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POTENTIAL THEORY IN BOUNDED SYMMETRIC
HOMOGENEOUS COMPLEX DOMAINS

By DAVID B. LOWDENSLAGER
(Received May 27, 1957)

Introduction’

The purpose of this paper is to treat a generalization of the elementary
potential theory of the unit circle. The main tools are those of the theory
of transformation groups. For this reason, the domains treated are re-
quired to have a large amount of symmetry; they form a class of homo-
geneous spaces first discussed in full generality by E. Cartan [6]. A cer-
tain class of partial differential equations is shown to arise naturally from
the requirements of symmetry. These equations are elliptic on the interi-
or of the domain but degenerate on the boundary; very few existence
theorems or explicit solutions for such equations are known. Fortunately,
the requirements of symmetry also give simple and explicit solutions by
a generalization of the Poisson integral formula.

My interest in this problem stems from a problem studied by S. Berg-
man [1]. The solution of the differential equations mentioned forms an
extended class of functions in the sense of Bergman, and the results pre-
sented here will make it possible to extend his results to some new situa-

tions ; the results also throw some new light, I believe, on his own work
as well.

The present paper is devoted to the elementary details of this theory.
I have tried to restrict the proofs to symmetry arguments, using mainly
integration over a compact group, and, in particular, the integral rep-
resentation formula proved in the next section. It turns out to be un-
necessary to compute any of the integrals explicitly; nevertheless, one
formula is computed in passing for a class of domains of some independent
interest. Integral formulas for analytic functions or for the real parts
of analytic functions on some of these domains have been given by S.
Bochner [2] and J. Mitchell [10]. L. K. Hua [8a] has determined kernels
including those of Bochner and generalizing the Szego kernels, for the
domains considered here. A subsequent paper will examine the rather
complicated geometrical details of the boundary value problem considered
here, as well as some applications to function theory.

1 Presented t?he Summer Institute on Differential Geometry, June, 1956, and to the Amer-

ican Mathematical Society, December, 1956.
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468 DAVID B. LOWDENSLAGER

Recently, J. Mitchell remarked that she already knew her Poisson for-
mula [10, eq. (3.6)] is invariant in the sense of this paper. Thus, the re-
sults here imply that her formula holds not only for the real parts of ana-
lytic functions, but also for solutions of the invariant Laplace equation.
She also showed me some mimeographed notes written about the summer
of 1956 by L. K. Hua, and containing a very explicit calculation of a com-
plete family of solutions of this equation for the domains of Type I. Hua
also indicated the computation of a kernel function which turned out to
give the same formula, and how this can be used to get some of the
most important results of the present paper for this case. Hua also stated
that it is possible to get similar results for the other types of domains.

1. A class of integral representations

Suppose there is given a homomorphism of a topological group G into
the group of homeomorphisms of the Hausdorff space X ; then I shall say
that G acts on X and shall denote the value of the image of g in G at the
place = in X by gx. It is required also that gx be continuous in g and x
jointly. If f is a function on X, f, will denote the function such that
fi@) = flgx). A family .# of functions will be called invariant under G
if, for any ¢ in G, fe . implies f, € .# . A point x in X will be called
invariant under G if go = x for all g in G. G acts transitively on a subset
Bof X if for every b in B, the set {gb|g € G} is exactly B. If the compact
group G acts transitively on B, there is a unique integral # on B satis-
fying

) =p(f,) and (1) =1,
for every continuous function f, and ¢ in G. This integral will be called
the Haar integral; it is given by

(1) ) = | rwyas = | rovag.,

for any point b in B, where the right side is the familiar Haar integral
on G.

THEOREM 1. Let the compact group G act on the Hausdorf space X ;
suppose x in X is invariant and G acts transitively on the subset B. Let
F be a linear set of continuous real functions on x which is invariont un-
der G and contains the constant functions. If

(2) | f(@) | < max,es| f(b) |

Sor every fin &, then for every f in &,

(3) r@ =\ o®,
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where the integral is given by (1).

