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We develop a theory for two-dimensional diluted magnetic semiconductor systems (e.g., Ga1�xMnxAs
layers) where the itinerant carriers mediating the ferromagnetic interaction between the impurity local
moments, as well as the local moments themselves, are confined in a two-dimensional layer. The theory
includes exact spatial disorder effects associated with the random local moment positions within a
disordered RKKY lattice field theory description. We predict the ferromagnetic transition temperature
(Tc) as well as the nature of the spontaneous magnetization. The theory includes disorder and finite carrier
mean-free path effects as well as the important correction arising from the finite temperature RKKY
interaction, finding a strong density dependence of Tc in contrast to the simple virtual crystal
approximation.
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Many projected applications of diluted magnetic semi-
conductors (DMS), i.e., systems that combine the advan-
tages of a ferromagnetic material with those of a
semiconductor with the additional flexibility of carrier-
mediated ferromagnetism enabling the tuning of the mag-
netic properties by applying external gate voltages or
optical pulses to control the carrier density, would involve
the use of two-dimensional (2D) DMS structures such as
quantum wells, multilayers, superlattices, or heterostruc-
tures. Such 2D DMS structures are also of intrinsic funda-
mental interest since magnetic properties in two
dimensions are expected to be substantially different
from the three-dimensional (3D) systems [1] that have
mostly been theoretically studied in the DMS literature.
The 2D DMS systems introduce the possibility of gating,
and thereby controlling both electrical and magnetic prop-
erties by tuning the carrier density. In fact, such a carrier
density modulation of DMS properties has already been
demonstrated [2,3] in gated DMS field effect heterostruc-
tures. For various future spintronic applications, the devel-
opment of such 2D DMS structures is obviously of great
importance.

In this Letter, we provide the basic theoretical picture
underlying 2D DMS ferromagnetism focusing on the well-
studied Ga1�xMnxAs, with x � 0:03–0:08, a system where
the ferromagnetism is well established to be arising from
the alignment (for T < Tc � 100–200 K) of Mn local mo-
ments through the indirect exchange interaction carried by
itinerant holes in the GaAs valence (or impurity) band (that
are also contributed by the Mn atoms which serve the dual
purpose of being the impurity local moments as well as the
dopants). Our theory is quite general and should apply to
other ‘‘metallic’’ DMS materials where the ferromagnetic
interaction between the impurity local moments is medi-
ated by itinerant carriers (electrons or holes). One of our
important findings is that the ferromagnetic transition
(‘‘Curie’’) temperature for the 2D DMS systems typically
tends to be substantially less than the corresponding 3D
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case with equivalent system parameters. In particular, Tc in
the 2D case is found to be comparable (Tc � TF) to the
Fermi temperature (TF � EF=kB, where EF is the 2D Fermi
energy) of the 2D hole systems. This necessitates that the
full finite temperature form for the 2D RKKY interaction
be used in calculating DMS magnetic properties, further
suppressing Tc in the system. In fact, this general lowering
of the 2D DMS Tc compared with the corresponding 3D
case is our central new theoretical result. This implies that
spintronic applications involving 2D DMS heterostructures
will be problematic since the typical Tc (at least for the
currently existing DMS materials) is likely to be far below
room temperature (Tc < 100 K). A related equally impor-
tant theoretical finding is that, although the continuum
virtual crystal approximation (VCA) much used for 3D
Ga1�xMnxAs physics [4] predicts that the Tc in 2D DMS
systems (being proportional to the 2D density of states) is
independent of 2D carrier density, there is an intrinsic
carrier density dependence of Tc even in the strict 2D
system arising from the density and temperature depen-
dence of the finite temperature effective RKKY interaction.

