
Optics Communications 283 (2010) 3891–3894

Contents lists available at ScienceDirect

Optics Communications

j ourna l homepage: www.e lsev ie r.com/ locate /optcom
Broadband adiabatic conversion of light polarization

A.A. Rangelov a,⁎, U. Gaubatz b, N.V. Vitanov a

a Department of Physics, Sofia University, James Bourchier 5 blvd, 1164 Sofia, Bulgaria
b Nokia Siemens Networks GmbH & Co. KG, St.-Martin-Strasse 76, 81541 Munich, Germany
⁎ Corresponding author.
E-mail address: rangelov@phys.uni-sofia.bg (A.A. Ra

0030-4018/$ – see front matter © 2010 Elsevier B.V. Al
doi:10.1016/j.optcom.2010.06.027
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 21 December 2009
Received in revised form 5 June 2010
Accepted 7 June 2010
A broadband technique for robust adiabatic rotation and conversion of light polarization is proposed. It uses
the analogy between the equation describing the polarization state of light propagating through an optically
anisotropic medium and the Schrödinger equation describing coherent laser excitation of a three-state atom.
The proposed technique is analogous to the stimulated Raman adiabatic passage (STIRAP) technique in
quantum optics; it is applicable to a wide range of frequencies and it is robust to variations in the
propagation length and the rotary power.
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I. Introduction

A simple way to describe the polarization state of light, which has
been known for many years in optics, is by the Stokes vector, which is
depicted as a point on the so-called Poincaré sphere [1–5]. The Stokes
vector, for instance, is a particularly convenient tool to describe the
change of the polarization state of light transmitted through anisotropic
optical media [2–4].

The equation of motion for the Stokes vector in a mediumwith zero
polarization dependent loss (PDL) has a torque form [6–8]. This fact has
been used recently to draw analogies between themotion of the Stokes
vector and a spin-1

2
particle in nuclear magnetic resonance and an

optically driven two-state atom in quantum optics, both described by
the Schrödinger equation [9–12].

Here we propose a technique for controlled robust conversion of
the polarization of light transmitted through optically anisotropic
media with no PDL. The technique is analogous to stimulated Raman
adiabatic passage (STIRAP) in quantum optics [13–15] and hence
enjoys the same advantages as STIRAP in terms of efficiency and
robustness.

For any traditional polarization devices the rotary power (the
phase delay between the fast and slow eigenpolarizations) scales in
proportion to the frequency of the light and thus such devices are
frequency dependent: a half-wave plate is working for exactly one
single frequency. On the contrary, the adiabatic polarization conver-
sion proposed here is frequency independent: any input polarization
will be transformed to the same output polarization state regardless
of the wavelength. It acts intrinsically as a broadband device limited
only by the absorptive characteristics of the device instead of its
birefringence bandwidth. Moreover, the proposed technique is robust
against variations in the length of the device, in the same fashion as
quantum-optical STIRAP is robust against variations in the pulse
duration.

II. Stokes polarization vector

We first consider a plane electromagnetic wave traveling through
a dielectric medium in the z direction. The medium is anisotropic and
with no PDL, therefore the polarization evolution is given with the
following torque equation for the Stokes vector [2–4,6–9,11,12]:

d
dz

SðzÞ = ΩðzÞ × SðzÞ; ð1Þ

where z is the distance along the propagation direction, and S(z)=[S1(z),
S2(z),S3(z)] is the Stokes polarization vector shown in Fig. 1. Every Stokes
polarization vector corresponds to a point on the Poincaré sphere and vice
versa. The right circular polarization is represented by the north pole, the
left circular polarization by the south pole, the linear polarizations by
points in the equatorial plane, and the elliptical polarization by the points
between thepoles and theequatorial plane.Ω(z)=[Ω1(z),Ω2(z),Ω3(z)] is
the birefringence vector of the medium: the direction of Ω(z) is given by
the slow eigenpolarization and its length |Ω(z)| corresponds to the rotary
power.

