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Two electrons in one-dimensional nanorings: Exact solutions and interaction energies
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Exact series solutions for two electrons in one-dimensional nanorings have been obtained by expanding the
Coulomb potential into power series and solving the corresponding equations in different regions. Electronic
structures and interaction energies of two electrons in nanorings with different sizes have been calculated. The
quantum-size effect of interaction energies and energy levels and the size-dependent magnetic oscillations of
two-electron spectra have been revealed.
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I. INTRODUCTION

Various nanometer structures are fabricated endlessl
nanostructure technology develops rapidly. They are c
rently under intense study because of interests in physic1–4

and in technological applications. Quantum dots are one k
of useful quantum structures which can be fabricated by
rectly self-organized growth.5 In quantum dots, multifarious
quantum effects have been observed experimentally an
large number of theoretical investigations about electro
structures and related magnetic and optical properties h
been performed to explain the experiments.6–12 Compared
with quantum dots, semiconductor quantum rings belong
another kind of topological structures in which more ri
phenomena can be clearly shown. Very recently, the rea
tion of nanoscopic semiconductor rings inside a comple
field-effect transistor~FET! structure have been demon
strated by Lorke and collaborators,4,13 using the self-
assembly techniques. The outer radius of the rings is betw
30 and 70 nm and the inter radius is about 10 nm. T
nanoscopic rings are in the true quantum limit and qu
different from the conventional submicron mesosco
structures.14–23

Electron-electron interaction and correlation effects
shown to play an important role in electronic structures
both quantum dots and rings. The exact quantum levels
interaction energies of two electrons confined in quant
dots have been studied, and the size and shape effects
been clearly shown.8 The energy levels and FIR spectro
copy of two-electron nanoscopic rings with a realized wid
have been studied.15 Many body wave functions and spi
order-disorder transition of realistic 2D QR’s with differe
radii have been calculated and studied, and some of the
ferences and analogies between QD’s and QR’s have
been discussed.16

According to the realistic physical situation of two
electron rings of GaAs with larger radius (;480 nm) and
narrower width (;20 nm), an adiabatic approximation a
lows one to decouple the radial motion from the angu
motion, and then it is reasonable to use the mean Coulo
potential to describe the electron-electron interaction.17,18

The mean Coulomb potential can be expanded into a po
0163-1829/2003/68~4!/045324~7!/$20.00 68 0453
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series of the deviations (g2gQ) from the quasiequilibrium
valuesgQ as follows:

e2

4pe0esRA2@12cos~g!#

'
e2

8pe0esR
1 (

Q52`

`
meV

2R2

4

3~g2gQ!2Q~p2ug2gQu!,

where V25e2/(16pe0esmeR
3) and Q(x) is the Heaviside

unit step function. What was mentioned above makes
arrive at analytical solutions of the wave functions a
the energy spectra, and then the optical absorption
the differential cross section of resonant inelastic light sc
tering can be calculated and the selection rules are cle
shown.18

In the limit of a narrow-width nanoring, i.e., one
dimensional~1D! quantum ring~QR!, as far as we know, the
exact solutions have not been obtained, and the size eff
on the interaction energies and electronic structures have
been studied. Therefore, it is interesting not only fro
a physical point of view but also from a mathematical po
of view to find out the exact solutions of two-electro
1D QR’s. In order to investigated the size and interact
effects, exact energy levels and interaction energies
two electrons in 1D QR’s are obtained by expanding
Coulomb potential into power series and using the ex
series solutions of the corresponding equations in differ
regions in this paper. Based on them, the size-depen
electronic structures and magnetic oscillations have b
discussed in detail.