Although the Hohenberg-Mermin-Wagner (HMW)
theorem precludes long range order in 2D systems with
Heisenberg spins, the theorem applies only for the case in
which the coupling between spins is absolutely isotropic.
As has been shown both formally and numerically [5–7],
even a small amount of anisotropy is sufficient to stabilize
long range order at finite temperatures. We examine the
impact of anisotropy explicitly by studying the classical
anisotropic 2D Heisenberg model H � �J0
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j�, where J0 is the ferromagnetic ex-

change constant, � is the anisotropy parameter, and the
spins occupy a 2D square lattice; the sum is over nearest
neighbors only. Using a variant of the Wolff cluster
Monte Carlo technique [8], we calculate Tc by finding
the intersection of Binder cumulants [9] for two different
system sizes (L � 40 and 80). The results are shown in
1-1  2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.037201


0 2 4 6 8 10
k  r

−1

0

1

2

3

4

5

χ 
(k

  r
,T

)

F

F 0 0.5 1 1.5 2 2.5
T/T

0

0.2

0.4

0.6

0.8

1

J 
   

/J

F

ef
f

o

T/T   =0.0F

F

F

T/T   =0.5

T/T   =1.0

FIG. 2. Temperature dependent 2D RKKY range function
�	kFr; T=TF
 as a function of kFr for several temperatures
T=TF � 0:0, 0.5, and 1.0. The inset portrays the effective finite
temperature coupling Jeff .
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FIG. 1. Curie Temperatures plotted versus �, the anisotropy
parameter. The inset displays Tc values for a much smaller range
of anisotropies. In both images, the Monte Carlo errors are
smaller than the graph symbols.
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Fig. 1, where it is readily evident that even a small amount
of anisotropy yields Curie temperatures in the vicinity of
J0=kB, a value in reasonable agreement with TMFT

c �
4
3 J0=kB, the corresponding mean field result for the nearest
neighbor 2D Heisenberg model. Previous theoretical stud-
ies also examined ferromagnetism in the 2D DMS context
[10,11], without, however, considering the HMW theorem
or the anisotropy issue.

We apply the lattice mean-field theory (MFT) developed
previously [12], but we also find intriguing results in the
context of simple continuum Weiss MFT, which demon-
strate that it is essential to incorporate finite temperature
effects in the effective carrier-mediated interaction be-
tween Mn impurity moments. We assume the 2D hole
gas to be confined in the same plane as the Mn dop-
ants—it is straightforward to consider [10,11] a spatial
separation between the dopants and the holes as well as to
consider the quasi-2D confinement for the holes. These
additional complications would lower Tc below the strict
2D limit considered in our model.

Our theory is constructed for two-dimensional DMS
systems in the metallic limit with itinerant carriers (we
assume the carrier-mediated effective Mn-Mn indirect ex-
change interaction to be of the RKKY form). However,
including a finite carrier mean-free path in our theory
allows us to take into account the dependence of the
magnetic behavior of our system on the carrier transport
properties. In fact, using an exponential cutoff in the range
of the RKKY function permits us to treat the long and short
range magnetic interaction regimes simply by varying the
cutoff parameter l. In our system, salient parameters in-
clude the Mn local moment concentration (x), the free
carrier density (nc), and the exponential cutoff scale l
associated with the carrier mean-free path. The 2D Fermi
03720
temperature TF �
@
2k2F

2m�kB
depends on nc since the 2D kF /

n1=2c , where kF is the Fermi wave vector.
Our effective Hamiltonian describes the Mn-Mn mag-

netic interaction between classical Heisenberg spins Si on
a 2D lattice: H � �ijJ

RKKY
ij Si � Sj, where Si is the ith Mn

local moment of spin 5=2. In our lattice MFT we assume
the Mn dopants to lie entirely on the [100] plane of the
GaAs zinc-blende crystal lattice, with the impurities occu-
pying the Ga sites, which form a square lattice with lattice
constant a. The carrier-mediated RKKY indirect exchange
interaction describes the effective magnetic interaction
between Mn local moments induced by the free carrier
spin polarization. JRKKYij 	T
 � J 0�	kFr; T=TF
, where
�	kFr; T=TF
 is the temperature dependent range function
that is obtained from the 2D spin susceptibility, and J 0 �

�
Jpd
a �

2 m�

8��@�2a2
. We use the parameters Jpd � 0:15 eV nm3

[13], a � 0:4 nm, and m� � 0:4me throughout this work.
For T � 0 the 2D RKKY interaction is known exactly

[14]: JRKKYij 	x
 � J 0	kFa
2�J0	x
N0	x
 � J1	x
N1	x
�,
where Jn	x
 are the Bessel functions of the first kind, and
Nn	x
 are Bessel functions of the second kind. At finite
temperatures, it is not possible to obtain the RKKY range
function analytically. Thus, we calculate the finite tem-
perature RKKY interaction numerically. In Fig. 2, we show
the temperature dependent range function �	kFr; T=TF
 as
a function of kFr for various T=TF values. One sees in-
creasingly severe thermal damping of the RKKY oscilla-
tions with increasing T=TF. The inset of Fig. 2 displays the
effective coupling constant, given by Jeff �

R
JRKKYij 	r
dr.

