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Effect of resonances on the transport properties of two-dimensional disordered systems
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We study both analytically and numerically how the electronic structure and the transport properties of a
two-dimensional disordered system are modified in the presence of resonances. The energy dependence of the
density of states and the localization length at different resonance energies and strengths of coupling between
resonances and random states are determined. The results show that at energy equal to the resonance energy
there is an enhancement in the density of states. In contrast, the localization length remains unaffected from the
presence of the resonances and is similar to that of the standard Anderson model. Finally, we calculate the
diffusion constant as a function of energy and we reveal interesting analogies with experimental results on light
scattering in the presence of Mie resonances.

The study of waves propagating in disordered lattices durdeveloped:®However, there are controversies as to whether
ing the past years has attracted much attention and marflis can be applied to the quantum case, i.e., electronic
interesting phenomena have been, more or less, well undetaves. In fact, at low concentration of Mie resonarites,
stood. However, until recently the interest of the physicsthe spirit of the coherent-potential approximati@PA),” it
community was primarily focusing on quantum, i.e., elec-Was shown that, un_llke electronic systems, the diffusion con-
tronic waves. It was the observation of the coherent backStantD(E) for classical waves decreases sharply close to the

scattering effect in classical wave systehtke effect analo- resonance energies. This result was viewed as due to the

tion of classical waves has attracted attention for two redxs this regime. On the other hand, in a recent woitkywas

sons. First, the properties of classical waves such as lighihown that an extension of the random matrix theory
waves, microwaves, and acoustic waves in random media &{RMT),” capable of accounting for the presence of resonance
of fundamental interest for their own sake. Second, classic@cattering, is able to explain the obtained experimental result
waves can serve as a model system for testing the theory @hd generalize it to both quantum and classical waves, al-
Anderson localization of electrons experimentally in a clearthough the corresponding Ward identities are diffefent.
way, without the complication of strong inelastic scattering In the present paper, we extend our previous analysis on
and other effects of electron-electron and electron-phonothe effect of resonances on electrons in a one-dimensional
interactions. Existing theories predict the localization of clasdisordered mediufhto higher dimensions. The quantities
sical waves under certain circumstantésading thus to the  that will monopolize our interest will be the density of states
conclusion that the analogy between quantum and classicDOS) p(E) and the localization length.(E). In the one-
waves works reasonably well. However, there is no concludimensional casgat low concentration and weak coupling,
sive experimental evidence, and thus the full correspondendgoth these quantities are affected strongly by the presence of
is not yet established beyond any doghtthorough discus- resonances. The DOS exhibits a Lorentzian peak at the reso-
sion may be found in Refs. 2 and.3 nance energy and the localization length is drastically de-

The present paper has been motivated by an experimentaleased except at the resonance energy that remains essen-
work, performed several years dgm the scattering of light tially the same with that corresponding to the standard
by a disordered medium in the presence of Mie resonanceénderson model. We will show that in higher dimensions,
A low concentration of Mie resonances leads to a stronghe density of states exhibits the same resonant enhancement
change in the transport properties of the system, reflected iwhile the localization length remains unaffected in contrast
a strong reduction of the transport velocity, or equivalently,to the one-dimensional case. Finally, by making use of the
of the diffusion constanb (E), near the resonance energies.Well known results for quasi-one-dimensional systems we
With increasing concentration of resonant scatterers, the dipill compute the diffusion constari2(E) and identify simi-
in D(E) widens and becomes less deep. Qualitatively speakarities with the corresponding problem of light scattering in
ing, the transport velocity is reduced because a lot of energihe presence of Mie resonances.
is temporarily stored inside the resonance or equivalently the The mathematical model we consider is the tight-binding
wave spends a long tim@well time) inside the Mie reso- Anderson Hamiltonian on a two-dimensional lattice,
nances.

To understand this surprising result, different theoretical H=2> all)(1]+ 2ty ]1)(1"], D
approaches based on different considerations were ! K
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wherel denote the sites of a two-dimensional lattlca M. 0.3 | ' :
The local site energies are taken independently at random T\
within the interval[ —W/2,W/2]. At some randomly chosen p(E) o ov=0.1
sitesk (m in total), the energieg, are taken to be fixed, i.e., I
e,=E,. These energies correspond to the resonance ener-
gies. To simplify the problem, we assume that all resonances iy
have the same enerdy; . The hopping matrix elements,
are restricted to nearest neighbors. When the coupling is be-
tween random stated(in total), t;;» are constant taken to be
the unit of energy while the coupling between a resonant
state and another statg has a different constant value

To evaluate the density of statpéE) of this system, we 0-1_1 0 : 05 ‘ 0.0 05 ‘ 10
start by writing the original il +m) X (N+m) Hamiltonian ) ' ' T E '
matrix H in the following form:

FIG. 1. The density of states(E) for the two-dimensional
(Ho V ) Anderson model in the presence of resonance states with energy
H= . (2 E,=0 and various values of the coupling constargorresponding
to different symbols. The thick dashed line corresponds to the
Anderson model without resonances. In all cases the disorder
strength isW=4.