The remainder of this paper is organized as follows. In
next section, we introduce a model Hamiltonian and defi
two-electron interaction energies. In Sec. III, exact series
lutions are obtained and the difference of interaction energ
between singlet and triplet states is confirmed. Main res
are shown and discussed in Sec. IV, followed by a summ
in Sec. V.
©2003 The American Physical Society24-1
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II. MODEL HAMILTONIAN AND INTERACTION
ENERGIES

The HamiltonianH of two interacting electrons confine
in a 1D QR with a magnetic fluxf threading through its
interior is as follows:

H52
1

R0
2 S d

dw1
1 if D 2

2
1

R0
2 S d

dw2
1 if D 2

1
w

R0usin@~w12w2!/2#u
, ~1!

where the plane polar coordinates are used.R0 is the radius
of the circular ring, and the third term withw51 is the
interaction between two electrons confined in the ring. H
we use the effective atomic units, in which the effective R
dberg Ry* 5me* e4/2\2(4p«0« r)

2, the effective Bohr radius
aB* 54p«0« r\

2/me* e2 andf052p\c/e are taken to be the
energy, length, and magnetic flux units, respectively.
GaAs materials, for example, Ry* 55.8 meV, aB* 510 nm,
andf0 included by a 1D ring with a radiusaB* corresponds
to the magnetic field 13.18 T.

The HamiltonianH can be separated into center-of-ma
and relative-motion terms and rewritten as

H5Hc1Hr ~2!

with

Hc52
1

2R0
2 S d

dQ
1 i2f D 2

~3!

and

Hr52
2

R0
2

d2

dw2
1

w

R0usin~w/2!u
, ~4!

whereQ5(w11w2)/2 andw5w12w2. This separability al-
lows us to write two-particle wave functions in the for
F(w1 ,w2)5J(Q)C(w). Noting that F(w1 ,w2)5F(w1
12p,w2)5F(w1 ,w212p)5F(w112p,w212p) we can
get the period ofJ(Q) andC(w) to be 2p and 4p, respec-
tively, and the relation as follows:

JM~Q!Cm,s~w!5JM~Q1p!Cm,s~w62p!. ~5!

The eigenvalues and eigenfunctions of Eq.~3! are given by

Ec~M !5
~M12f!2

2R0
2

~6!

and

JM~Q!5
1

A2p
exp~ iM Q! ~7!

with M50,61,62,63, . . . . For thespin singlet (s50) and
triplet (s51) states, the eigenvalues and eigenfunctions
Eq. ~4! without the interaction term (w50) are given by
04532
e
-

r

s

f

Er~m,s,w50!5
m2

2R0
2

~8!

and

Cm,s~w!55
1

A2p~11dm,0!
cos~mw/2! if s50,

1

A2p
sin~mw/2! if s51,

~9!

wherem50,1,2,3, . . . for singlet states andm51,2,3, . . .
for triplet states.

Based on Eqs.~5!, ~7!, and ~9!, the relation (21)M1m

51 is obtained, and thenM1m should be even.M ,m, and
s can be used to label quantum levels of two electrons w
and without the interaction term in 1D QR’s
cos(mw/2)/A2p(11dm,0) and sin(mw/2)/A2p are, respec-
tively, changed into the other even and odd functions as
interaction term is included.

The eigenenergiesE0(M ,m,s) of H with w50 are

E0~M ,m,s!5Ec~M !1Er~m,s,w50!5
~M12f!21m2

2R0
2

,

~10!

while the eigenenergiesE(M ,m,s) of H with w51 are given
by

E~M ,m,s!5Ec~M !1Er~m,s!5
~M12f!2

2R0
2

1Er~m,s!,

~11!

where the eigenvaluesEr(m,s) and the corresponding eigen
functions of Eq.~4! can be obtained by expanding the pote
tial term into power series and using the exact series s
tions with proper boundary conditions in the next sectio
For the sake of convenience, we define the electron-elec
interaction energiesEin(M ,m,s) as the difference betwee
E(M ,m,s) andE0(M ,m,s), i.e.,

Ein~M ,m,s!5E~M ,m,s!2E0~M ,m,s!5Er~m,s!2
m2

2R0
2

~12!

which are independent onM.

III. EXACT SOLUTIONS

In order to obtain Er(m,s), we should solve the
Schrödinger-like equation

HrCm,s~w!5Er~m,s!Cm,s~w! ~13!

which can be simplified as follows:

d2C~w!

dw2
2V~w!C~w!50 ~14!

with
4-2
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V~w!5
R0

2usin~w/2!u
2

R0
2

2
Er~m,s!. ~15!

It is only needed to solve the equation in the region
@0,2p), and Cm,s(w) in other regions can be obtained b
using Eqs.~5! and ~7!, i.e.,

Cm,s~w!5~21!MCm,s~w62p!. ~16!

