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We investigate some aspects of quintessence models with a nonminimally coupled scalar field and in
particular we show that it can behave as a component of matter-w8tk P/p=<0. We study the properties of
gravitational waves in this class of models and discuss their energy spectrum and the cosmic microwave
background anisotropies they induce. We also show that gravitational waves are damped by the anisotropic
stress of the radiation and that their energy spectrum may help to distinguish between the inverse power law
potential and supergravity motivated potential. We finish with a discussion on the constraints arising from their
density parametef) g,y -

PACS numbd(s): 98.80.Cq

l. INTRODUCTION be of order of the Planck maddp and corrections to the
potential appear at this energy. This leads to a better agree-
Recent astrophysical and cosmological observations sugfient with observationgL6].
as the luminosity distance-redshift relation for supernovae ap important point about this family of models is the
type la[1-3], the recent observations of the cosmic micro-eyistence of scaling solutioié7,18 (referred to asracking
wave background temperature anisotropiél gravitional g ytiong, i.e., such thats evolves as the scale factor of the
lensing [5], and velocity fields[6] tend to indicate that & | hierse at a given power. These solutions are attractors of

large dfra}cno?t of t_r:ﬁ mattﬁr of the universe toFgay7 'Sff €OM+he dynamical system describing the evolution of the scale
posed of matter with negative pressisee, e.g., Ref.7] for factor and of the scalar field. This implies that the present

a comparison of the different observatigrBecent analyses time behavior of the field is almost independent of its initial

[sigs%efr?h}g ;ﬂj?éciii;?iztsthe energy dengitand the pres- conditions[19,20. This property allows us to addref21]
(i) the coincidence problem, i.e., the fact thatstarts to
dominate today andi) the fine tuning problem, i.e., the fact
—1<P/p<-0.6 (1)  thatone does not have to fine tune the initial condition of the
’ field .
One of us extended these models to include a nonminimal

which is compatible with a cosmological constafit for ~ couplingéRf(¢) between the scalar field and the scalar cur-
which P/p=—1 (see also Ref{10] for arguments in favor vature R [22]. Such a coupling term appears, e.g., when
of P/p<—1). A typical value ofQ2,=0.7 for its energy quantising fields in curved spacetirf3,24] and in multidi-
density in units of the critical density of the universe corre-mensional theorief25—27. It was shown that wheifi( ¢)
sponds to an energy scale of ordex 504’ GeV* whichis = ¢?/2 tracking solutions still exist22] and this result was
very far from what is expected from high energy physics;generalized 28] to any coupling functiorf and potentialV
this is the well known cosmological constant problghl].  satisfyingV(¢)=f"(¢). However, such a coupling is con-
To circumvent this problem different solutions have beenstrained by the variations of the constants of natig]|
proposed starting from the idea of a dynamical cosmologicalvhich fix bounds or¢ [30]. A way to circumvent this prob-
constant{12] and leading to the class of models known aslem is to consider quintessence models in the framework of
quintessencd 13], where a spatially homogeneous scalarscalar-tensor theorie$31,32] where a double attractor
field ¢ is rolling down a potential decreasing whentends  mechanism can occur, i.e., of the scalar-tensor theory to-
to infinity. An example of such a potential which has beenwards general relativity and of the scalar figbdtowards its
widely studied is the inverse power law potential. It can betracking solution.
obtained from some high-energy physics models, e.g., where Among all the possible observations of cosmology, gravi-
supersymmetry is broken through fermion condenstds  tational waves give an insight on epochs where there was a
Recently, it has been argugts] that supergravity has to be variation of the background dynamics since every such
taken into account since today one expects the scalar field tariation affects the shape of the stochastic graviton back-
ground spectruni33,34]. We can then view our universe as
containing a sea of stochastic gravitational waves from pri-
*Email address: Alain.Riazuelo@obspm.fr mordial origin, as predicted by most models of structure for-
TEmail address: Jean-Philippe.Uzan@th.u-psud.fr mations such as inflatiof33,34] (see also Ref[35] for a
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review) and topological defects scenari®6]. Their spec- presenting numerical results and we underline the comple-
trum extends typically from 10'® Hz (for wavelengths of mentarity of the different observational quantities.

