ denotesdu/dt. The last term is new and represen
the rate of change of the Berry phase due to lattice track
We shall see below that there is a tendency for the lattice
drag the electron with its displacement motion, hence
word ‘‘tracking.’’ This term also gives rise to the Burger
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vector when integrated around a dislocation, so in a sen
keeps track of the lattice position.

Similarly, the Berry curvatures in Eq.~2.19! take values

Vkaxb
52Vxbka

5
]ug

]xcb

] f g

]kca
,

V tka
52

] f g

]kca

]ug

]t
, Vxaxb

5V txb
50, ~4.14!

and by expressions~4.6! and ~4.7! for E, the equations of
motion become

ẋca5
]E0

]kca
1sbg

]Dbg
w

]kca
2~ k̇c3V!a2u̇b

] f b

]kca
, ~4.15!

k̇ca52Dbg
w ]sbg

]xca
2sba

] f b

]kcg
k̇cg . ~4.16!

In the above equations, the semiclassical force has
contributions: the first term arises from the deformation p
tential, and the second term, which arises from the lat
tracking term, will be called the tracking force. For unifor
strains the semiclassical force vanishes, so thatkc is a good
quantum number in such a case.

The velocity has three contributions in addition to t
usual term given by the gradient of the band energy. T
second term corresponds to the group velocity arising fr
the deformation potential, and the third term, as was s
earlier in Eq.~3.8! of Sec. III, is the Hall velocity. The las
term arises from the lattice tracking term of the Lagrangi
and will be similarly called the tracking velocity. To unde
stand this term better, let us rewrite the term using Eq.~4.12!
as

u̇a2mu̇b

]2E0

]kcb]kca
. ~4.17!

In the free-electron limit, where electrons and lattice d
couple, the adiabatic velocity vanishes identically, for

]2E0

]kca]kcb
→

dab

m
. ~4.18!

On the other hand, when the band under consideration is
the second term of Eq.~4.17! averaged over the band is zer
implying a complete adiabatic following of the lattice m
tion, which confirms an earlier result on adiabatic parti
transport.47

D. Dislocations and Berry phase

Our formalism is also applicable to dislocation stra
fields, which are well defined except in a region of a fe
atomic spacings around the line of dislocation. Outside
region, the displacement fieldu(x) is a smooth but multiple
valued function. The change in the displacement field alo
a closed loop around the line of dislocation,Du
5*C dxa]u/]xa5b, is known as the Burgers vector;
equals one of the Bravais lattice vectors. On account of
multiple-valuedness, a wave packet of incident wave vec
k taken around the line of dislocation acquires a Berry ph
it

o
-
e

e

n

,

-

ll,

is

g

is
r
e

G5 R
C
dxc•K uU i ]u

]xc
L 5 R

C
du•f~kc!'b•f~k!,

~4.19!

where we have assumed^uu i ]u/]k& to be zero48 and the
corrections arising from the changes in the wave vector to
negligible. In other words, the action integral of the last te
of Eq. ~4.13! around a dislocation gives us a Berry phase t
is proportional to the Burgers vector.

Note that this Berry phase is independent of the path
long as it encloses the dislocation line. What we have i
situation similar to the Aharonov-Bohm effect,49 with the
dislocation playing the role of the solenoid, and the Be
curvatureVxx the role of the magnetic field. Just as in th
case of the solenoidal field,Vxx50 everywhere except fo
the core region where it should be taken to be singular.

The Berry phase~4.19! affects the scattering of electron
by a dislocation,50 and our result can be used to compute t
shift in the scattering fringe pattern due the Berry phase. T
intensity distribution has interference terms of the fo
cos(u1G) due to each pair of paths along the two sides of
dislocation, whereu is given by the path length differenc
per wave length of the incident beam. The Berry phase
hence the shift are maximal when the incident wave vectok
is such thatf(k)5mv2\k is parallel to the Burgers vecto
b. To fix ideas, let us make the assumption thatfik. For an
edge dislocation, whereb lies in the normal plane of the
dislocation axis, we expect that maximal effect of the Be
phase is seen when the direction of the incident beam
perpendicular to the axis and coincide with the direction
b. For a screw dislocation, the maximal Berry phase occ
whenk is parallel to the axis along whichb lies. However,
since the beam must pass the dislocation in order to prod
the interference pattern, the maximal Berry-phase eff
should actually occur whenk is along some finite angle
away from the axis.

The Berry phase can also affect the electron diffract
pattern of a deformed crystal with or without a dislocatio
When an electron beam of wave vectork is sent through a
crystal, it propagates as Bloch waves in different bands
the crystal, all with the same Bloch wave vector, which
equal tok modulo a reciprocal lattice vector. Because of t
energy differences of the bands, the Bloch waves grow ou
phase from one another as they propagate. Therefore, w
they exit the crystal, they recombine to produce not only
incident beam but also the diffracted beams. For a deform
crystal, the phase change of a Bloch wave is given by
time integral of the Lagrangian~4.13!. The contribution from
the ẋc•kc term may be dropped, because it is independen
the band index. For weak strains, we may also neglect
deformation potential and the third term in Eq.~4.13!. The
dominant correction to the dynamical phase arises from
last term:Du•f(k), whereDu is the change in the displace
ment field over the path of propagation of the Bloch wav
To show the soundness of these general ideas, we have
culated the diffraction pattern from a thin slab of crys
containing a screw dislocation, correctly reproducing ear
experimental and theoretical results.51
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V. SUMMARY

We provide a unified framework for wave-packet dyna
ics of electrons in slowly perturbed crystals, which consi
of constructing a wave packet using the Bloch states belo
ing to a single band of the local periodic Hamiltonian, o
tained by replacing the perturbations by their value at
center of the wave packet, and deriving its dynamics i
general form, based on the time-dependent variational p
ciple. We derive the wave-packet energy up to first orde
the gradient of the perturbations and all kinds of Berry-ph
corrections to the semiclassical dynamics and the quan
tion rule. Also, we give a discussion of a formal quantizati
procedure through the Hamiltonian formalism with the sem
classical dynamics as the starting point.

