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Effect of resonances on the transport properties of two-dimensional disordered systems
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We study both analytically and numerically how the electronic structure and the transport properties of a
two-dimensional disordered system are modified in the presence of resonances. The energy dependence of the
density of states and the localization length at different resonance energies and strengths of coupling between
resonances and random states are determined. The results show that at energy equal to the resonance energy
there is an enhancement in the density of states. In contrast, the localization length remains unaffected from the
presence of the resonances and is similar to that of the standard Anderson model. Finally, we calculate the
diffusion constant as a function of energy and we reveal interesting analogies with experimental results on light
scattering in the presence of Mie resonances.
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The study of waves propagating in disordered lattices d
ing the past years has attracted much attention and m
interesting phenomena have been, more or less, well un
stood. However, until recently the interest of the phys
community was primarily focusing on quantum, i.e., ele
tronic waves. It was the observation of the coherent ba
scattering effect in classical wave systems,1 the effect analo-
gous to weak localization in the electronic case, wh
triggered a burst of interest in further studies of scatter
disordered classical wave systems. The question of loca
tion of classical waves has attracted attention for two r
sons. First, the properties of classical waves such as
waves, microwaves, and acoustic waves in random media
of fundamental interest for their own sake. Second, class
waves can serve as a model system for testing the theo
Anderson localization of electrons experimentally in a cle
way, without the complication of strong inelastic scatteri
and other effects of electron-electron and electron-pho
interactions. Existing theories predict the localization of cl
sical waves under certain circumstances,1 leading thus to the
conclusion that the analogy between quantum and clas
waves works reasonably well. However, there is no conc
sive experimental evidence, and thus the full corresponde
is not yet established beyond any doubt~a thorough discus-
sion may be found in Refs. 2 and 3!.

The present paper has been motivated by an experime
work, performed several years ago4 on the scattering of light
by a disordered medium in the presence of Mie resonan
A low concentration of Mie resonances leads to a stro
change in the transport properties of the system, reflecte
a strong reduction of the transport velocity, or equivalen
of the diffusion constantD(E), near the resonance energie
With increasing concentration of resonant scatterers, the
in D(E) widens and becomes less deep. Qualitatively spe
ing, the transport velocity is reduced because a lot of ene
is temporarily stored inside the resonance or equivalently
wave spends a long time~dwell time! inside the Mie reso-
nances.

To understand this surprising result, different theoreti
approaches based on different considerations w
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developed.4–6 However, there are controversies as to whet
this can be applied to the quantum case, i.e., electro
waves. In fact, at low concentration of Mie resonances,4 in
the spirit of the coherent-potential approximation~CPA!,1 it
was shown that, unlike electronic systems, the diffusion c
stantD(E) for classical waves decreases sharply close to
resonance energies. This result was viewed as due to
different Ward identity caused by an energy-dependent s
tering potential in the classical case. An extension of
CPA to the strong concentration limit,5 the so-called coated
CPA, shows that the effect of the Mie resonances decre
at this regime. On the other hand, in a recent work,6 it was
shown that an extension of the random matrix theo
~RMT!,7 capable of accounting for the presence of resona
scattering, is able to explain the obtained experimental re
and generalize it to both quantum and classical waves,
though the corresponding Ward identities are different.8

In the present paper, we extend our previous analysis
the effect of resonances on electrons in a one-dimensi
disordered medium9 to higher dimensions. The quantitie
that will monopolize our interest will be the density of stat
~DOS! r(E) and the localization lengthl `(E). In the one-
dimensional case,9 at low concentration and weak coupling
both these quantities are affected strongly by the presenc
resonances. The DOS exhibits a Lorentzian peak at the r
nance energy and the localization length is drastically
creased except at the resonance energy that remains e
tially the same with that corresponding to the stand
Anderson model. We will show that in higher dimension
the density of states exhibits the same resonant enhance
while the localization length remains unaffected in contr
to the one-dimensional case. Finally, by making use of
well known results for quasi-one-dimensional systems
will compute the diffusion constantD(E) and identify simi-
larities with the corresponding problem of light scattering
the presence of Mie resonances.