order of the size of the Hubble radius today =10 Hz This work gives a detailed study of the observational ef-
(the smallest mode that has been inflated out of the Hubbléects of gravitational waves in the framework of quintes-
radiug and they could be detected or constrained by comingence, including some recent developments, and allowing for
experiments such as the Laser Interferometric Gravitationatonminimal coupling. This extends the work on quintessen-
Wave Observatory (LIGO) [37], VIRGO [38] (at tial inflation [46] by including the effects on the CMB. It
=10% Hz), and the Laser Interferometer Space Antennaalso extends the studies on the cold dark matter model with a
(LISA) [39] (at=10"* Hz). Gravitational waves, which are cosmological constant\CDM) [51] to quintessence and is,
perturbations in the metric of the universe have also an effeas far as we know, a more complete study of the effect of
on the cosmic microwavéCMB) temperature anisotropy gravitational waves on the CMB polarization. We hope to
[40-44 and polarization[45] allowing to extract informa- show that a joint study of the gravitational wave detection
tion on their amplitude from the measure of the CMB experiment§37-39 of the CMB experiment$4,52,53 and
anisotropies. For instance, bounds on the energy densigf the polarization experimen{s3] can lead to a better de-
spectrum of these cosmological gravitational waves in unitéermination of their properties.

of the critical densityQ sy, have been obtained from the

CMB [40-42 Il. GENERAL FRAMEWORK
40 A. Background spacetime
GW _ . . . .
dho <10 1° We consider a universe described by a Friedmann-
10~ 18Hz Lematre model with Euclidean spatial sections so that the

metric takes the form

Gravitational waves are also a very good probe of the o
conditions in the early universe since they decouple early in ds?=a?(n)[ —d7*+ §;dxdx =g, dx*dx", (2
its history and can help, e.g., testing the initial conditions of
¢. An example was put forward by Giovannidi6,47] who  Whereais the scale factor ang the conformal time. Greek
showed that in a class of quintessential inflation mof#§  indices run from 0 to 3 and latin indices from 1 to 3.
there was an era dominated by the scalar figldefore the We assume that the matter content of the universe can be
radiation dominated era which implies that a large part of thedescribed by a mixure of matter and radiatiomainly bary-
gravitational wave energy of ordélq,,~10 ¢ (about eight 0ons, CDM, photons and three families of massless, nonde-
orders of magnitude higher than for standard inflgtioms ~ generate neutringsand a scalar field¢ nonminimally
in the GHz region. This may happen in any scenario wheréoupled to gravity evolving in a potential(¢) that will be
the inflation ends with a kinetic pha$@4,49 or when the described later. The action for this system is
dominant energy condition is violated0]. On the other _
hand, the CMB temperature fluctuations give information on 4 \/— R —
the history of the gravitational waves in between the last S:f d*xv-g ﬂ_fRf(d’)
scattering surface and today through the integrated Sachs-
Wolfe effect, whereas the polarization of the CMB radiation
gives mainly information on the gravitational waves at de- ~ 59,99 ¢V () + Lmateer|: ©)
coupling. These three observabl@nergy spectrum, CMB

temperature and polarization anisotropiase thus comple- \yith x=87G. G being the Newton constant, and where

mentary and we aim to present here a global study of thg- s the Lagrangian of the ordinary matter which is un-

cosmological properties of the gravitational waves. coupled to the scalar field arfd¢) is an arbitrary function
The goals of this article are) to study in more details the ot the scalar field that will be specified later. The acti@h

cosmology with a nonminimal quintessence field &gto  .on be rewritten under the interesting form

study gravitational waves in this class of models. In Sec. Il

we set up the general framework and describe the two po- R 1

tentials we shall consider. In Sec. Il we introduce and define s= f d4x\/—_§[— ) ¢(9ﬂ¢_v(¢)+£maﬁer}
the observable quantities associated with the gravitational 2kl @] 27#

waves: their energy density spectrum and their imprint on the 4
CMB radiation anisotropies and its polarization. In Sec. IV, .