III. Schrödinger equation for a three-state quantum system

When one of the components of the vector Ω(z) is zero, then
Eq. (1) is mathematically equivalent to the Schrödinger equation for a
coherently driven three-state quantum Λ system on exact resonances
with the carrier frequencies of the external fields. This is readily seen
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Fig. 1. Poincaré sphere representationof polarization states. TheStokespolarizationvector
S(z) follows adiabatically the birefringence vector Ω(z). (a) Linear polarization is rotated
by 45° (corresponding to 90° rotation of the Stokes vector); (b) linear polarization is
transferred into right circular polarization; (c) horizontal linear polarization is transferred
into vertical linear polarization; and (d) left circular polarization is transferred into right
circular polarization.
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by examining the time-dependent Schrödinger equation, which in the
rotating-wave approximation (RWA) reads

iℏ
d
dt

cðtÞ = HðtÞcðtÞ: ð2Þ

Here c(t) is a column vector of the probability amplitudes cn(t) (n=1,
2, 3) of the three states ψ1, ψ2 and ψ3, and H(t) is a 3×3 Hamiltonian
matrix [13–15],

HðtÞ = ℏ
2

0 Ω1ðtÞ 0
Ω1ðtÞ 0 Ω2ðtÞ
0 Ω2ðtÞ 0

2
4

3
5: ð3Þ

We have here assumed both two-photon and single-photon
resonances. The two slowly varying Rabi frequencies Ω1(t) and
Ω2(t) parameterize the strengths of each of the two fields; they are
proportional to the dipole transition moments dij and to the electric-
field amplitudes Ek(t): Ω1ðtÞ = −d12⋅E1ðtÞ and Ω2ðtÞ = −d23⋅E2ðtÞ;
hence each of them varies as the square root of the corresponding
intensity.

The quantum evolution associated with the Λ system is easily
understood with the use of adiabatic states, i.e. the three instanta-
neous eigenstates φk(t) of the RWAHamiltonian Eq. (3). The adiabatic
state φ0(t) corresponding to a zero eigenvalue is particularly
noteworthy, because it has no component of state ψ2,

φ0ðtÞ =
Ω2ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ω2
1ðtÞ + Ω2

2ðtÞ
q ψ1−

Ω1ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

1ðtÞ + Ω2
2ðtÞ

q ψ3: ð4Þ

This state therefore does not lead to fluorescence and is known as a
dark state [13–15]. If the motion is adiabatic [13–15], and if the state
vector Ψ(t) is initially aligned with the adiabatic state φ0(t), then the
state vector remains aligned with φ0(t) throughout the evolution. This
occurs if the pulses are ordered counterintuitively, Ω2(t) before Ω1(t):
then the composition of the dark state φ(t) will progress from initial
alignment with ψ1 to final alignment with ψ3. Hence in the adiabatic
regime the complete population will be transferred adiabatically from
state ψ1 to state ψ3. This important feature of complete transfer under
full control has made STIRAP a widespread preparation technique for
experiments relying on precise state control [14,15]. The formalism can
be applied to other systems, including classical ones [16–18], bymaking
use of the similarity of the respective equations to Eqs. (2) and (3).

IV. Adiabatic conversion of light polarization

Returning to light polarization, two special cases are particularly
interesting.

Case A:Ω3(z)=0.With the redefinition of variables S1(t)=− ic3(t),
S2(t)= ic1(t),S3(t)=−c2(t), the SchrödingerEq. (2) turns into form(1),
if we map the time dependance into the coordinate dependance. By
using this analogy we can write down a superposition σ(z) of the
polarization components S1(z) and S2(z) of the Stokes vector, which
corresponds to the dark state φ0(t), Eq. (4):

σðzÞ = Ω1ðzÞS1ðzÞ + Ω2ðzÞS2ðzÞ
ΩðzÞj j ð5Þ

When Ω1(z) precedes Ω2(z) Eq. (5) has the following asymptotic
values

S1ðziÞ ←
zi←z

σðzÞ →
z→zf

S2ðzf Þ: ð6Þ

Thus if initially the light is linearly polarized in horizontal
direction, S(zi)=(1,0,0), we end up with a linearly polarized light
rotated by 45°, S(zf)=(0,1,0) (see Fig. 1 (a)). The process is
reversible; hence if we start with a linear polarization rotated by
45° and apply a reverse field order (Ω2(z) preceding Ω1(z)) this will
lead to reversal of the direction of motion and we will end up with a
linear polarization in a horizontal direction.