The mathematical model we consider is the tight-bind
Anderson Hamiltonian on a two-dimensional lattice,

H5(
l

e l u l &^ l u1(
l ,l 8

t l l 8u l &^ l 8u, ~1!
9880 ©2000 The American Physical Society
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wherel denote the sites of a two-dimensional latticeL3M .
The local site energiese l are taken independently at rando
within the interval@2W/2,W/2#. At some randomly chosen
sitesk (m in total!, the energiesek are taken to be fixed, i.e.
ek5Er . These energies correspond to the resonance e
gies. To simplify the problem, we assume that all resonan
have the same energyEr . The hopping matrix elementst l l 8
are restricted to nearest neighbors. When the coupling is
tween random states (N in total!, t l l 8 are constant taken to b
the unit of energy while the coupling between a reson
state and another statet l l 8 has a different constant valuev.

To evaluate the density of statesr(E) of this system, we
start by writing the original (N1m)3(N1m) Hamiltonian
matrix H in the following form:

H5S H0 V

VT ErI m
D . ~2!

This form can be obtained easily by separating the reso
states from random states.VT denotes the transpose ofV and
H0 is a N-dimensional matrix that describes the part of t
Hamiltonian H without resonances. HereI m is the
m-dimensional unit matrix, andEr is the resonance energy o
each of them resonant scatterers. The rectangular matrixV
couples them resonances toH0. All the matrix elements of
each column ofV are zero except four with valuev.

The Green’s function corresponding to the Hamiltoni
~2!, can be written as

G5S G0 GV

GV
T Gr

D 5S E1 ih2H0 2V

2VT ~E2Er !I m1 ih D 21

.

~3!

To determine the different matrices inG, we use the previous
relation to obtain the following set of equations:

~E2H01 ih!GV2VGr50,

2VTGV1@~E2Er !I 1 ih#Gr51. ~4!

Solving Eq.~4! with respect toGr we get the expression

Gr5
1

~E2Er !I 1 ih2VTGaV
, ~5!

where Ga51/(E2H01 ih). In the limit of weak coupling
v!1 and low concentration of resonances one can make
approximationGa.G0. Then the density of states is give
by

r~E!52
1

ip S Tr G01Tr
1

~E2Er !I 1 ih2VTG0V
D , ~6!

which, in the limit of v!1 and low concentration of reso
nances, can be written as

r~E!5r0~E!1m
G/2p

~E2Er !
21~G/2!2

, ~7!

where r0(E)52(1/ip)Tr G0. To a good approximation
r0(E) can be identified as the density of states of the st
dard two–dimensional Anderson model without resonanc
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The effect of the resonances is given by the second term
the right hand side of Eq.~7!. It exhibits a resonance en
hancement near the resonance energyEr described by a
Lorentzian peak. The width,G'2pr0v2, is given by the
decay width of individual resonances. Based on phys
grounds, we expect that in the limit of weak coupling (v
!1) there will be a strong degeneracy due to the resona
states. This degeneracy is responsible for the resonance
hancement of the DOS atE5Er . Gradually, as the coupling
with the other states is increased, the degeneracy and co
quently the peak inr(Er) decrease. These expectations a
in full agreement with Eq.~7!. The same result has bee
found in the extended RMT, Ref. 6, with the use of t
super-symmetry formalism. Here however Eq.~7! appears
natural under the frame of the tight-binding picture.

To verify the validity of the approximations used in th
derivation of Eq.~7! and to go beyond the weak couplin
limit, we have performed numerical simulations of the tw
dimensional Anderson model withm randomly distributed
resonant states. Our main concern in this study is to inve
gate how the DOS and the localization length behave a
function of energy for various resonance concentrationf
5m/(N1m) and coupling strengthsv. To evaluate these
quantities, we used the iterative procedure developed in
10. This method is particularly suitable for the calculation
various quantities for a macroscopically large system
scribed by a microscopic Hamiltonian. The system we c
sidered is a cylinder of widthM in y direction and lengthL in
x direction. ForL that are large compared toM the sample is
essentially a quasi-one-dimensional system. For the ab
calculations, we have used samples of lengthL5105 and
widths up toM5100.

We first examine the behavior ofr(E) as a function of the
coupling constantv and the resonance concentrationf. Our
numerical results for low resonance concentration and v
ous values of the couplingv are reported in Fig. 1. As we
can see, atE5Er the DOS shows a resonance enhancem
which is very well reproduced by the analytical formula~7!.
As the resonance couplingv increases we observe a gradu
decrease of the height of the Lorentzian peak as well as
increase of its width. In the limit ofv51, we recover the