ProoOF. For any function f on X, ’f is the restriction of f to B. In-
equality (2) is equivalent to the fact that I(’f) = f{(xr) is a linear function
on the set "% of restrictions of functions of .& to B, and that this func-
tion has norm 1 in the norm of the Banach space C(B) of continuous real
functions on B. Extend the function I to C(B), and denote the extension

again by I. Then [ is given by an integral with respect to a measure m.
Thus, if fe &,

I(fy) = f(gx)
= f(x)
= I(¥)

= | f& amw),

and
105 = | 1) dg
= || 7(6v) dm(e) dg
= []rovr g ] ame .

Since G is transitive on B, the function in the brackets is constant on
B; the value of I on a constant function is the constant, since the con-
stant functions are in .&; therefore the right side of the last equation is
the right side of (1). Since the left side is equal to f(x), Equation (3) fol-
lows.

Theorem 1 may be applied to the family of real parts of analytic func-
tions on the unit disc; the familiar mean value theorem for harmonic
functions results. But the unit disc admits a transitive group of complex
analytic transformations which can be extended so as to be continuous
on the closed disc. By homogeneity, a formula established for any one
point can be extended to every point of the domain, and so the Poisson
formula results. The Poisson measure corresponding to a point z is the
measure on the boundary invariant under the stability group of z, i.e.,
the subgroup of those transformations leaving z fixed. It may easily be
shown that the Poisson kernel is harmonic, (see Theorem 3 for a geomet-
rical proof of the general case.) Then a direct examination shows that
the Poisson kernel yields a solution of the Dirichlet problem for the disc.
It is this chain of reasoning which I wish to generalize.

I shall consider bounded regions in finite dimensional complex space
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which admit a transitive group of complex analytic (i.e., pseudoconform-
al) transformations (called automorphisms). In addition an automor-
phism of the domain with only one fixed point is assumed to be in the
group; it has been long conjectured but never established that this as-
sumption is a consequence of homogeneity [5], [6]. Cartan has shown
that every such domain is the product of certain domains of the same
type which are irreducible, in the sense that they are not products of still
other domains of the same type. These symmetric complex homogeneous
domains (or Cartan domains) were classified by Cartan; the irreducible
ones fall into four infinite classes with classical simple Lie groups as au-
tomorphisms, and two special domains with exceptional simple Lie groups
as their groups of automorphisms. Cartan exhibited explicitly only the
domains corresponding to classical Lie groups. Recently Harish-Chandra
has shown the existence of all of them, by a general method not involv-
ing the classification of the real simple Lie groups [7]. However, since
the application of the theorems of this paper to these domains depends on
explicit verification of the hypotheses for each domain, the final results
are proved only for those domains with classical semi-simple groups of
automorphisms.

For any point 2z in a Cartan domain, local co-ordinates with z at the ori-
gin may be chosen in such a way that the stability group of z acts by
linear transformations; these co-ordinates may be extended to be single
valued and 1-1 on the whole domain. Moreover, the domain is again
bounded in these co-ordinates [3], [6], [7]. These co-ordinates will be
mainly those in use in the rest of this paper; it is not hard to prove that
they are essentially unique.

The boundary B in Theorem 1, over which the integration takes place,
is generally a proper subset of the topological boundary, and is called the

Bergman-Sv’ilov"’ boundary. For the bicylinder in two variables, the prod-
uct of two unit dises, the B.-S. boundary is the product of the two cir-
cles bounding the disecs, and has two real dimensions; the topological
boundary is three dimensional.

I show in Theorem 4 that the kernel arising from the integral of Theo-
rem 1 may be applied to any continuous function F' on the B.-S. bound-
ary, and yields a function f with F as radial boundary values. However,
not every continuous real function on the B.-S. boundary is the bound-
ary value of the real part of an analytic function. In fact, for the bi-

5 2 Hereafter ébi)reviated. S. Bergman called this boundary the Maximumflache [1a]; later,
Silov introduced the concept in an abstract setting [12].
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cylinder just mentioned, if the Fourier series of F'is
F(eizl’ eizz) o E amneimxl-l-in:cz ,

