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We present an analytically exactly soluble two-state model, in which a hyperbolic-secant-shaped pulsed
interaction has a phase jump of � at the time of its maximum. The detuning has a constant part and a
hyperbolic-tangent chirp term. For �=0, this model reduces to the Demkov-Kunike model, which in turn
contains as particular cases three other well-known models: the Rosen-Zener, Allen-Eberly, and Bambini-
Berman models. A nonzero � induces dramatic changes in the transition probability, ranging from complete
population inversion to complete population return. The analytic results are particularly instructive in the
adiabatic limit and demonstrate that complete population inversion can always occur for a suitable choice of �.
The jump phase � can therefore be used as a control parameter for the two-state transition probability.
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I. INTRODUCTION

The coherently driven two-state quantum system is a fun-
damental object in quantum physics. In many experiments a
two-state transition suffices to describe the essential changes
in the internal state of a quantum system subjected to a gen-
erally time-dependent external field. Moreover, when mul-
tiple states are involved, the quantum dynamics can usually
be understood only by reduction to an effective two-state
dynamics.

The coherent two-state dynamics is extensively studied,
particularly in relation to coherent atomic excitation �1�,
nuclear magnetic resonance �2�, and most recently, as a qubit
for quantum information processing �3�. On exact resonance,
when the frequency of the driving field is equal to the Bohr
transition frequency, the Schrödinger equation is solved ex-
actly, for any time dependence of the coupling ��t� �the Rabi
frequency�, and the transition probability P depends on the
pulse area A=�−�

� ��t�dt only, P=sin2�A /2�. Of particular
use are the � pulses �A=� or odd multiples of ��, which
produce complete population inversion �CPI� between the
two states; 2� pulses �A=2� or even multiples of ��, which
produce complete population return �CPR�; and half-�
pulses �A=� /2 or half-integer-multiple of ��, which create
an equal coherent superposition of the two states.

There are several exactly soluble nonresonant two-state
models, including the Rabi �4�, Landau-Zener �5�, Rosen-
Zener �6�, Allen-Eberly �7,8�, Bambini-Berman �9�, Dem-
kov-Kunike �10�, Demkov �11�, Nikitin �12�, and Carroll-
Hioe �13� models. Methods for approximate solutions are
also available, such as the perturbation theory and the adia-
batic approximation. Adiabatic evolution is of particular in-
terest, because, when accompanied by an energy-level cross-
ing, it leads to CPI—usually referred to as rapid adiabatic
passage �7,14�. Noncrossing energies produce no excitation
in the end of adiabatic evolution, i.e., CPR.

Analytical solutions—exact or approximate—allow one
to design simple recipes for control of the transition prob-
ability and, more generally, of the entire two-state propaga-
tor. The traditional control parameters are the pulse area, the
static detuning, and the frequency chirp.

In this paper we show that the transition probability can
be controlled efficiently by another control parameter: a
phase jump of the field amplitude, i.e., in the Rabi frequency.
To this end, we present an exact analytical solution of a
model with a Rabi frequency of hyperbolic-secant shape and
a phase jump of � at the time of its maximum. The detuning
is a sum of a constant �static� detuning �0 and a hyperbolic-
tangent chirp term. For �=0 this model reduces to the
Demkov-Kunike �DK� model �10�, with its three well-known
special cases: the Rosen-Zener �RZ� �6�, Allen-Eberly �AE�
�7,8�, and Bambini-Berman �BB� �9� models. For nonzero �,
however, a variety of unexpected features occur. For ex-
ample, in the adiabatic limit, the transition probability for
�=0 is 0 for the RZ model, 1 for the AE model, and 0.5 for
the BB model. For �= ±�, however, it is 1 for the RZ
model, 0 for the AE model, and again 0.5 for the BB model;
for �= ±� /2, the transition probability for the BB model
oscillates between 0 and 1, as for resonant excitation.