we point out the general mechanism of damping by the an\-’vIth
isotropic stress of the radiation. In Sec. V we discuss the
parameters of the problem and investigate the tuning of the
potential parameters; we also describe the evolution of the
background spacetime and show that a nonminimally
coupled quintessence field is a candidate for alhe stress-energy tensor of the scalar field is obtained by
(w<—1)-matter. In Sec. VIl we describe the main proper-varying its Lagrangiar] — (Rf(¢ —%ﬁ#qﬁ&”gb—V(qb)] to

ties of the gravitational waves. We finish in Sec. VIII by get

Ket 1= T=2xf(d)’ 5
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P - = = — where A is an energy scale. As shown in RE22], such a
T =VudVid— 59, VidV o= V($)g,, potential leads to the existence of tracking solutions what-
ever the value of and for which the scalar field behaves as
1260 V. dV b—V bV a barotropm ﬂUId. of equation of statas long as the back-
g[gp.v A¢ QS p,(ls V¢ ground fluid d0m|nates
_¢Vﬂvv¢+¢m¢gyv+eﬂuf(¢)] (6) - a(1+w)
whereG,,, is the Einstein tensor of the metrg,,, V its @
covariant derivative andl=V V. We also consider another class of potentials arising when

The equations governing the evolution of the backgroungyne takes supergravity into accolii6,16 and given by
spacetime are then obtained by varying E).with respect

tog,,, ¢ and the ordinary matter fields to get, respectively, _ Al@
the Friedmann equations, the Klein-Gordon equation, and the V() =A4(—> exp kp?l2), a>0. (16

fluid conservation equation ¢
«a? The effect of the exponential term is important only at late
HZZ?(p-i-p(ﬁ), (7) time so that the scaling properties of the tracking solution are
not affected during the matter and radiation era. However
a? when the field starts to dominate it leads to its stabilization
H—H?=——(p+ P+py+Py), (8)  [16] which has an effect on the effective equation of state of
2 the scalar fluid.
. . dv . -
d+2Hp+ aZ@ +6&£(2H?+H)=0, 9) B. Gravitational waves

In this article, we want to focus on the properties of the
p=—3H(p+P). (10) gravitational waves W_hich are tensorial perturbations. At lin-
ear order, the metric is expanded as
An overdot denotes a derivative with respect to the confor-

mal time and®=a/a is the comoving Hubble parameter. v =Gt T (17)
The matter fluid energy density and pressurd® are as-
sumed to satisfy the equation of st®e wp. The factorw
varies from 1/3 deep in the radiation era to 0 in the matte
era. The scalar field energy densjty and pressuré® , are — —
obtained from its stress-energy teng6y and are then ex- foo=foi=0, f,,0*"=0, V, f#"=0. (18
plicitely given by

wheref,,
rsatisfying

is a transverse tracele$$T) perturbation, i.e.,

It is also useful to define the perturbatibp, by

1 (-ﬁz 2§ 2 F 2
which, from Eq.(18), satisfies
P ——¢—2—V( )—g[(2H+3HZ)f( ) Kl ki
$72 32 ¢ 2 ¢ hoo=hoi=0, hy6"=0, Jh"=0. (20)
+Hi‘(¢)+f(q§)]. (12) The equation of evolution dfi is obtained by consider-

ing the TT part of the perturbed Einstein equatisee, e.g.,
We stress that the conservation equation derived f6m Ref.[54]) which leads to
reduces to the Klein-Gordon equati¢®). For each matter

component,X say, we introduce the density parametgy A+ 2[H— Keﬁgf(¢)]hk,—Ahk|=2KPa2;k,, (21
defined as _
where A=9,4' is the Laplacian and where the anisotropic
. Kxa’py stress tensor of the mattet, is defined as the tensor com-
X= - (13 .
3H?2 ponent of the matter stress-energy tensor
To completely specify the model, we have to fix the po- sTj=Pm|, mk=3gm=0. (22)
tential V(¢). Following our previous work22] and as dis-
cussed in the introduction we choose it to behave as The anisotropic stress of the matter fluid is dominated by the
ALe contribution of the neutrinos and of the photons and its form
a4l can be obtained by describing these relativistic fluids by a
Vig)=A (¢>) . a>0, (14) Boltzmann equatiofi55] (see Sec. Il B beloy
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ll. OBSERVATIONAL QUANTITIES which is the action for two massless scalar fidigsvolving

in the background spacetime, as first noticed by Grishchuk
[33,34). By varying this action with respect to the back-
ground metric, we then deduce the stress-energy tensor of the
gravitational waves