\VARR = I

This form can be obtained easily by separating the resona
states from random statéd! denotes the transpose \¢fand
Ho is a N-dimensional matrix that describes the part of theThe effect of the resonances is given by the second term on
Hamiltonian H without resonances. Herd,, is the the right hand side of Eq(7). It exhibits a resonance en-
m-dimensional unit matrix, an, is the resonance energy of hancement near the resonance enegydescribed by a
each of them resonant scatterers. The rectangular ma¥ix | orentzian peak. The width'~2mpv?, is given by the

couples them resonances tél,. All the matrix elements of  decay width of individual resonances. Based on physical

each column oV are zero except four with value. grounds, we expect that in the limit of weak coupling (
The Green’s function corresponding to the Hamiltonian<1) there will be a strong degeneracy due to the resonance
(2), can be written as states. This degeneracy is responsible for the resonance en-
G G EtinH _vV _1 hgncement of the DO_S _a= E, . Gradually, as the coupling
G=( 0 V) _ 7o ‘ with the other states is increased, the degeneracy and conse-
G$ G, -V (E-E)Intiny quently the peak ip(E,) decrease. These expectations are

3 in full agreement with Eq(7). The same result has been
found in the extended RMT, Ref. 6, with the use of the
super-symmetry formalism. Here however E@) appears
natural under the frame of the tight-binding picture.

To determine the different matrices@) we use the previous
relation to obtain the following set of equations:

(E—Ho+i7)Gy—VG,=0, To verify the validity of the approximations used in the
derivation of Eq.(7) and to go beyond the weak coupling
~VTGy+[(E-E,)l +ip]G,=1. (4)  limit, we have performed numerical simulations of the two-

) . . dimensional Anderson model witm randomly distributed
Solving Eq.(4) with respect toG, we get the expression  resonant states. Our main concern in this study is to investi-
gate how the DOS and the localization length behave as a
_ 1 5) function of energy for various resonance concentration
(E-E)l+ip—VTG,V' =m/(N+m) and coupling strengths. To evaluate these
quantities, we used the iterative procedure developed in Ref.
where G,=1/(E—Ho+i7). In the limit of weak coupling  10. This method is particularly suitable for the calculation of
v<1 and low concentration of resonances one can make thgarious quantities for a macroscopically large system de-
approximationG,=G,. Then the density of states is given scribed by a microscopic Hamiltonian. The system we con-
by sidered is a cylinder of widtM in y direction and length in
x direction. Forl that are large compared M the sample is
1 essentially a quasi-one-dimensional system. For the above
(E—E)l +i9—VTGeV . (6 ca_llculations, we have used samples of length10° and
widths up toM =100.
which, in the limit ofv<1 and low concentration of reso- We first examine the behavior pfE) as a function of the

r

1
p(E)=— — TrGo+Tr

nances, can be written as coupling constant and the resonance concentratiorOur
numerical results for low resonance concentration and vari-
2 ous values of the coupling are reported in Fig. 1. As we
P(E)=po(E) + m(E_ E)2+ (/22 (M can see, aE= E, the DOS shows a resonance enhancement

which is very well reproduced by the analytical form¢.
where po(E)=—(1Lim)TrGy. To a good approximation, As the resonance couplingincreases we observe a gradual
po(E) can be identified as the density of states of the standecrease of the height of the Lorentzian peak as well as an
dard two—dimensional Anderson model without resonancesncrease of its width. In the limit o =1, we recover the



9882 BRIEF REPORTS PRB 62

T T T 40
0.27 oo f=15% : WE)
p(E)
30 Fs g
022 N O Resonances &
s * Anderson Z
@ ®
0.17 20 17 o
® ®
$ 1
01 05 o0 05 1.0 10 ' ' —
-1 -v. - ~ - -4 -2 0 2 e 4
FIG. 2. Density of statep(E) for the two-dimensional Ander- FIG. 3. Localization lengthy,(E) in the presence@) and ab-

son model in the presence of resonances with resonance energ¥nce (x) of resonances calculated numerically for the two-

E,=0, coupling constant =0.2 and various concentrations. The gimensional Anderson model as a function of energy. The width of
thick dashed line corresponds to the Anderson model without resgy, o strip isM =20, and the disorder strength W=4. The reso-

nances. In all cases the disorder strengtiis 4. nance energy i&§, =0, while the resonance concentration and cou-

) ] pling aref=2.4 andv =0.2, respectively. It is clear thaf,(E) is
Anderson case. We also investigated the dependence of thg; affected by the presence of resonances.