Following quantum-optical STIRAP, we can write down the
condition for adiabatic evolution as [14,15]

∫
L

0
ΩðzÞj jdz≫1: ð7Þ

For example, for adiabatic evolution it suffices to have
∫
L

0
ΩðzÞj jdz≳ 6π. Here L is the thickness of the medium and the length

of the birefringence vector is given by |Ω(z)|=2πΔn/λ, where λ is the
wavelength of the light, Δn is the difference between the refractive
indices for ordinary and extraordinary rays. Then the adiabatic
condition reads

LΔn≳ 3λ: ð8Þ

The last condition shows that the process is robust against
variation in the parameters, for example, the wavelength λ and the
propagation length L. This condition is readily fulfilled, by orders of
magnitude, in many birefringent materials.

Case B: Ω2(z)=0. Following a similar argumentation as for Case A
and interchanging the Stokes vector components S1(z) and S3(z) we
can write down a “dark” superposition σ(z) of the polarization
components S1(z) and S3(z) of the Stokes vector,

σðzÞ = Ω1ðzÞS1ðzÞ + Ω3ðzÞS3ðzÞ
ΩðzÞj j : ð9Þ

If initially the light is linearly polarized, S(zi)=(1,0,0), then by
arranging Ω1(z) to precede Ω3(z), we end up with a right circular
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Fig. 3. Similar to Fig. 2 except that the stress induced linear birefringence has been
replaced by a circular birefringent section generated through the Faraday effect and a
magnetic field along the z direction (Case B). The increasing and decreasing number of
turns in the coil indicate pulse-shaped spatial variation of the longitudinal magnetic
field.
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polarization, S(zf)=(0,0,1), as depicted by the north pole on the
Poincaré sphere in Fig. 1 (b), because the polarization superposition
(9) has the asymptotic values

S1ðziÞ ←
zi←z

σðzÞ →
z→zf

S3ðzf Þ: ð10Þ

The process is again reversible: starting with a right circular
polarization, and applyingΩ3(z) beforeΩ1(z) we end up with a linear
polarization.

We note that a numerical prediction of broadband conversion
from circular polarized light into linearly polarized light for the
wavelength range of 434 nm to 760.8 nm for crystalline quartz was
made by Darsht et al. [19]. Here this effect emerges as a special case of
our general adiabatic frame of STIRAP analogy.

The adiabatic polarization conversion could be demonstrated with
a single-mode fiber, which exhibits both stress-induced linear
birefringence and circular birefringence (either by the Faraday effect
or by a torsion of the fiber) [1]. Possible implementations are depicted
in Figs. 2 (for Case A) and 3 (for Case B).

The technique proposed here is not limited to linear-linear or
circular-linear conversions, but it is also applicable for arbitrary
transformations of light polarization. For example the conversion
between right circular and left circular polarization is analogous to
adiabatic passage via a level crossing [15]. To this end, we first start up
with Ω3(z), then we activate Ω1(z), then let Ω3(z) change sign while
Ω1(z) is having its maximal value, and then gradually make Ω3(z) to
fade away.

We can also change the polarization from linear to elliptical if we
first begin with Ω1(z), then we activate Ω3(z), and then let Ω1(z) and
Ω3(z) simultaneously fade away [cf. Eq. (9)]; this sequence is known in
quantum optics as fractional STIRAP [20].