The goal of this section is to define the observable quan:
tities related to the gravitational waves. We start by review-
ing the computation of the energy density,, of a stochas-
tic background of gravitational waves and finish by
describing their effect on the CMB radiation, namely, we

present the computation of the coefficie@sof the devel- t,=— ; > (%h“‘)a,,h(”—Eﬂyaah(”a“h(")).
opment of the angular correlation function of the CMB tem- 2Keil #] X
perature anisotropy and polarization. (29

o . If we decomposé™ in Fourier modes as
A. Gravitational waves energy density

The definition of the gravitational waves stress-energy 3
tensort,,, can be found in, e.g., Ref11] in the case of a h(x)(X,ﬂ):f
Minkowski background spacetime, in, e.g., Rgf6] in the
case of a Friedmann-Lentse spacetime, and a general dis- . .
cussion can be found in, e.g., RE57]. we can relath®™(k,») to its initial valueh®™(k,;,) , i.e

To define the gravitational waves stress-energy tensor, wiés value deep in the radiation efa.g., at the end of the
have to expand the Einstein-Hilbert actié4) to second or-  inflationary phasethrough the transfer functiofi(k,7) by
der in the perturbatiorf,,,, which implies to develop the solving Eq.(21) to get
curvature scalaR at second order in the perturbatiofsee
Refs.[11,56,57) to get(up to divergence terms and forget- hM(k,7)=T(k,7)h™ (k7). (32)
ting the contribution arising frontae)

k . .
(zw)sh“)(k,n)e'”, (30

Defining the initial power spectrum of the tensor modes as

5g= — f ;[ 7V YV, fagVitoE—gdix. (23

This expression is valid whatever the background metric as
long asf,, is a transverse traceless perturbation. Note tha{s is the Dirac distributioj we can express the space aver-
contrarily to the “standard” situationsx now depends o®  age oftd(x,7) as
because of the nonminimal coupling with the scalar field.

Using the fact thaVMfaB:az&Mhaﬂ we can rewrite the pre-

vious expression as —{(t3(x,)) =

(AR 7B (K )y =k 2Py(K) S(k—K) 3},
(32

1 N
- - (9ih(>\)(9.h(>\)5ll
ke p)a2 2 : >

8A)s=— f ————3,ha*h —gd?x, 24
A p] T+ X 24 f P (K) T2(k,7)d In(k),

Keﬁ[¢]

which assumes a Friedmann-Leinaibackground and the (33)

decomposition20). Now, we decomposhy, on its two po-

larizations as where we used an ergodic hypothesis to replace the space

average by an ensemble average. Now, sififéx,7)) os-
hy = h®(7,%) M (x), (25)  Ccillates, we d_efine the energy density of the gr_avitational
A=+, waves by taking the average of E@3) over n periods. It

follows that
whereekl)(x) is the polarization tensor defined as

e (x)=(epel —efel) ) + (epef +efed) 8% (26) powl )= p ﬁ[d)]f (K T2(k,m)dIn(k), (34)

for a wave propagating along the directieg and where
(e,,6,,83) is a local orthonormal basis. Since this basis andvhereT(k,) is the root mean square di(k,7) overn pe-

the polarization tensor satisfy riods which is well defined as long as the amplitude of the
wave varies slowly with respect to its period.
ef"eib=6ﬁ, le ) K x 5? (27 The energy densitypgyw and energy density parameter
Qgw by frequency band are then obtain@dter averaging
we can rewrite the actiof24) of the graviton as on several periods of the wavby
1 = dpew(k,7) 1 2 =
5?)s=— f 9,hM My —gd*x, (28 = =| Pu(k)T%k,7), (35
2 | Zead1 9d, (29 T 2rtgiqial TR GO