One finds, as expected, that Jeff decreases with increasing
temperature due to the damping of the range function.
Since the magnetic properties of the 2D system are directly
1-2
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dependent on Jeff , a finite T=TF can have an important
impact.

Via lattice MFT [12], we calculate Tc for the square
lattice with constant a;

Tc �
35

12kB
x
X1

i�1

NiJ	ri; Tc
; (1)

where Ni and ri are the numbers and distances of the ith
nearest neighbors, respectively. The continuum limit,
which we examine first, is attained for l; k�1

F � a, where
a is the lattice spacing. We examine the large l limit (l �
k�1
F ) and find that Eq. (1) becomes T�

c �
T1
c
R
1
0 �	y; T�

c=TF
ydy � T1
c g	T�

c=TF
, where T�
c is the

Curie temperature in the continuum limit, T1
c � Tc	TF !

1
 � 35�xJ 0=6kB, and g	T�
c=TF
 depends only on the

ratio of T�
c to the Fermi temperature TF. For T�

c � TF,
g	T�

c=TF
 ! 1, the dependence on carrier concentration is
lost, and T�

c depends only on the impurity concentration x.
This TF ! 1 limit of the continuum MFT is the actual
VCA limit. This result, with no dependence on nc, is
proportional to the density of states at the Fermi level EF

in two dimensions and reflects the peculiarity of the 2D
density of states being independent of carrier density. (The
analogous continuum 3D result, also proportional to the
density of states at EF, is T�

c / xn1=3c and does depend on
the carrier density.)

Returning to the lattice MFT, which explicitly takes into
account the discreteness of the square lattice, we also
incorporate the effects of the finite carrier mean-free path
l by including an exponential cutoff in the range of the
RKKY interaction. Tc curves are shown in Fig. 3 for
several Mn dopant concentrations. A salient feature of
the curves is a marked dependence on nc. The Curie
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FIG. 3. Lattice MFT 2D Curie temperature curves for various
values of x. In the inset, Tc curves are shown for a much greater
range of carrier density nc. In both the main graph and the inset,
l=a � 5.
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temperature increases monotonically in nc over the experi-
mentally accessible range of carrier densities. However, for
considerably higher nc (i.e., approaching 1014 cm�2), non-
monotonic behavior is seen in Tc. This is evident in the
inset of Fig. 3, where the Curie temperature curves seem to
achieve saturation for intermediate carrier densities and
ultimately begin to decrease as the length scale k�1

F of
the RKKY oscillations shrinks relative to the lattice con-
stant a. Eventually, for k�1

F � a, the discrete nature of the
lattice sum in Eq. (1) has a strong effect, leading to a
considerably smaller Tc than the continuum value, T�

c .
This result for 2D Tc including disorder and finite tem-
perature RKKY effects is one of our main new results.
Tc is strongly affected by the finite size of l; in fact, one

sees that for each of the carrier concentrations represented
in Fig. 4, Tc initially increases sharply with increasing l,
eventually saturating for l=a � 1. It is informative to
examine the regime a � l; k�1

F , where one can operate in
the continuum limit. We introduce � � kFl as an important
dimensionless variable; as will be seen, the ratio T�

c=TF

tends to zero as � becomes small. For Tc � TF and kFr �
1, a reasonable approximation for the finite temperature
RKKY range function is JRKKY	r; T
 � JRKKY	r; 0
�	1�
a2 2 � a3 3
 � 	b2 2 � b3 3
	kFr
�e�r=l where  �
T=TF, a2 � 0:2153, a3 � �0:140, b2 � �1:333, and
b3 � 0:862. (The ai and bi have been calculated numeri-
cally.) Since JRKKY	r; 0
 varies slowly with kFr for small
kF, we have for small values of this expansion variable