The CPI limit has been discussed for the RZ model for
�=� �15�. This CPI has been found to be robust against
variations in the experimental parameters, a feature reminis-
cent of adiabatic passage. The phase-jump CPI mechanism,
however, is not adiabatic passage, but it is induced by a
�-function-shaped interaction �nonadiabatic coupling� in the
adiabatic basis. Here we generalize this result for arbitrary �,
and moreover, we solve the more general phase-step DK
model.

This paper is organized as follows. We derive the exact
analytical solution for the phase-jump DK model in Sec. II.
We then discuss the three important special cases of the RZ,
AE, and BB models in Sec. III. We derive the adiabatic so-
lution in Sec. IV, which provides a particularly clear picture
of the dependence on �. We discuss experimental feasibility
in Sec. V and present a summary in Sec. VI.

II. DEMKOV-KUNIKE MODEL WITH A PHASE JUMP

The time evolution of a coherently driven two-state quan-
tum system is described by two coupled ordinary differential
equations for the probability amplitudes c1�t� and c2�t� of
states �1 and �2,
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i
d

dt
c1�t� =

1

2
��t�e−iD�t�c2�t� , �1a�

i
d

dt
c2�t� =

1

2
�*�t�eiD�t�c1�t� , �1b�

where D=�0
t ��t��dt�. Equations �1� are derived from the

Schrödinger equation within the conventional rotating-wave
approximation �RWA� �1�. For laser-driven atomic or mo-
lecular transitions, �=	0−	 is the frequency detuning be-
tween the laser carrier frequency 	 and the Bohr transition
frequency 	0, and ��t�=−d ·E�t� /
 is the Rabi frequency,
where d is the transition dipole moment and E�t� is the laser
electric-field envelope.

We shall derive the solution of Eqs. �1� for a model in
which the coupling and the detuning are given by

��t� = ��0 sech�t/T� �t � 0� ,

ei��0 sech�t/T� �t � 0� ,
� �2a�

��t� = �0 + B tanh�t/T� . �2b�

Without loss of generality the constant real frequencies �0,
�0, and B and the pulse width T will be assumed positive.
We shall use the characteristic pulse duration T as the unit of
time and 1/T as the frequency unit. The phase-jump model
�2� resembles the DK model �10�, where the coupling ��t� is
a bell-shaped sech function at all times, without the phase
jump at t=0. We shall therefore follow the derivation of �10�
up to time t=0, where the phase jump will be dealt with.

The first step is to decouple Eqs. �1�; we find

c̈1 − � �̇

�
− i�	ċ1 +

1

4

�
2c1 = 0, �3�

with the overdot denoting a time derivative. The next step is
to change the independent variable from t to z�t�= �1
+tanh�t /T�� /2; then, z�−��=0, z�0�= 1

2 , and z�+��=1, and
Eq. �3� transforms into

z�1 − z�
d2C1

dz2 + �1

2
+ i�� − 
� − �1 − 2i
�z�dC1

dz
+ �2C1 = 0,

�4�

where Cn�z�=cn(t�z�) and

� =
�0T

2
, 
 =

BT

2
, � =

�0T

2
. �5�

Equation �4� has the same form as the Gauss hypergeometric
equation and its solution can be expressed in terms of the
Gauss hypergeometric function F�� ,� ;� ;z� �16� as

C1�z� = A1F��,�;�;z�

+ A2z1−�F�� + 1 − �,� + 1 − �;2 − �;z� , �6�

where A1 and A2 are integration constants and

� = 
�2 − 
2 − i
 , �7a�

� = − 
�2 − 
2 − i
 , �7b�

� =
1

2
+ i�� − 
� . �7c�

By using Eqs. �1a�, �A2a�, and �A2b� and the relation eiD

=2−2i
z�−1/2�1−z�1/2−�−2i
, one obtains

C2�z� = i2−2i
�1 − z�1−�−2i
�− A1
�

�
z�F�� + 1,� + 1;� + 1;z�

+ A2
1 − �

�
F�� + 1 − �,� + 1 − �;1 − �;z�� . �8�

The constants A1 and A2 are determined from the initial con-
ditions C1�0� and C2�0�,