DOS on the concentratiohof resonances in the disordered
sample. In the weak coupling limit, we found that by increas-the Jinking observable with the experimental res(iti
ing the concentratiof the Lorentzian peak in the DOS in- quasj-one-dimensional multichannel systems the diffusion

This main behavior of DOS, for small resonance couplingrg|ation

v=0.2, is presented, for two particular values of concentra-
tion, in Fig. 2. We note that exactly the same behavior of | (E)
p(E) was observed for the one-dimensional case. D(E)=——=.
Next, we calculate the localization length,(W,E), 4mp(E)
needed for the determination of diffusion constanE).
Using the same numerical approdtive define a localiza-
tion length Iy (W,E) depending onM, W, and E. The
asymptotic localization length,(W,E) corresponding to the
infinite system, is then defined in the limit & —x, i.e.,

(€)

Then, it becomes clear from the previous analysis EndE)
will show a dip near the resonance eneify, due to the
resonance enhancement of the density of sta(&9. How-
ever, in order to compare the behavior D{E) with the
experimental resulfswe have in addition, to take into ac-
_ count the fact that the strength of the resonance coupling
(W, B)=ln—o(W,E). ®) depends on the concentration of resonarfces v~ f>.°

The numerical results, performed for different values of resoFigure 4 show®(E) versus energy for different concentra-
nance Concentration, show tH;M:(E) can be considered ap- tions. In agreement with the eXperimental reSﬁlm find
proximately independent from the concentratfoand from  that an increase dfcauses a decreaseDffar away from the
the resonance coupling (as long as the concentration is not resonance while the dip near the resonance errgyidens
extremely largg Our results remain practically the same for and eventually disappears for-1. This result identifies the
all values ofM we have considered in our calculatidiugp to
M =100). Figure 3 illustrates this behavior of the localiza-
tion lengthly,(E) for one particular value of versus the
corresponding one of the standard Anderson model. This be-
havior of the localization length is totally different from the
one found in the one-dimensional case, wheréE) de-
creases drastically everywhere except close to the resonance
E, where it is approximately equal to the corresponding one
obtained for the standard Anderson mot@he underlying 08
physical reason is that the electron in the two dimensional ' e
geometry can hypass the resonances following a different
path. We expect that the same behavior will appear also in . . . .
three dimensions. In contrast, in the one-dimensional case 0'7_0_5 03 -01 0.1 0.3 0.5
the electron has to pass through the resonance and thus to E
suffer resonance tunneling. Thus, the one-dimensional struc- giG. 4. Normalized diffusion constam(E)/D(E) calculated
ture acts as a filter, allowing only electrons with eneEgyto  numerically for the two-dimensional Anderson model as a function
transmit. of energy. The different curves correspond to different concentra-
We now turn our attention to the calculation of the diffu- tionsf of the resonanced)j is the diffusion constant in the absence
sion constant, in the presence of resonaritesich will be  of resonances

D/D,
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resonant behavior of the DOS as the main explanation for thanaffected from the resonances. An application of the for-

dip in the diffusion constant. Moreover, it establishes themula, |..(E)=4mp(E)D(E),!! identifies the behavior of

equivalence of transport properties in the presence of resg(E) as the explanation for the observed experimental re-

nances, between classical and quantum waves. sults of the diffusion constant. This establishes the analogy
In conclusion, we have studied, both analytically and nu-between classical and quantum waves. Our results are similar

merically, the effect of resonances on the transport propertie® those obtained within the extended RIIT.

of electrons in two-dimensional tight-binding Anderson

model. At low concentration and weak coupling the DOS is

affected strongly by exhibiting a Lorentzian peak at reso- We appreciate discussions with Y. Imry and C. Tejedor.

nance energy. As the coupling strength increases, the widtB. E. gratefully acknowledges the support of the European

I' of the Lorentzian increases and the resonance structure ldnion through the Training and Mobility of Researchers Ul-

DOS is smeared out. In contrast, the localization length igrafast Network.
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