083506-4



QUINTESSENCE AND GRAVITATIONAL WAVES PHYSICAL REVIEW D62 083506

|

Let us stress some important points. Since we have t ) elopment Aéﬂ-” as
average on several periods, these expressions are valid orl[yEd- (39) so that the transfer functions fer™ andh® are
in a “shortwave limit” (see Ref[57] for discussionwhere the same. If we now define the power spectrum of
(i) the amplitude of the perturbation is small afid) the H™(K.7i) as
wavelength of the wave is small compared to the typical
radius of the background spacetime. In our case this can be
rephrased ak/H>1 which implies that the expressio(&5)
and (36) are valid only for modes which are “subhorizon”
today, i.e., whose wavelength is smaller than the Hubble
radius today. For such modes the ergodic hypothesis is well
justified. In fact, because of the averaging procedure of th%
transfer function, we have to restrict to modes such that
k/H,= 60 if we want to average on about ten periods. Again,
we emphasize that there is an explicit dependenc® gf,
and pgw on the scalar fieldp because of the non-minimal
coupling and our expressions reduce to the standard ones
[11,35,43,44,46,597 when £=0. We have described the

gravitational waves by two stochastic variabl#s) which  and that if the two polarizations- and X are independent
can be understood as being the classical limit of a completgyenH(+2) and H(-2) are also independent. With these no-
quantum description of the gravitational wavesee, e.g., tations, the energy density spectra are given as
Refs.[33,34,54 for details.

Before turning to the effects of the gravitational waves on
the CMB, let us make a comment that will lead us to intro-

HM + 2l H— ket () THM + k2HM = kP a7(M,
(41)

K

Ketf &1

dQew(kn) 1
din(k)

B 672

k\?2 —
)(ﬁ) Ph(K)T2(K,7).
(36)
gvherew(m) is the coefficient of the dev

(HM (K7 HM" (K 7))

=(2m) % 3Pr(K) S(k—K ), m, (42

ne can easily check that

1
P+(k)= 5 Pa(K) (43

2

duce some new notations. In the previous anzilysis we de- ddlpn—?:): 32 3 P+(K)T?(k,7), (44)
composed the metric perturbatiory on the basi€Qf;(x,k) 2mK
Eeﬁ exp(ik-x) of TT eigenfunctions of the Laplacian, i.e.,
such that
dQgw 1 ( K )(k)z O (K
AQL=-K2Q} with 4'Q}=4'Q}=0. (37 din(k) 272\ ket | H Pr(k)T (ko).
(45)

Such a decomposition is indeed not unique and we could

have chosen any other such basis. In the CMB literature, one

often preferd58] to use the basi@i(jﬂ)(x,k) defined by Indeed, this does not change the result but we found inter-
esting to make the link between the notations used in the
gravitational waves literaturgl1,35,43,44,46,57and in the
CMB literature[45,58, specially because we want to present
both in a unified framework and language. From now on, we
use the second decomposition and its interest will be enlight-
ened by the study of the CMB anisotropies.

. 3 . L
Qff =~ \[g(eli'ez)i(eli'eZ)jelk'x' (38)

the vectorse; ande, being defined above in Eq26). If we
decompose;; on the latter basis as

3
hij= f d k32H(m)Qi(jm)(x,k), (39 B. CMB temperature and polarization anisotropies
m=x2 J (2m) Gravitational waves, being metric perturbations, have an
then the two decompositions are related by effect on the temperature a_md polarlzanon of the _CMB pho-
tons. Any metric perturbation induces a fluctuation on the
3 CMB temperature® through the Sachs-Wolfe effe¢69]

ROO = — \ﬁ[H(+2)+ H(2)], and any anisotropic distribution of photons scattered by elec-
2 trons will become polarized and vice versa. Since Thomson
scattering generates linear polarization, we only need to con-

NE \/Ei[H(*Z)— H-2)], (40) sidt_er the Stoke_s paramet@%md_u and more conveniently

2 their two combination€ iU which are invariant under ro-

tation.