It should be noted that zero and 2p are regular singular
points of V(w). It can be, respectively, expanded into La
rent and Taylor series around the regular singular pointw r
50 and 2p and at the normal pointsw rP(0,2p) up to the
Kth order in the form

V~w!55 (
i 521

K

ui~w2w r !
i for w r50 and 2p,

(
i 50

K

v i~w2w r !
i for w rP~0,2p!.

~17!

For the sake of convenience,R points including two regular
singular points are taken. The regular singular points co
spond tor 51 andR, andw r with r 52,3, . . . , andR21 are
normal points. For example, the Laurent series around z
and the Taylor series atp are, respectively, as follows:

V~w!5R0w212
R0

2

2
Er~m,s!1

1

24
R0w1

7

5760
R0w3

1
31

967680
R0w51

127

154828800
R0w71••• ~18!

and

V~w!5
1

2
R02

R0
2

2
Er~m,s!1

1

16
R0~w2p!2

1
5

768
R0~w2p!41

61

92160
R0~w2p!61••• .

~19!

It should be pointed out that the maximal error of t
series expansions up to theKth order can be extremely sma
rie

n

04532
f

e-

ro

as long as a proper numberR and the corresponding pos
tions of series expansion points (w1 ,w1 , . . . ,wR) are cho-
sen. For instance, the maximal error ofV(w)/R0 in the whole
region@0,2p) is less than 1.0E214 whenK andR are equal
to 23 and 5, respectively. It can be seen that a higher a
racy required in numerical calculations is easily reached
increasing theR or the K without more computation time
consumption.

Once the series expansion forms ofV(w) in different re-
gions are obtained, the exact series solutions can be fou8

In the regionw→0 or w→2p we have an exact series solu
tion, which has a finite value atw r50 or 2p as follows:

C~w!5Ar~w2w r ! (
n50

`

an
r ~w2w r !

n, ~20!

whereAr is a constant anda0
r is equal to 1. Noting thatan

r is
equal to zero asn is equal to a negative integer, the otheran

r

can be determined by the following recurrence relation:

an
r 5

1

n~n11! (
i 521

min(K,n22)

uian2 i 22
r . ~21!

In order to match the solutions of Eq.~20! with w r50 and
w r52p, we give T solutions aroundw1 ,w2 , . . . ,w t , . . . ,
and wT , which are the proper points for solving Eq.~14!
exactly. The solution of uniformly convergent Taylor seri
aroundw t(t51,2, . . . ,T) is written as follows:

C~w!5Ct (
n50

`

cn
t ~w2w t!

n1Dt (
n50

`

dn
t ~w2w t!

n, ~22!

whereCt andDt are constants,c0
t andd1

t are equal to 1, and
c1

t andd0
t are equal to 0. Thecn

t anddn
t can be determined by

the recurrence relations

cn
t 5

1

n~n21!~w t2w r !
H 2~n21!~n22!cn21

t

1 (
l 50

min(K11,n22)

YlCn2 l 22
t J , ~23!

whereYl are related to the expanding pointw r and the cor-
responding coefficients in Eq.~17! as follows:
Yl55 (
i 5 l 21

K
~ i 11!!

l ! ~ i 2 l 11!!
ui~w t2w r !

i 2 l 11 for w r50 or 2p,

(
i 5max(0,l 21)

K
~ i 11!!

l ! ~ i 2 l 11!!
v i~w t2w r !

i 2 l 11 for w rP~0,2p!.

~24!
i-
The recurrence relations ofdn
t are similar to those ofcn

t .
Using the matching conditions between the exact se

solutions at the proper pointsw t* P@w t ,w t11#, in general,
w t* 5(w t1w t11)/2, and the 232 transfer matrices, we ca
s
easily deduce the equation for eigenenergies of Eq.~13!.
Both eigenenergiesEr( j ) and wave functionsC j (w) in
@0,2p! with j ( j 50,1,2,3, . . . ) nodes are obtained numer
cally. It should be pointed out thatT>R22 and, in general,
4-3
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T is much larger thanR and that in numerical calculations th
largerT is taken, the less terms of the exact series soluti
are required.