FIG. 1. The density of statesr(E) for the two-dimensional
Anderson model in the presence of resonance states with en
Er50 and various values of the coupling constantv corresponding
to different symbols. The thick dashed line corresponds to
Anderson model without resonances. In all cases the diso
strength isW54.
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Anderson case. We also investigated the dependence o
DOS on the concentrationf of resonances in the disordere
sample. In the weak coupling limit, we found that by increa
ing the concentrationf the Lorentzian peak in the DOS in
creases in high, in agreement with the analytical formula~7!.
This main behavior of DOS, for small resonance coupl
v50.2, is presented, for two particular values of concen
tion, in Fig. 2. We note that exactly the same behavior
r(E) was observed for the one-dimensional case.9

Next, we calculate the localization lengthl `(W,E),
needed for the determination of diffusion constantD(E).
Using the same numerical approach10 we define a localiza-
tion length l M(W,E) depending onM, W, and E. The
asymptotic localization lengthl `(W,E) corresponding to the
infinite system, is then defined in the limit ofM→`, i.e.,

l `~W,E![ l M→`~W,E!. ~8!

The numerical results, performed for different values of re
nance concentration, show thatl M(E) can be considered ap
proximately independent from the concentrationf and from
the resonance couplingv ~as long as the concentration is n
extremely large!. Our results remain practically the same f
all values ofM we have considered in our calculations~up to
M5100). Figure 3 illustrates this behavior of the localiz
tion length l M(E) for one particular value off versus the
corresponding one of the standard Anderson model. This
havior of the localization length is totally different from th
one found in the one-dimensional case, wherel `(E) de-
creases drastically everywhere except close to the reson
Er where it is approximately equal to the corresponding o
obtained for the standard Anderson model.9 The underlying
physical reason is that the electron in the two dimensio
geometry can bypass the resonances following a diffe
path. We expect that the same behavior will appear als
three dimensions. In contrast, in the one-dimensional c
the electron has to pass through the resonance and th
suffer resonance tunneling. Thus, the one-dimensional st
ture acts as a filter, allowing only electrons with energyEr to
transmit.

We now turn our attention to the calculation of the diff
sion constant, in the presence of resonances,12 which will be

FIG. 2. Density of statesr(E) for the two-dimensional Ander-
son model in the presence of resonances with resonance en
Er50, coupling constantv50.2 and various concentrations. Th
thick dashed line corresponds to the Anderson model without r
nances. In all cases the disorder strength isW54.
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the linking observable with the experimental results.4 In
quasi-one-dimensional multichannel systems the diffus
constantD(E) is related withl `(E) and r(E) through the
relation11

D~E!5
l `~E!

4pr~E!
. ~9!

Then, it becomes clear from the previous analysis thatD(E)
will show a dip near the resonance energyEr , due to the
resonance enhancement of the density of statesr(E). How-
ever, in order to compare the behavior ofD(E) with the
experimental results4 we have in addition, to take into ac
count the fact that the strength of the resonance couplinv
depends on the concentration of resonancesf as v; f 5/6.6

Figure 4 showsD(E) versus energy for different concentra
tions. In agreement with the experimental results,4 we find
that an increase off causes a decrease ofD far away from the
resonance while the dip near the resonance energyEr widens
and eventually disappears forv;1. This result identifies the

FIG. 4. Normalized diffusion constantD(E)/D0(E) calculated
numerically for the two-dimensional Anderson model as a funct
of energy. The different curves correspond to different concen
tions f of the resonances (D0 is the diffusion constant in the absenc
of resonances!.
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FIG. 3. Localization lengthl M(E) in the presence (s) and ab-
sence ~* ! of resonances calculated numerically for the tw
dimensional Anderson model as a function of energy. The width
the strip isM520, and the disorder strength isW54. The reso-
nance energy isEr50, while the resonance concentration and co
pling are f 52.4 andv50.2, respectively. It is clear thatl M(E) is
not affected by the presence of resonances.
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resonant behavior of the DOS as the main explanation for
dip in the diffusion constant. Moreover, it establishes
equivalence of transport properties in the presence of r
nances, between classical and quantum waves.

In conclusion, we have studied, both analytically and n
merically, the effect of resonances on the transport prope
of electrons in two-dimensional tight-binding Anderso
model. At low concentration and weak coupling the DOS
affected strongly by exhibiting a Lorentzian peak at re
nance energy. As the coupling strength increases, the w
G of the Lorentzian increases and the resonance structu
DOS is smeared out. In contrast, the localization length
es
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unaffected from the resonances. An application of the f
mula, l `(E)54pr(E)D(E),11 identifies the behavior of
r(E) as the explanation for the observed experimental
sults of the diffusion constant. This establishes the anal
between classical and quantum waves. Our results are sim
to those obtained within the extended RMT.6
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