A1 = C1�0�, A2 =
− i�22i


1 − �
C2�0� . �9�

The complete solution is expressed by the propagator
U�z ,0�, which is defined by C�z�=U�z ,0�C�0�, with C�z�
= �C1�z� ,C2�z��T. The propagator from t→−� �z=0� to time
t=0 �z= 1

2
� reads

U�1

2
,0	 = �a − b*

b a* � , �10�

where the Cayley-Klein parameters are

a = F��,�;�;
1

2
	 , �11a�

b = − i
�

2�
F�1 + �,1 + �;1 + �;

1

2
	 . �11b�

For t�0, a similar derivation as for t�0 delivers the
propagator from t=0 �z= 1

2
� to t→� �z=1�,

U�1,
1

2
	 = � c* − d*ei�

de−i� c
� , �12�

with

c = F��,�;1 + � + � − �;
1

2
	 , �13a�

d = −

i�F�1 + �,1 + �;2 + � + � − �;
1

2
	

2�1 + � + � − ��
. �13b�

The full propagator is U�1,0�=U�1, 1
2

�U� 1
2 ,0�, or explic-

itly,

U�1,0� = �ac* − bd*ei� − b*c* − a*d*ei�

bc + ade−i� a*c − b*de−i� � . �14�

The transition probability therefore reads

PDK
� = 
U12
2 = 
ad
2 + 
bc
2 + 2 Re�a*bcd*ei�� . �15�

For �=0 �DK model� the transition probability �15� can be
expressed in terms of elementary functions �10�
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PDK =
cosh�2�
� − cos�2�
�2 − 
2�

cosh�2��� + cosh�2�
�
. �16�

For ��0, the transition probability is expressed by the hy-
pergeometric functions of Eqs. �11� and �13�.

III. SPECIAL CASES

We are going to examine three important special cases of
our model—namely, when B=0, �0=0, and �0=B, which in
the absence of a phase jump ��=0� represent the RZ �6�, AE
�7�, and BB �9� models, respectively.

A. Rosen-Zener model „B=0…

In the RZ model �B=0� Eqs. �7� reduce to �=−�=�, �

= 1
2 + i�. Then, using Eqs. �A2g� and �A2h�, Eqs. �11� reduce

to

a = c* = �1/22−������� + �� , �17a�

b = − d* = − i�1/22−������� − �� , �17b�

with

� = ���1

4
+

1

2
� +

1

2
i�	��3

4
−

1

2
� +

1

2
i�	�−1

, �18a�

� = ���3

4
+

1

2
� +

1

2
i�	��1

4
−

1

2
� +

1

2
i�	�−1

. �18b�

The transition probability reads

PRZ
� = ��cos �� sin � − sin �� tanh �� cos ��sin

�

2

+ sin �� sech �� cos
�

2
�2

, �19�

where

� = 2 arg���1

4
−

1

2
� −

1

2
i�	��1

4
+

1

2
� +

1

2
i�	� . �20�

For �=0, Eq. �19� reduces to the RZ formula �6�

PRZ =
sin2 ��

cosh2 ��
. �21�

When �= ±�, Eq. �19� coincides with the transition prob-
ability in the step-sech model �15�.

When 
�+ i�
 and exp���� are large we use Eqs. �A3� and
�A4b� to obtain

� �
�

2
+ �� − arctan

�

�
− 2e−�� cos 2��

+ O�e−2��, 
� + i�
−2� , �22�

and hence

PRZ
� � � �


�2 + �2�1 −
2�

�
e−�� cos ��	sin

�

2

+ 2e−�� sin �� cos
�

2 �2

. �23�

The transition probability �23� can be represented as a sum

of two terms, smooth P̄ and oscillatory P̃ �vs ��,

PRZ
� = P̄ + P̃ , �24a�

P̄ =
�2

�2 + �2 sin2 �

2
, �24b�

P̃ = −
4��

�2 + �2e−�� cos �� sin2 �

2

+
2�


�2 + �2
e−�� sin �� sin � . �24c�

In the limit of large coupling ����� and sufficiently large

detuning ���1� one finds P̄→sin2�� /2�, P̃→0, and hence
the transition probability depends only on the parameter �.