Because V(w) is symmetrical about w5p, we
have C j (w1p)5(21) jC j (2w1p), i.e., C j (w)
5(21) jC j (2p2w). Then we can get C j (w)
5(21)M1 jC j (2w) with use of Eq.~16!, and we haveM
1 j to be even and odd for singlet and triplet states, resp
tively. Noting that Er(m,0)5Er(m11,1) and that
Ein(M ,m,0)5Er(m,0)2m2/2R0

2 and Ein(M61,m11,1)
5Er(m11,1)2(m11)2/2R0

2, we have

FIG. 1. Normalized total energiesẼ(M ,m,s) of two electrons
versus R0. The quantum numbers ofa,b,c, . . . ,p,q states are
listed in Table. I.
04532
s

c-

Ein~M ,m,0!2Ein~M61,m11,1!5
m11/2

R0
2

. ~25!

IV. RESULTS AND DISCUSSION

We have performed numerical calculations for energy l
els E(M ,m,s) of two electrons in 1D QR’s with differen
R0. For the sake of convenience, the normalized energy
els Ẽ(M ,m,s) which areE(M ,m,s) multiplied by R0

2 are

used. AsR0 changes from 0.1aB* to 20aB* , Ẽ(M ,m,s) in-
crease and the level order varies greatly as shown in Fi
and Table I. In Fig. 1~a!, the lowest intersection of two level
Ẽ(0,2,1) and Ẽ(2,0,0), i.e., Ẽ(0,2,1)5Ẽ(2,0,0)
54.1Ry* aB*

2 with different spin can be found atR0

51.3aB* , and there are much more intersections of high
levels with same or different spin in Fig. 1~b!. Those inter-
sections show the quantum size effect induced by
electron-electron interactions.

For a better understanding of the quantum size effect,
electron-electron interaction energiesEin(M ,m,s) defined by
Eq. ~12! are studied. For the sake of clearness, the norm
ized interaction energiesẼin(M ,m,s)5Ein(M ,m,s)R0

2 are

introduced. As mentioned aboveẼin(M ,m,s) in which M
1m must be even are independent ofM. As shown in Fig. 2
and Table II,Ẽin(M ,m,0) andẼin(M61,m11,1) approach
m1 1

2 and zero asR0 becomes small, and it is in agreeme

TABLE I. Exact energy levelsẼ(M ,m,s) of two electrons in 1D
QR’s with differentR0. The level sequences are in order of increa
ing magnitude. For the sake of convenience, the short nota
about quantum numbers and spin, i.e.,a, b, c, etc., in the order of
increasing energy value under very strong confined condition
R0→0, is used to show the change of the level order.

R0(aB* ) 1 4 20

a: Ẽ(0,0,0) (a) 1.73174 (a) 5.18474 (a) 22.40328

b: Ẽ(61,1,1) (b) 2.23174 (b) 5.68474 (b) 22.90328

c: Ẽ(0,2,1) (c) 3.61722 (d) 7.18474 (d) 24.40328

d: Ẽ(62,0,0) (d) 3.73174 (c) 7.91615 (h) 26.90328

e: Ẽ(61,1,0) (e) 4.11722 (e) 8.41615 (c) 27.54199

f : Ẽ(62,2,1) ( f ) 5.61722 (h) 9.68474 (e) 28.04199

g: Ẽ(0,2,0) (h) 6.23174 (f ) 9.91615 (f ) 29.54199

h: Ẽ(63,1,1) (g) 6.38133 (g) 11.40424 (m) 30.40328

i : Ẽ(61,3,1) ( i ) 6.88133 (i ) 11.90424 (j ) 32.04199

j : Ẽ(63,1,0) ( j ) 8.11722 (j ) 12.41615 (g) 33.36149

k: Ẽ(62,2,0) (k) 8.38133 (m) 13.18474 (i ) 33.86149

l : Ẽ(0,4,1) (m) 9.73174 (k) 13.40424 (k) 35.36149

m: Ẽ(64,0,0) ( l ) 10.07614 (l ) 15.70729 (p) 35.54199

n: Ẽ(61,3,0) (n) 10.57614 (o) 15.90424 (o) 37.86149

o: Ẽ(63,3,1) (o) 10.88133 (p) 15.91615 (l ) 39.89374

p: Ẽ(64,2,1) (p) 11.61722 (n) 16.20729 (n) 40.39374

q: Ẽ(62,4,1) (q) 12.07614 (q) 17.70729 (q) 41.89374
4-4
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with Eq. ~25!. All values ofẼin(M ,m,0) are larger than thos
of Ẽin(M 8,m8,1) atR050.1aB* , and the situation is change