then F is the boundary value of the real part of an analytic function if
and only if @,, = 0 whenever mn < 0. Thus Theorem 1 gives an integral
representation of a class of functions more extended than the real parts
of analytic functions. This extended class of functions is the set of solu-
tions of the second order partial differential equation
(4) Af=0,
where A is the Laplace-Beltrami operator corresponding to Bergman’s
invariant metric in the domain [1]. For an irreducible Cartan domain,
Schur’s lemma implies that there is only one linearly independent Rie-
mann metrie, since the stability group is irreducible on the tangent space
[6]. For the general case (at least for the “classical ” Cartan domains),
the corollary to Theorem 4 shows that the solutions of all the different
invariant Laplace equations are the same. In Section 2, I show that the
solutions of (4) satisfy the hypotheses of Theorem 1, by explicit calcula-
tion for each class of domain. In order to see more closely the relation
of Equation (4) to the real parts of analytic functions, recall that the
equations determining these last are

of _
(5) 0707
But since the Bergman metric is a Kaehler metric as well [1], its Lapla-
cian is

0, 7:7.7‘:1,°°°’n'

R
6 A = g¥ .
(6) 9 oz0

where ¢* is the tensor inverse to the metric tensor [4, p. 132]. From (5)
and (6), it is obvious that the real parts of analytic functions are among
the solutions of (4); in fact, it is possible to regard the purpose of this
paper as the investigation of the solutions of (5) by relaxing the overde-
termined system (5) to a single equation, (4).

The reason why the solutions of (4) are determined by their values
merely on the B.-S. boundary, is that the operator (6) is singular on the
boundary. The coefficients are continuous there, but their matrix has
rank less than the dimension, and vanishes, in fact, on the B.-S. bound-
ary. This reflects the fact that these domains are complete in the Berg-
man metric, which must therefore be infinite at the boundary. The equa-
tion for the bicylinder is

_ 2 )2 azf_ I 2ﬁaj.f7:
(7) a—1a2p 2 - iar L
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The solutions of this differential equation are the functions harmonic in
each variable separately, as follows from the corollary to Theorem 3. Al-
though the present use of this differential equation is new, this class of
functions (defined by their property of being harmonic in each variable
separately) has been used before, in a series of investigations by Berg-
man. Bergman’s classes of extended functions are defined most often for
domains similar to the bicylinder, where they are used to extend the
powerful potential theoretic methods used in the theory of functions of
one variable to the several variable case. The present paper shows that
the solutions of (4) form a class of functions with the properties Bergman
desires of an extended class of functions, and so offers the possibility of
applying Bergman’s results to a new and interesting class of domains.

2. The classical Cartan domains and their Laplacians

In this section are described the classical Cartan domains; it is shown
that the functions satisfying the invariant Laplace-Beltrami equation
satisfy the conditions of Theorem 1. In each domain, the B.-S. boundary
B is the set of points where the matrix of coefficients of the operator A
vanishes; this is also the distinguished boundary in the function theo-
retic sense. The following lemma is useful in proving inequality (2).

LemMA 1. Let

o>
A = at(z) 7 _
( )6aci8xf

0
+ v"(x) -
(@) "
be a differential operator with coefficients continuous on the closure E of a
bounded region R in euclidean n-space. Let the matriz of coefficients be

positive semidefinite on R. Suppose that for every point p on the bound-
ary, a local co-ordinate system exists with p as origin such that for some
k, the set of points y' =---=y* =0, |4+ | < 5, +--, |y*| < 8, is on the
boundary of R, and the differential operator A involves only derivatives
with respect to y**+', - -, y".

Then, if f is any real non-constant function which is twice continuously
differentiable, and satisfies

Afz0,

the set of points where f achieves its maximum intersects the set B where
the coefficients of the operator A vanish.
PROOF. Suppose the conclusion is false; then (sup f) — f(x) > 0, if

x € B. Let w be a twice continuously differentiable function on R, which
is strictly convex, i.e., the matrix of second partials of w is positive defi-
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nite everywhere. For some ¢ > 0, the function f + tw has a maximum
in R at a point p not in B. Let ¢', ---, ", be the co-ordinate system
guaranteed by the hypothesis, (or the original system translated to p, if
p is in the interior). Since f + tw has a maximum at p, its first partials
with respect to the »’s vanish at p, and the matrix of its second partials
is negative semidefinite. Hence A(f + tw) < 0 at p. But Af = 0, and,
since w is strictly convex and the matrix of coefficients of A is positive
semidefinite and not zero, Aw > 0. This contradiction establishes the
lemma.