We illustrate our framework with two cases of perturb
tions. For electromagnetic fields, previous results of orb
magnetization and anomalous velocity are obtained pu
from a single-band point of view. For deformations in cry
tals, we obtain a Berry-phase term in the Lagrangian du
lattice tracking, which gives to the new terms of tracki
velocity and force in the equations of motion of the wa
packet. For multiple-valued displacement fields in the pr
ence of dislocations, this term manifests as a Berry ph
which we show to be proportional to the Burgers vec
around each dislocation. Also, we relate the deformation c
rection to the wave-packet energy to the shift in band ene
under uniform strain, which turns out to be the same as
deformation potential for electron-phonon interaction at lo
wavelengths.

The combined effects of electromagnetic and deform
tional perturbations are yet to be studied. Given that the p
turbed Hamiltonian is of the form Eq.~3.1!, the equations of
motion for the wave-packet dynamics can be completely
termined in terms of the properties of the unperturbed cry
and the fields of perturbations. Such a theory will provide
basis for electron transport in deformed crystals and sho
be pursued in the near future.
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APPENDIX A: THE GRADIENT CORRECTION DE

In the derivation below, the band indices for the Blo
states and the energy bands have been restored.

We begin with the matrix elements of the positio
operator,10

^cnqux̂ucn8q8&5F i
]

]q
dnn81 K unU i ]un8

]q L Gd~q82q!,

~A1!

and the identity
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K cnqU ]Ĥc

]xc
Ucn8q8L 5d~q2q8!K unU]Ĥc

]xc
Uun8L

5d~q2q8!F ~Ecn2Ecn8!K ]unq

]xc
Uun8qL

1
]Ecn

]xc
dnn8G , ~A2!

which are easily verified.
From Eqs.~A1!, ~A2!, and the completeness relation

(
n
E d3qucnq&^cnqu5 1̂, ~A3!

we can show that

K cnqU ]Ĥc

]xc
• x̂Ucnq8L

5
]Ecn

]xc
•^cnqux̂ucnq8&

1 i K ]unq

]xc
U•~Ecn2Ĥc!U]unq

]q L d~q2q8!. ~A4!

If we assume that the wave packet is constructed from
Bloch states of thenth band, we have

K CU]Ĥc

]xc
UCL 5E d3quau2

]Ecn

]xc
5

]Ecn

]xc
U

q5qc

, ~A5!

as only the second term of Eq.~A2! contribute to the expec
tation value. By the same token, from Eqs.~A5! and ~A4!,
we obtain

K CU ]Ĥc

]xc
•~ x̂2xc!UCL 5 i K ]unq

]xc
UO~Ecn2Ĥc!U]unq

]q L U
q5qc

.

~A6!
Hence, the expectation value~2.17! of Eq. ~2.15! is just half
of the sum of~A6! and its complex conjugate.

APPENDIX B: THE DEFORMED CRYSTAL POTENTIAL

Given the atomic displacements$ul%, which could be due
to either strain or rotations, let us denote the deformed c
tal potential regarded as a function of the coordinates of
electron and the equilibrium atomic positions byV(x;$Rl
1ul%). If the displacements are small, we can expand
potential in powers of$ul% and do away with the perturbatio
theory. When they are large, we have to adopt a differ
technique. For this purpose, we introduce a smooth displa
ment fieldu(x) such thatu(Rl1ul)5ul , and write the po-
tential as

V@x2u~x!;$Rl1ul2u~x!%#, ~B1!

where we have used the invariance property of a poten
under a simultaneous translation of electronic and ato
positions. We may now expand the potential in powers
ul2u(x) as
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V0@x2u~x!#1(
l

@ul2u~x!#aVla1••• . ~B2!

whereV0(x2u)[V(x2u;$Rl%) is the potential used in the
deformable ion model in which the approximated potentia
x equals the undeformed crystal potential at the undeform
electron coordinatex2u(x), and

Vla[
]V@x2u~x!;$Rl%#

]Rla
5Vla@x2u~x!2Rl #. ~B3!

The equality in the last equation is meant to suggest that
center of fall off of Vla is at the zero of the expressio
x2u(x)2Rl , viz., x5ul1Rl .

The expansion~B2! is meaningful only ifVla decreases
sufficiently rapidly with increasingux2u(x)2Rl u. This con-
ma

.

or
lic
ys

nt
t
d

e

dition holds for metals because of Coulomb screening; it
been argued thatVla is short ranged52 also for nonpolar
semiconductors and insulators.

Under such a condition, we may write

ula5ua~x1Rl1ul2x!

'ua~x!1~Rl1ul2x!bsab~x!'ua~x!

1@Rl1u~x!2x#bsab~x!, ~B4!

whence the summation in Eq.~B2! can be put into the form
sabVab with

Vab@x2u~x!#5(
l

@Rl1u~x!2x#bVla . ~B5!
as,
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