as R0 increases. Ẽin(M61,m11,s) are larger than
Ẽin(M ,m,s) and their differences are much larger for lar
R0. It is worthwhile to point out that the crossover betwe
Ẽin(M ,m,0) and Ẽin(M 8,m8,1) can appear asR0 changes
from 0 to a finite value. The behavior of the interaction e
ergies of 1D QR’s is quite different from that of 2D QD
with parabolic potentials,8 in which the normalized interac
tion energies decrease with increasing the relative ang
moment. What mentioned above can be understood from

FIG. 2. Ẽin(M ,m,s) versusR0. The part of solid circles is in-
teraction energies shown in Table II, and the lines are obtained
nonlinear fitting with parameters in Table III. The order

Ẽin(M ,m,s) at R0510aB* is noted in the figure.

TABLE II. Exact interaction energiesẼin(M ,m,s) of two elec-
trons in 1DQR’s with differentR0.

R0(aB* ) 0.1 1.0 10

Ẽin(0,0,0) 0.626809508 1.731743163 11.75359702

Ẽin(1,1,0) 1.668829593 3.117217611 15.10196848

Ẽin(0,2,0) 2.694483873 4.381327404 18.15519236

Ẽin(1,3,0) 3.712839318 5.576142929 20.95569979

Ẽin(0,4,0) 4.727105767 6.728294117 23.54045018

Ẽin(1,5,0) 5.738766402 7.852265289 25.94128634

Ẽin(0,6,0) 6.748623604 8.956505108 28.18533850

Ẽin(1,7,0) 7.757159619 10.04627088 30.29561158

Ẽin(1,1,1) 0.126809508 1.231743163 11.25359702

Ẽin(0,2,1) 0.168829593 1.617217611 13.60196848

Ẽin(1,3,1) 0.194483873 1.881327404 15.65519236

Ẽin(0,4,1) 0.212839318 2.076142929 17.45569979

Ẽin(1,5,1) 0.227105767 2.228294117 19.04045018

Ẽin(0,6,1) 0.238766402 2.352265289 20.44128634

Ẽin(1,7,1) 0.248623604 2.456505108 21.68533850

Ẽin(0,8,1) 0.257159619 2.546270881 22.79561158
04532
-

ar
he

distribution of the relative-motion wave functionsCm,s(w)
and their variation induced by the singularity of the Coulom
potential.

In Fig. 3, theCm,s(w) of singlet and triplet states with
and without the Coulomb interaction are plotted. From t
difference between wave functions with and without t

by

FIG. 3. Relative-motion wave functionsCm,s(w) of two elec-
trons versusw in a ring of R0520aB* ~a! without and~b! with the
Coulomb interaction term.

TABLE III. Nonlinear fitting parameters ofẼin(M ,m,s) with

use of the formẼin(M ,m,s,R0)5Am,s1Bm,sR0
Cm,s.