There is an irreducible Cartan domain of the first series for every pair
of integers m, n satisfying » = m = 0. If the elements of an m by n
matrix Z are considered as co-ordinate in complex mn-space, the set of
matrices with

(8) I — Z*Z positive definite

form an irreducible Cartan domain contained in the unit sphere [6], [8].
Here I is the » by » unit matrix and Z* is the conjugate transpose of Z.
Condition (8) is equivalent to

(8) J — ZZ* positive definite ,

where J is the m by m unit matrix. The group of automorphisms leaving
the zero matrix fixed includes the set of transformations.

(9) Z->UZV , U, m by m unitary; V, n by » unitary .

The B.-S. boundary is the set of matrices with the matrix of (8') equal to
zero (but not that of (8), unless m = n.) This condition is equivalent to
the requirement that the m rows of the matrix Z be m orthonormal vec-
tors in complex m-space, and the transitivity of the stability group of
zero follows from this geometrical consideration. An invariant metric is
given by

(10) tr[(J — ZZ2*)1d2(I — Z*Z)' dZ*],

where dZ is the matrix of differentials [8].

An invariant Laplacian for the domain may be formed from (10) by
computing the inverse of the metric tensor and using (6). The computa--
tion is easy; the interested reader may verify that the operator is

. PE
(11) A= (J —ZZ*y"(I — Z*Z)Qkazpifa?jk ,

where the indices denote the matrix elements. (see, for the case n = m,
[10].) The continuity condition of Lemma 1 is evidently satisfied, so that
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only the condition on tangential derivatives must be verified on the
boundary. The operator clearly vanishes on the B.-S. boundary. If Z is
any other boundary point, J — ZZ* is merely positive semidefinite, so
that 0 is a proper value of multiplicity m — % of it. The trans~formations
(9) correspond to changes of basis in m-space and n-space. Choose a basis
in m-space with ZZ*e, = ¢, for the first m — k basis vectors: then the
first m — k vectors Z *e, are orthonormal in n-space and may be chosen
as the first vectors of a basis there. Then condition (8) implies that Z is
transformed into a matrix of the form

I 0
12) (6 w):
where [ is a unit matrix and Wis an m — k by n — k& matrix satisfying
the analog of (8). All such matrices are on the boundary, and the Lapla-
cian (11) involves only derivatives with respect to the variables in W.
These co-ordinates satisfy the conditions of Lemma 1.

The domains of Types II and IV have been extensively studied by Sie-
gel [11], and Klingen [9] (whose numbering is not that of Cartan.) There
is one domain of each series for each positive integer #» > 1. This domain
is given by the n by n matrices satisfying (8) and

II. ZzZ+Z =0,
IvVv: Z—Z=0

respectively, where ‘Z is the transpose of Z. The stability group of 0
contains the transformations of the form (9) with V = ‘U. The B.-S.
boundary in each case is given by the matrices such that ZZ* has the
maximum multiplicity for the proper value 1. By the theorems of Section
1 of [9], the stability groups are transitive on these B.-S. boundaries.

An invariant metric for either domain is given by (10). The invariant
Laplacian is not given by (11) and it must be calculated by calculating the
inverse of the restriction of the metric matrix to the subspaces of skew
and symmetric matrices respectively. However, since tr AB = 0 if 4 is
symmetric and B is skew, under the metric (10) a symmetric and a skew
matrix of differentials are orthogonal along either the submanifold of
skew matrices or that of symmetric ones. Thus, if one changes co-ordi-
nates to

(14) X=é(Z+tZ), ‘ Y=%(Z——‘Z),

(13)

dX is orthogonal to dY along either manifold, and the inverse of the re-
striction of the metric matrix is the restriction of the inverse. The
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change of variables (14) is particularly simple so that it is not necessary
to display the explicit form of the Laplace operator. The terms below the
diagonals of the matrices X and Y are not used as co-ordinates, since
they are superfluous.

By the results in Section 1 of [9], every matrix in the boundary can be
moved by the stability group of 0 to a matrix of the form

0 I 0 7 0
(— I 0 0> or (0 W) , I — W*W positive definite ,
00w

in Case II or IV respectively. It is easy to see that the variables in the
matrices W are the only ones occurring in the operator (11). Hence, be-
cause of the special form of the change of co-ordinates (14), these varia-
bles are the only ones occurring in the invariant Laplacian for the do-
mains considered. Also, since the change of co-ordinates is linear, the
coefficients of this Laplacian have the same continuity properties as those
of (11). Thus Lemma 1 holds for these domains.