The plot in Fig. 1 shows the exact transition probability
�19� as a function of the peak Rabi frequency �0 and the
phase jump �. This plot is reminiscent of the “fitness land-
scape” plots in optimal control theory �17�. For zero phase
jump the transition probability is given by the RZ formula
�21� and it is small because of the relatively large detuning
��0T=2�. As the phase � increases, the probability landscape
is dominated by oscillations, as evident from the exact solu-
tion �19� and the approximation �24�.

When �= ±� the probability tends to unity for large �0,
which leads to complete population inversion �15� as is eas-
ily seen from Eqs. �24�.
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FIG. 1. Contour plot of the transition probability PRZ
� for the RZ

model, Eq. �19�, vs the peak Rabi frequency �0 and the phase jump
� for B=0 and �0=2/T.
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B. Allen-Eberly model „�0=0…

For the AE model ��0=0�, we have �= 1
2 − i
. Then, using

Eq. �A2f�, Eqs. �11� and �13� reduce to

a = c =

�����

��� + 1

2
	��� + 1

2
	 , �25a�

b = d =
2i

�


�����

���

2
	���

2
	 . �25b�

The transition probability �15� reads

PAE
� = �1 −

cos2 �
�2 − 
2

cosh2 �

	cos2 �

2
. �26�

For �=0, Eq. �26� reduces to the AE formula �7�

PAE = 1 −
cos2 �
�2 − 
2

cosh2 �

. �27�

Equation �26� shows that the phase � factorizes in the
probability. The conditions for complete population inver-
sion are �=0 and 
�2−
2=n+ 1

2 , where n is an integer.
Moreover, for adiabatic evolution ���
�1� and �=0, the
transition probability tends to unity. A contour plot of the
probability �26� is presented in Fig. 2. For zero jump phase
��=0� the transition probability is given by the AE formula
�27� and exhibits small-amplitude oscillations that regularly
touch unity. As the phase � departs from zero, the oscilla-
tions in the probability “landscape” gradually decrease.

As the figure demonstrates and as is also evident from Eq.
�26�, the transition probability vanishes identically when �
= ±�. The physical reason is that the Hamiltonian is then an

antisymmetric function of time, which leads to complete
population return �symmetry-forbidden transition� �18�.

C. Bambini-Berman model „�0=B…

For the BB model ��0=B�, the transition probability �15�,
which is plotted in Fig. 3, cannot be expressed by means of
simple functions. The probability landscape is dominated by
large-amplitude oscillations, ranging from zero to unity, both
versus �0 and �. We see areas of complete population inver-
sion for �� ±� /2 and for specific values of �0. We shall
explain this unexpected feature in the next section using the
adiabatic solution for the DK model.

IV. ADIABATIC SOLUTION

We shall now derive the adiabatic solution for the phase-
jump DK model �2�. To this end, it is convenient to write
Eqs. �1� in the matrix form

i

d

dt
c�t� = H�t�c�t� , �28�

where c�t�= �c1�t� ,c2�t��T and the Hamiltonian, after a
�population-preserving� phase transformation, has the form

H =



2
�− � �

�* �
� . �29�

The adiabatic states �+ and �− are defined as eigenstates
of the Hamiltonian H�t��±�t�=
�±�t��±�t�, and the eigenval-
ues are 
�±�t�, with

�±�t� = ±
1

2


��t�
2 + �2�t� . �30�

The amplitudes of the adiabatic states a�t�= �a+�t� ,a−�t��T are
connected with the diabatic �original� ones c�t� via the rotat-
ing matrix
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FIG. 2. Contour plot of the transition probability PAE
� for the AE

model vs the peak Rabi frequency �0 and the phase jump � for
�0=0 and B=1/T.
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FIG. 3. Contour plot of the transition probability PBB
� for the BB

model vs the peak Rabi frequency �0 and the phase jump � for
B=�0=1/T.
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R��� = � cos � sin �

− sin � cos �
� �31�

as c�t�=R(��t�)a�t�, where �= 1
2 arctan�� /��. The Schröd-

inger equation in the adiabatic basis reads

i

d

dt
a�t� = Ha�t�a�t� , �32�

where

Ha = 
��− − i�̇

i�̇ �+
� . �33�

If 
�̇
� 
�±
��, then the evolution is adiabatic and the solu-
tion for the propagator in the adiabatic basis from an initial
time t= ti to a final time t= tf reads

Ua�tf,ti� = �ei� 0

0 e−i�� , �34�

where �=�ti
tf��t�dt. The full propagator in the original basis

for the model �2� reads

U�tf,ti� = �*R„��tf�…Ua�tf,0�R„− ��0�…

� �R„��0�…Ua�0,ti�R„− ��ti�… , �35�

with

� = �1 0

0 ei�� . �36�

Rosen-Zener model �B=0�. In this case ��−��=����=0
and ��0�= 1

2 arctan�� /��. The transition probability, obtained
as 
U12
2 from Eq. �35�, reads

PRZ
a =

�2

�2 + �2 sin2 �

2
, �37�

which is equal to the probability �23� when ��1 �which is
the adiabatic condition for the RZ model�.

Allen-Eberly model ��0=0�. For this model we have
��−��=� /2, ��0�=� /4, and ����=0. Hence we obtain from
Eq. �35�

PAE
a = cos2 �

2
, �38�

which coincides with the probability �26� when ��
�1
�which is the adiabatic condition for the AE model�.

Bambini-Berman model �B=�0�. In this case, ��−��
=� /4, ��0�= 1

2 arctan�� /
� and ����=0. We obtain from Eq.
�35�

PBB
a =

1

2
+

1

2
sin 2�0 sin 2��0�sin �

−
1

2
cos 2�0 sin 4��0�sin2 �

2
, �39�

where �0=�−�
0 1

2

�2�t�+�2�t�dt. For ��
, ��0��� /4

−
 /2� and Eq. �39� reduces to

PBB
a �

1

2
+

1

2
sin 2�0 sin � −




�
cos 2�0 sin2 �

2
. �40�

Now, when �= ±� /2 the probability oscillates between zero
and unity. From Eq. �40� we also see that there is an asym-
metry in the maxima and minima for �=� /2 and �=−� /2,
as seen in Fig. 3.

In Fig. 4 we compare the adiabatic solution �39� with the
exact solution �15� for the transition probability vs the peak
Rabi frequency �0. We see that the adiabatic solution is in-
discernible from the exact solution except for small values of
�0. For �=0 the adiabatic solution gives a constant transi-
tion probability of 1

2 . For �= ± �
2 it oscillates between zero

and unity and, finally, for �=� the transition probability
tends to 1

2 in an oscillatory fashion. The difference between
the manner in which the asymptotic value of 1

2 is reached for
�=0 and �=�, which is observed in Fig. 4, is easily re-
vealed upon closer inspection of the adiabatic solution �39�.
Indeed, for �=0 only the first term of 1

2 survives, whereas
for �=� the last term with sin2�� /2� is also present and it
generates oscillations in the transition probability.

V. EXPERIMENTAL IMPLEMENTATION

The phase step in the time dependence of the Rabi fre-
quency �2a� can be realized by modern femtosecond pulse-
shaping technology �19�. The Fourier transform of the pulse
�2a� is �up to a global phase factor ei�/2�
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FIG. 4. �Color online� Comparison between the exact solution
�solid curve� and the adiabatic solution �39� �dashed curve� for the
Bambini-Berman model �with B=�0=3/T� as a function of the
peak Rabi frequency �0 for �=0, �= ±� /2, and �=�.
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�̃�	� =
�

2

cos��/2�
cosh��	/2�

+
sin��/2�


2�

�Im���3 + i	

4
	 − ��1 + i	

4
	� , �41�

where ��z� is the psi �polygamma� function �20�. This Fou-
rier transform is shown in Fig. 5 for phase jumps of �=0,
� /2, and �. The phase jump in the temporal domain makes
the Fourier spectrum asymmetric. It is important that this
spectrum is modulated by a �rapidly vanishing� pulse-shaped
function of 	, which confines the Fourier spectrum within a
limited frequency range. Such a spectrum can therefore be
easily produced by modern pulse shapers.