V. Exact solution

As an example of polarization conversion we present here an exact
analytic solution to the Stokes polarization Eq. (1) for the slowly
varying birefringence components given by trigonometric functions:

Ω1ðzÞ = Ω0 sinðzπ = LÞ; ð11Þ

Ω3ðzÞ = Ω0 cosðzπ = LÞ: ð12Þ
Fig. 2. Fiber optics setup with overlapping horizontal and vertical linear birefringent
sections induced by z dependent stress (Case A). The magnitude of horizontal and
vertical stress is represented by initially increasing then decreasing, in length, red and
green arrows.
We assume that initially the Stokes vector is S(z=0)=(0,0,1), i.e.
the polarization is right circular. Then the solution for the Stokes
vector components as a function of z reads

S1ðzÞ =
Ω2

0L
2 + cos πz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 + Ω2

0

q� �
1 + Ω2

0L
2 sin

πz
L

� �
−
sin πz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 + Ω2

0

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + Ω2

0L
2

q cos
πz
L

� �
;

ð13Þ

S2ðzÞ =
2Ω0L

1 + Ω2
0L

2 sin
2 πz

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 + Ω2

0

q� �
; ð14Þ

S3ðzÞ =
Ω2

0L
2 + cos πz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 + Ω2

0

q� �

1 + Ω2
0L

2 cos
πz
L

� �

+
sin πz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 + Ω2

0

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + Ω2

0L
2

q sin
πz
L

� �
;

ð15Þ

where Λ=1/L. The adiabatic evolution takes place when Ω0L≫1. For
z=L/2 (quarter period) we have

S1 L= 2ð Þ =
Ω2

0L
2 + cos π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + Ω2

0L
2

q� �

1 + Ω2
0L

2 →
Ω0 L≫1

1; ð16Þ

S2 L= 2ð Þ = 2Ω0L
1 + Ω2

0L
2 sin

2 π
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + Ω2

0L
2

q� �
→

Ω0L≫1
0; ð17Þ

S3 L= 2ð Þ =
sin π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + Ω2

0L
2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + Ω2

0L
2

q →
Ω0L≫1

0: ð18Þ

This case exemplifies the conversion between circular and linear
polarization via STIRAP-like adiabatic process, as illustrated in Fig. 4
(at the point z=L/2).For z=L (half period) we have

S1 Lð Þ =
sin πz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 + Ω2

0

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + Ω2

0L
2

q →
Ω0L≫1

0; ð19Þ

S2 Lð Þ = 2Ω0L
1 + Ω2

0L
2 sin

2 πz
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 + Ω2

0

q� �
→

Ω0L≫1
0; ð20Þ
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S3 Lð Þ =
Ω2

0L
2 + cos πz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 + Ω2

0

q� �

1 + Ω2
0L

2 →
Ω0L≫1−1: ð21Þ

This case exemplifies the conversion between right circular and
left circular polarization via level crossing adiabatic process, which is
illustrated in Fig. 4 (at the point z=L).
Fig. 4. Top frame: birefringence vector components as a function of the propagation
length when the components are given as in Eqs. (11) and (12). Middle frame: the
evolution of the Stokes polarization vector components for Ω0=20/L, adiabatic
evolution start to work. Bottom frame: the evolution of the Stokes polarization vector
components for Ω0=100/L with better adiabatic evolution, smaller ripples on the
curves, compare with the middle frame.
VI. Conclusion

In conclusion, we have shown that the powerful technique of
STIRAP, which is well-known in quantum optics, has an analogue in
the evolution of light polarization described by the equation for the
Stokes vector. The factor that enables this analogy is the equivalence
of the Schrödinger equation for a resonant three-state Λ system, to the
torque equation for the Stokes vector. The proposed technique
transforms polarization with the same efficiency and robustness as
STIRAP, therefore a polarization device based on this scheme is
frequency independent and it is robust against variations of the
propagation length, in contrast to the other well-known methods for
conversion of light polarization.
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and DMU02-19/09 and Sofia University Grant 074/2010. We are
grateful to Klaas Bergmann for useful discussions.
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