Singlet states Am,s Bm,s Cm,s

Ẽin(0,0,0) 0.5 1.21914 0.96453

Ẽin(1,1,0) 1.5 1.64921 0.91509

Ẽin(0,2,0) 2.5 2.02440 0.88713

Ẽin(1,3,0) 3.5 2.34133 0.87145

Ẽin(0,4,0) 4.5 2.60500 0.86319

Ẽin(1,5,0) 5.5 2.82287 0.85956

Ẽin(0,6,0) 6.5 3.00247 0.85891

Ẽin(1,7,0) 7.5 3.15052 0.86018

Triplet States Am,s Bm,s Cm,s

Ẽin(1,1,1) 0.0 1.21914 0.96453

Ẽin(0,2,1) 0.0 1.64921 0.91509

Ẽin(1,3,1) 0.0 2.02440 0.88713

Ẽin(0,4,1) 0.0 2.34133 0.87145

Ẽin(1,5,1) 0.0 2.60500 0.86319

Ẽin(0,6,1) 0.0 2.82287 0.85956

Ẽin(1,7,1) 0.0 3.00247 0.85891

Ẽin(0,8,1) 0.0 3.15052 0.86018
4-5
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Coulomb interaction, it is easy to evaluate the magnitude
interaction energiesEin . For example, there are two mor
nodes inC0,0(w) with the Coulomb interaction than in tha
without the Coulomb interaction. The number of nodes
C1,1(w) with the Coulomb interaction is equal to that with
out the Coulomb interaction, and thenẼin(M ,0,0).Ẽin(M

FIG. 4. C0,0(w) versuswP@0,2p) for R051.0, 5.0, 20.0, 100.0
500.0aB* .

FIG. 5. Ẽ(M ,m,s,R0 ,f) versusf for ~a! w50 and anyR0 and
~b! w51 and R051aB* . The quantum numbers ofa, b, c, etc.,
states are listed in Table I.
04532
f

61,1,1). In Fig. 4,C0,0(w) with differentR0 has been plot-
ted, and it is localized atw5p gradually asR0 increases
from 1aB* to 500aB* . The situation ofCm,s(w) is similar, so
that behavior of two electrons in large rings is more simi
to a Wigner molecule19,20 than that in small ones, and the
Ẽin(Ein)(M ,m,1) is not proportional toR0(1/R0) exactly,
however, it would be proportional toR0

12d(R0
212d) with d

.0 which is dependent onm and s. Furthermore,
Ẽin(M ,m,0)5Ẽin(M61,m11,1)1m1 1

2 as mentioned in
Eq. ~25!.

According to the characteristics ofẼin(M ,m,s) and
CM ,m,s(w), we have found a formula

Ẽin~M ,m,s,R0!5Am,s1Bm,sR0
Cm,s, ~26!

where Am,05m11/2 andAm,150. Bm,05Bm11,1 and Cm,0
5Cm11,1, which can be obtained by a nonlinear curve fittin
with use of exact calculated results. The fitting results
listed in Table III. There are several points which should
noted. With increasingm, all Bm,s and Cm,s increase and

FIG. 6. Ẽ(M ,m,s,R0 ,f) versusf for ~a! w51 andR054aB*
and~b! w51 andR0520aB* . The quantum numbers ofa, b, c, etc.,
states are listed in Table I.
4-6
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TWO ELECTRONS IN ONE-DIMENSIONAL . . . PHYSICAL REVIEW B 68, 045324 ~2003!
decrease, respectively, andCm,s is always less than 1, i.e
Cm,s512dm,s , with dm,s.0. It is consistent with what is
mentioned above. Furthermore, we can give the energie
two electrons in nanorings as follows:

Ẽ~M ,m,s,R0 ,f!5
~M12f!21m2

2
1Am,s1Bm,sR0

Cm,s.

~27!
By using Eq.~27!, the electronic structures and relate

properties can be easily shown. The energy levels of
electrons in a 1D QR as a function of magnetic fluxf have
been plotted in Figs. 5 and 6. As shown in Eq.~11! or ~27!,
f is for nothing inEr(m,s) so that the period of the energ
oscillations is 0.5. For instance,Ẽ(0,0,0)(f50) is equal to
Ẽ(21,1,1)(f50.5) and Ẽ(22,0,0)(f51.0) and the spin
of two electrons is oscillating too. The oscillations
Ẽ(0,2,1) andẼ(21,1,0) is similar to those ofẼ(0,0,0) and
Ẽ(21,1,1). However, for a 1D QR with differentR0, the
level order is changed by adding interaction energies
shown in Figs. 5 and 6. AsR0 changes, the oscillation pic
tures, i.e., so called magnetic fingerprints, are changed
means that the Coulomb interaction of two electrons in
QR’s causes quantum size effects and makes magnetic
gerprints.

V. SUMMARY

In this paper, an effective method, which can so
Schrödinger-like equations related to different kinds of p
tentials even with singular points and allow to easily rea
high accuracy, is set up by expanding potentials into po
series and solving the equations to get exact series solu
in different regions. Using the method, we have obtained
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