The third class of Cartan domains has not been studied so much as the
other three, although, in some respects, it is the simplest and is of some
independent interest. There is an irreducible Cartan domain of Type III
for every positive integer n. Its points are the vectors in n-space (or n
by 1 matrices) satisfying
| ww |* — 2w*w +1 >0,

[fww | —1<0.
The B.-S. boundary is the set of points satisfying
| fww P — 2w*w +1=0,
[fww]*—-1=0,

(15)

(16)

which is equivalent to
w,cze“’uk, u;z:ﬁky
uitu - tun=1.

The subgroup of automorphisms leaving the origin 0 fixed includes the
transformations

(16')

(17) Wy —> 6wu)k; ’
w— Qu , Q@ a real orthogonal matrix .

These are transitive on the B.-S. boundary.

It is useful to change co-ordinates using the generalized Cayley trans-
formation [2], [6]
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(18) z,c::T2z'w,cW“,. k=1,---,n—1,
2o +1=2w, — )W,

where
W =>3"""w + (w, — i)

the inverse is

(18) wk=.—2isz‘1, ‘ k=1,---.,n—1,
w, —1=—22, +40)Z1,

where

Z=3 "2 (2, L =— AW,

1

The inequalities (15) are transformed into

(19) Yn > W+ F Y )P —0 < a5 <+ o0,
where
2 = Ty + Wy, x,y,real , 1 <k<n.

The B.-S. boundary (16) is given by

Y=:-=y,=0,

—oo @y <+ oo,
except for a subset of lower dimension. This domain arises naturally in
trying to solve the wave equation using the Laplace transformation in
several variables.

The Jacobian matrix of the transformation (18') is given by the equa-
tion

(20)

Oyl — 2 OZfZ‘2 , E<n,
1) 10w, _ 0z,
2 02, | — 5,2 + i (z, + 1) gz zZ-, k=n.
2

Multiply the last row by — #(z,)(z, + ?)~' and add this to the k* row,
for £ < n; then multiply the j* column (5 < %) by z,(z, + %)~! and add
this to the »* column. The result is a diagonal matrix, with Z-' along the
first » — 1 diagonal positions, and

— iz + i (27 8 2 4 o+ 1) ) =iz
azk 8 n
in the »™ place.
Therefore the Jacobian of the transformation (18') is

(22) J =— 2(—q)mrign
The measure on the boundary (16) invariant under (17) is ordinary
euclidean surface measure, The total measure is 7o,_,, where o, , =
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(27)M2 (I'(n/2))~! is the measure of the surface of the unit sphere in real
n-space.

The Jacobian of the transformation from (16) to (20) is the absolute
value of the complex Jacobian (22). Therefore, the Poisson integral for
the point (0, ---, 0, 7) is

(23) f(0, +++,0,7) = 2n S f(xl,a .-, mnldml .-eda,

TOp-1

Y — a1 — 2, |

Now, consider the following sequence of transformations :

Zy =tz , t>0;
Z, —>z coshs + z,sinhs ,
Zy = 2 2<k=<n,
(24) Z,— z sinhs + z, cosh s;
Z,—> @2y k,7j<m, Qann — 1bymn — 1 real orthogonal matrix ,
Zin = 2y
Zy =2 + a, real .

The original point (0, ---, 0, 7), may be moved to an arbitrary point of
the domain (19) by a properly chosen sequence of transformations (24),
and so the integral (23) may be computed for an arbitrary point of this
domain. The result is:

A Poisson integral for the domain (19) is given by

Lo f@) (v, v)"*dw
@5) flw+iv) = " SR" (@ —u, @ — u) — (v, V) + 4z — u, V)]

where dx = dx, -+ dx,, and (4, V) = Uyv, — > Uy, 18 the Lorentz in-
ner product of the two real vectors u and v.