JRKKY	r;T�
c 
�J 0k

2
F=��"1�"2	kFr


2���1�	a2 
2

�a3 
3
�	b2 

2�b3 
3
	kFr
�e

�r=l; (2)

where "1 � ��1=2� �� ln	kFr=2
�, and "2 �
��3=16� �=4� 1=4 ln	kFr=2
�; � � 0:577 22 . . . is the
Euler constant. In calculating T�

c (in the continuum case),
we assume that although l � k�1

F , l � a. This additional
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FIG. 4. Lattice MFT Curie temperature curves for various
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condition allows the replacement of the discrete formula
for the Curie temperature in Eq. (1) with the continuum
version, and one has T�

c � x 35�
6

R
1
0 JRKKY	r; T�

c 
rdr.
Carrying out the integration and solving for T�

c , we find
T�
c=T

1
c � �2

� f�ln	2�
 �
1
2� � �2�12 ln	

2
�
 �

41
16�g, where � �

kFl � 1 and only terms up to fourth order in � are shown.
T�
c=T1

c is strongly suppressed due to localization effects;
when kF is small (i.e., in the small nc limit), the RKKY
range function is very extended relative to a and l. As a
consequence, most of the RKKY interaction is truncated by
the exponential cutoff associated with the finite mean-free
path l. This truncation effect is so severe that T�

c is very
small in comparison with TF; to fourth order in � there are
no corrections to arising from the finiteness of T�

c=TF. Note
that in the opposite limit of kFl � 1, which rarely applies
to DMS systems which are at best ‘‘bad metals,’’ one can
obtain the simple formula Tc	kFl � 1
 � T�

c �1�
	kFl


�1=�� by simply considering the disorder induced
suppression of the 2D density of states.

In addition to Tc, one can also use lattice MFT to
calculate the magnetization M	T
 [12]. The magnetization
behavior is influenced by the Mn impurity concentration as
well as the form of the effective interaction between Mn
local moments, in principle specified by the carrier mean-
free path l and nc. For convenience, we study M	T=Tc
;
using the normalized temperature scale T=Tc allows a
systematic comparison of magnetization profiles corre-
sponding to different values of the parameters l, nc, and
x. An important trait of the magnetization profile is its
degree of concavity; concavity in M	T
 is a hallmark of an
insulating system, while convex profiles occur well within
the metallic regime [4]. Linear magnetization curves cor-
03720
respond to intermediate impurity densities and mean-free
paths. In terms of the magnetization, the concavity � is
given by � �

Rt2
t1 M

00	T
dT, or the difference in the slopes
of M	T
. The sign of � indicates whether M	T
 is convex
(negative �), concave (positive �), or linear (if � � 0). The
temperatures t1 and t2 are selected to encompass an inter-
mediate temperature range, neither too close to Tc nor to
zero. A significant feature of the concavity plots shown in
Fig. 5 is weak dependence of the concavity of the magne-
tization profiles on the carrier density; though the three
values of nc range over 2 orders of magnitude
	1010–1012
 cm�2, the � graphs lie very close to one
another. One can also see that the parameter range over
which the M	T
 profile is concave is much more extensive
than predicted by lattice MFT for three-dimensional DMS
systems [12]. This is primarily a consequence of the ge-
ometry of the two-dimensional lattice.

In conclusion, we have considered diluted magnetic
semiconductors in quasi-two dimensions. We find that
long range ferromagnetic order can be stabilized by even
a small amount of anisotropy invariably present in reality.
We have found that, even at the level of continuum MFT,
finite temperature effects in the carrier-mediated effective
interaction between Mn impurity moments introduce a
strong dependence on the density of carriers, where naive
use of the zero temperature RKKY formula yields a result
independent of nc. To take into account the discreteness of
the strong positional disorder of the 2D DMS system, we
have employed a lattice MFT. Our lattice theory also
provides a convenient framework for the inclusion of
important physics such as the finite mean-free path. In
general, the 2D DMS Tc is strongly suppressed compared
with the corresponding 3D DMS Tc, which is somewhat
discouraging for spintronic applications.
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