VI. CONCLUSIONS

In this paper, we have presented an analytically exactly
soluble two-state model, in which the time-dependent inter-
action has a hyperbolic-secant pulse shape, with a phase
jump of � at the time of its maximum. The detuning has a
constant part and a hyperbolic-tangent chirp term. For �=0,
this model reduces to the Demkov-Kunike model, which in
turn contains as particular cases three other well-known
models: the RZ, AE, and BB models. A nonzero � induces
dramatic changes in the transition probability, from complete
population inversion to complete population return. The ana-
lytic results are particularly transparent in the adiabatic limit,
which demonstrates that complete population inversion can
always occur for a suitable choice of �: for �= ±� in the RZ
model, for �=0 in the AE model, and for �= ±� /2 in the
BB model. The phase � can therefore be used as a control
parameter for the two-state transition probability. Moreover,
� can serve as a control parameter also when the jump oc-
curs at any other instant of time. However, the present choice
of jump at t=0 is the simplest and most natural choice.

The phase effects reported here are not limited to the sech
pulse shape or the tanh frequency chirp, as is evident from
the adiabatic solution. For instance, these effects can be dem-
onstrated by Gaussian pulses.

In conclusion, the exact solution derived in this paper,
supported by the adiabatic solution applicable to more gen-

eral time dependences, clearly demonstrates that a single
phase jump in the driving field can be used as an efficient
control tool for quantum-state engineering. In a future pub-
lication we shall describe how phase jumps can be used to
steer population transfer in multistate systems.
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APPENDIX: RELEVANT PROPERTIES OF THE
GAUSS HYPERGEOMETRIC FUNCTION AND

THE EULER � FUNCTION

The Gauss hypergeometric function F�� ,� ;� ;z� satisfies
the Gauss hypergeometric equation �16�

z�1 − z�w� + �� − �� + � + 1�z�w� − ��w = 0. �A1�

The Gauss function has the following properties �16�:

d

dz
F��,�;�;z� =

��

�
F�� + 1,� + 1;� + 1;z� , �A2a�

d

dz
�z�−1F��,�;�;z�� = �� − 1�z�−2F��,�;� − 1;z� ,

�A2b�

F��,�;�;z� = �1 − z��−�−�F�� − �,� − �;�;z� , �A2c�

F��,�;�;0� = 1, �A2d�

F��,�;�;1� =
������� − � − ��
��� − ����� − ��

, �A2e�

F��,�;
� + � + 1

2
;
1

2
	 =


���� + � + 1

2
	

��� + 1

2
	��� + 1

2
	 , �A2f�

F��,− �;�;
1

2
	 = �1/22−������ 1

��� + �

2
	��� − � + 1

2
	

+
1

��� + � + 1

2
	��� − �

2
	� , �A2g�
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FIG. 5. �Color online� Fourier transform of the sech pulse for a
jump phase of 0, � /2, and �.

B. T. TOROSOV AND N. V. VITANOV PHYSICAL REVIEW A 76, 053404 �2007�

053404-6



F�1 + �,1 − �;1 + �;
1

2
	

=
�

�
�1/221−������ 1

��� + �

2
	��� − � + 1

2
	

−
1

��� + � + 1

2
	��� − �

2
	� . �A2h�

The � function obeys the reflection formula �16�

��z���1 − z� =
�

sin �z
�A3�

and has the asymptotic expansions �16�

ln ��z� �
1

2
ln 2� + �z −

1

2
	ln z − z +

1

12z
+ O�
z
−3� ,

�A4a�

��z + a�
��z + b�

� za−b�1 +
�a + b − 1��a − b�

2z
+ O�
z
−2�� .

�A4b�
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