Next, the invariant Laplacian must be computed for these domains,
and must be proved to satisfy the hypotheses of Lemma 1. The invariant
metric for the Cartan domains of Type III seems not to be available, so it
will be computed here. It is clear that a positive multiple of

20 dwy P
is the only metric tensor on the domain invariant under the group of au-
tomorphisms (17). It follows from the form of the Jacobian matrix (21),
that an invariant metric at the point (0, - -- 0, %) in the co-ordinates (19)
is given by

Soilde 1.
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Transforming this metric by a sequence of transformations like (24), it
may be seen that an invariant metric for the domain is given by

ds = @+ + B dadB) — K07 2 (dedz, + dedz)

(26) + V(T deydz) +21 X007 yide, )
Y=y —9i—-—vn..
It may be checked that the matrix of the following differential opera-
tor is the inverse of the matrix of (26):

=T+ 2

62
—+ (2% —
02,02, (2y V)

02,02,

(27)

2 82

+ 2 E]<k YilYx (a_zj—az’c + azjaé,) .
This operator has coefficients which vanish on the B.-S. boundary, and
are continuous on the closure of the domain. By a transformation leav-
ing the point (0, ---, 0, 4) fixed, any other boundary point may be moved
to the point (¢, 0, +++, 0, ). The points (u, 0, -+, 0, u) are all in the
boundary for u near 4, and at the point u = ¢ the Laplacian (27) is
2(0*/oudu). This verifies the hypotheses of Lemma 1.

The most general classical Cartan domain (one with classical semi-
simple group of automorphisms) is a product of the irreducible domains
just enumerated. There is, in general, no longer a Laplace operator in-
variant under the automorphism group and unique up to a positive mul-
tiple. Suppose D = D, x D,, where D, and D, are irreducible ; then, if A,
and A, are any invariant Laplacians on D, and D, respectively, the formal
sum A = A, + A, is invariant under the connected component of the iden-
tity of the group of automorphisms of D. The converse is true. If D, is
not isomorphic to D,, then A is invariant under every automorphism of
D, but if D, is isomorphic to D,, A is invariant under switching co-ordi-
nates only when A; = A,. In order to simplify the statements, only con-
nected groups of automorphisms will be considered here.

The B.-S. boundary of the product of two domains in the sense of
function theory is the product of the two B.-S. boundaries. From the re-
marks above, it follows that this is also the set of points where the coef-
ficients of any invariant Laplacian vanish. The stability group of a point
(@, ) is the product of the stability groups of x; and x,. Hence the prop-
erty of transitivity on the B.-S. boundary carries over. The preceding
results may be summarized by
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THEOREM 2. Let D be a classical Cartan domain. Any invariant second
order elliptic operator A has coefficients which are continuous on the clo-

sure, D. If B denotes the set of points where A vanishes, the stability group
G of any point x € D is transitive on B. The solutions of

Af=0

which are twice continuously dzﬁ'erentmble on D satisfy the hypotheses of
Theorem 1.

3. The Dirichlet problem

The transformations of the automorphism group of a classical Cartan

domain D can be extended continuously to the closure D where they are
differentiable, and even real analytic (using the special co-ordinates in
which some stability group consists of linear transformations [11], [7D).
These transformations carry the B.-S. boundary B onto itself: and so
there is a fixed measure m on B such that the Poisson measure for each
point x € D is absolutely continuous with respect to m, and even has a
continuous positive Radon-Nikodym derivitive K(zx, b) with respect to m.
K will be called a Poisson kernel on B. Two different Poisson kernels K
and K’ for different measures m and m’ are related by the property that
K-'K’ is a continuous function of b only.

THEOREM 3. Let D be a classical Cartan domain, A an invariant Lapla-
cian, and K a Poisson kernel for D. Then K as a function on D satisfies

(28) AK =0, forallbe B.

PROOF. If D = D, x D,, then A = A, + A,, B=B, x B,, and m can be
chosen on B such that K = K,K,, where K, is a Poisson kernel for B,;.
The theorem for any one Poisson kernel implies that it holds for all Pois-
son kernels for the domain. Therefore, it suffices to prove the theorem
for irreducible domains only. By homogeneity, it suffices to prove the
theorem for just one point « in the irreducible domain D, and the basic
measure m may even be chosen so as to be the invariant measure for the
stability group G of .

Let 2(f), —1 <t < + 1, be a curve in D with non-vanishing tangent
and (0) = «. There is a positive constant ¢ such that for every differen-
tiable function f on D, the following equation holds at the point x:

(29) esr=| [L sty | 0)dg

In fact, the right side is a second order differential operator at « which
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is invariant under G. Since D is irreducible, G acts irreducibly on the
tangent space [6]. By Schur’s lemma, an invariant second order differen-
tial operator is unique up to scalar multiples. By choosing f to have a
nondegenerate minimum at x, it is seen that the constant in question
must be positive.

Next, I claim that, for the special choice of K used,

(30) K(gz, b) = K(z, 97'b) , forallge G,ze D,be B.

Let the stability subgroup of 2z be H; that of g, is gHg~!, which is iso-
morphic to H. Denoting the Poisson integral for z by L(f), and using the
notation and results of Theorem 1,

1.5) = | fiahgvy an = _sing) an

_ SH F(hb) dh = SB F(®)K(z, b) db

since the point b in (5) is arbitrary. Since I,(f,) = L(f), the last integral
is

SB Fb)K(z, 9-b) db ,

But, also,
L(f) = |, Kz, By b,

and comparing these two integrals gived equation (80). Let «(¢), — 1 <
t = + 1, be a curve through « as above. Then, using (30) and the fact
that Haar measure on the compact group G is invariant under the trans-
formation g — g7,

[ Ktaat®), ) dg = | Keatt), 97) g

— { Ktatt), b dg = | Ko, s =1,

the last integral being the value at () of the function constantly 1.
To complete the proof, invert the order of integration and differentia-
tion on the right of (29), use the last equation, and (28) is the result.
- COROLLARY. Let D be the product of two classical Cartan domains D,
and D,. If f is a twice continuously differentiable function on D which
satisfies
Af=0, and A=A, +A,,

where A, and A, are invariant Laplacians for D, and D,, then
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(31) Af=AF=0.

The proof uses the fact that f is given by an iterated Poisson integral,
the factor of which statisfies (81).

The corollary does not hold if f is assumed to be harmonic only in a
subdomain of D. Consider, in the bicylinder, which is the product of two
dises of radius 1, the differential equation (4). In the product of two discs
of radius 1/2 whose closure is contained in the interior of the domain, the
equation (4) is elliptic, not degenerating on the three dimensional bound-
ary. Classical existence theorems give harmonic functions with preas-
signed values on the boundary, and so these can be constructed so that
their maximum is not attained on the B.-S. boundary of the subdomain.
These solutions eannot be harmonic in each variable separately. Itis also
possible, using the iterated Poisson integral, to find functions harmonic
in each variable separately, and thus satisfying (4), which have arbitrary
boundary values on the two dimensional B.-S. boundary of the sub-
domain.

The last part of the solution of the Dirichlet problem is the construe-
tion of a funection u satisfying Au = 0, with preassigned boundary values
on the B.-S. boundary. What will be proved here is that » can be found
with arbitrary continuous function f as radial limit. Suppose the co-ordi-
nates are chosen so that the stability group of the origin is linear. By a
radius is meant a straight line segment with one endpoint at the origin
and the other on the B.-S. boundary. All radii are conjugate under the
stability group of the origin, since this group is transitive on the B.-S.
boundary.

THEOREM 4. Let D be a classical Cartan domain with B.-S. boundary B.
Let f be a continuous function on B. There exists a solution of

Au =0
on D such that lim u = f along every radius.

PrOOF. Let u be defined by the invariant Poisson integral

u@) = | FOKG, Haw):

u is harmonic by Theorem 3. All that needs to be proved is the state-
ment on boundary values. If R is a radius, there is a one parameter sub-
group g, of automorphisms of D such that ¢,(0) € R for s > 0; this radial
translation is unique up to multiplying s by a positive constant [6], but
an explicit construction follows. By a change of variables,
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u(g,0) = | £, O,

where db is the measure invariant under the stability group of 0. Let
bo = lims_,,, gs(O) ’

be the endpoint of the radius. It is only necessary to show that
lim,.... | £, ) db =7 .

This will follow when it is shown that there exists a subset A of lower
dimension such that, if V is the complement of any neighborhood of b,
gV converges to A uniformly as s - — «. The remainder of the proof
consists of the demonstration of the last fact; it suffices to consider only
irreducible domains, and, by homogeneity, only one point in each B.-S.
boundary. Automorphism groups of the classical Cartan domains have
been examined, without proofs, [11, pp. 151-161], and proofs of some of
Siegel’s statements have appeared [9], but the actual subgroups used
here may easily be shown to consist of automorphisms by examining the
infinitesimal generator of each.

For domains of Type III, using the Cayley transformation (18), the ra-
dial translation is

9,(2) = e 2.
The point b, is the origin; its inverse under (18) is (0, ---, 0, — 7). As
s — — oo, any point but this inverse converges to the set 4, which is the
set of exceptional boundary points for the Cayley transformation.
For domains of Type IV, or of Type I with m = n, thetran sformations

(32) 94(Z) = (Zcosh s — I'sinh s)(— Zsinh s + Icoshs)™!

translate 0 radially to I. If U is a point of either B.-S. boundary, it may
be moved to a diagonal matrix by an automorphism of the stability group
of 0 which leaves I fixed. The automorphism commutes with g,, and each
of the diagonal entries of the transformed matrix must have absolute
value 1; the effect of g, then follows from the 1-dimensional case. Let A
be the subset of the B.-S. boundary satisfying Z* = I; if V is the com-
plement of any neighborhood of I, g, V converges to A ass — — o. No-
tice that the same thing is true if V is the complement of a neighbor-

hood of I in D. For the domains considered here, a Cayley transforma-
tion is available under which the radial translation is similar to that in
the domains of type III.

For a domain of Type I with m < n, write Z = (Z,, Z,), where Z, is an
m by m matrix, and Z, is an m by n — m matrix. The 1 parameter group
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hy(Z,, Z,) = (9{Z,) , 9(Z,) Z, cosh s) ,
where g, is given by (82), is a subgroup of automorphisms of the form
Z— (AZ + B)(CZ + D)™, V

A = Icoshs, B = (— Isinhs, 0),
__ (— Isinh _ (Icosh 0
o—(~1dhe), o (temhe 1)

described in [11, p. 152]. As was noticed, g,(Z;) converges to A described
above. Sinceif U = (U,, U,) is on the B.-S. boundary on the domain now
considered, U, U + U, UF =1, if U is not (I, 0), ~(U) converges to a
point of the form (Z,, 0), where Z, € A. This implies the result.

The domains of Type II fall into two subclasses, according to whether
their matrices are even dimensional or odd. Each domain is naturally im-
bedded in a domain of the first type. In the even case, the B.-S. bound-
ary B is the intersection of D with the B.-S. boundary B’ of the domain
D’ of type I containing D. A typical element of B is
(34) c=(" N,

—aI 0
where I is a unit matrix. The one parameter group

(35) 94(Z) = (Z cosh s — Csinh s)(—CZ sinh s 4 Icoshs)™*

is a group of radial translations both of D and D’. Since all radial trans-
lations of D’ are conjugate, there is a set A = A’ N B such that the ex-
terior of any neighborhood of C converges to A € sit is translated by (35)
with s - — o. A is easily seen to be lower dimensional in B.

In the second case, when » is odd, the n» by n matrix Z may be written
- %)
Zy, Z,

in block form, where Z,is » — 1 by n — 1. A typical element of the B.-
S. boundary is given by

CONN @ o)

with C the matrix of (34). A subgroup of radial translations is given by
h(Z) = (AZ + B)CZ + Do),

where

As:DSZ(é Ico(;hs)’ Bs:CSZ(é —C(s)inhs>'
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as in [11, p. 155]. The lower right block of 4,(Z) is given by ¢,(Z,), as in
(35). As before, this converges to a point of A above, and since I — Z*Z
has rank 1 on the B.-S. boundary, the other blocks of 4,(Z) converge to
0, unless Z is given by (36). This completes the proof.

It should be remarked that the most important fact in each of these
cases is that the trajectories of the one parameter family of transforma-
tions almost all start at the one point and end at the antipodal point. I
conclude by remarking that the uniqueness of the solution to the Di-
richlet problem does not follow from Theorem 2. The hypotheses of Lem-
ma 1 require continuity and differentiability on the closure of the domain.
Au niqueness theorem will be contained in a paper examining the ge-
ometry of these equations near the B.-S. boundary.
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