The two polarizationdH(=2) are then solution of Eq(21)
which reads

Following Hu and Whitg58], we decompose the tenso-
rial part of the temperature anisotropies according to
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o decomposing the Boltzmann equation satisfied by the photon
O(7,x,n)
Y (or neutring distribution function on the eigenfunctio@to
d3k R get
= f > 2 0(MkmGP(kx,n),
(2m)> T m=22 oK) 0K|'}1
. i .
(46) O =K 570" — 55 07|~ 70{M+5, 5™,
' (52)
(Q=iU)(7.x,n) o o
43K E | 29 my __2M oy 2K
:f S (EM=iBM) k) I T R A TP T b
(2m)% T m==2 .
o —7(Ef™+ 8 2/6P™), (53)
X +2G"(k,x,n). (47
ici (m) (m) | S (M) ZKIm (m) 2m (m) 2K|n-1i—1 (m)
The coefficient€;™ andB;™ transform as€,— (—)'E, and B =k 2|_1B|_1+ e +3B.+1
B,— — (—)'B, under parity and are called the “electric” and - :
“magnetic” part of the polarization. The function§|", —7B(™, (54)
+»G[" form three independent sets of orthonormal functions
and depend both on the positionand on the direction of where
propagation of the photons and are defined as
SM=7pm_pHm, (55)
- 47 “
GM(k,x,n)=(—)"\/5—=YM(nexpik-x), (49
2+1 M= om (m)
P(M=_(Of"- VEES™), (56)
- 4 -
m = (I m e
=261 (KX M=(=)"\ 5y =2 Y (n)jexplik-x), 2 &
(49) SK|mE| 1- |—2 1- |_2 . (57)

where the function%m(ﬁ) are the standard spherical har-
monics and the functions_zY,m(ﬁ) are the spin-weighted

ightizcsggg?lg?lﬁ]ﬁsﬁg 6r2évli\cl)3tse Stggtiot:?sdeen??& c;]s;gog lengths in the CMB are not affected by thisnd is propor-
Uy i (E;) 9 Y tional to the free electron density in the case of photons. It
the fact thatQ;;"’n'nt=G3" [45,5§. : P .
ij 2 ! Eas to be calculated by solving the relevant kinetic recombi
Th_e a_mgular_correlgtlon function of these temperature ation equations for hydrogen and heliji&8—65.
polarization anisotropies are observed on a two-sphere The quantityP(m) represents the coupling between tem-

around us and can be decomposed in Legendre polynomialg, ayre and polarization. Due to our choice of decomposi-

Py as tion, only the electric part of the polarization is affected by
sU Y 1 temperature anisotropies. However, electric and magnetic
—(y)—(3 )> - 21+ 1)CUVP,(y1.75), part of polarization couple the_mselves as photons propagate.

< T T ) =g Z ( IMLERE The Clebsch-Gordan coefficients<" arise from product

(50) properties of spherical harmonics. They are obtained in the

same way as for the scalar modés).

The differential optical depthr vanishes for neutrinogex-
cept in the very early universe, but the observable wave-

whereU, V stand for®, E, or B. Now the brackets stand for
an average on the sky, i.e., on all pairg, (y,) such that O™ (79,K) [0

N - : : —————=| dye "S™j{™k(no— 7)), (58
1 Y2=C0S#,. Using the orthonormality properties of the 21+1 0

eigenfunctionsG, equationg46),(47) can be inverted to ex-
tract the angular power spect@t’v of the temperature and

(m)
polarization anisotropies as M S \/gj 7'°d77 e~ Tp(M
21+1 0
2 2~UV 2 (dk 3 (m)
T2(21+1)%C| WO)ZEI? > KUM(70,k) X e (K(mo— 1)), (59)
m=x*2
(m) B{™ (70,k) n o
XV (19,K). (51 (70 :_\/gf 0d777_e—r|;,(m)
21+1 0

The equations of evolution of the temperature and polar- -
ization multipoles®(™ | E(™  andB{™ can be obtained by X B (K(m0= 7). (60)
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The functiong (™, &™ and g™ are defined in terms of the H=Hh, 68)
spherical Bessel functiong,(x) as

) with H solution of the homogeneous equation of evolution
(22 = [3 (1+2)!ji(x) 6p (e with #(M=0), we get
I 8(I—-2)! x2 |

N 32 _H|. 32 H
Hh+| 2H+2H4H+-—«kPa?— | h+ —«xPa?—h=0.

1 . h) i (x) 15 15
(=2) v = | " hixy 1 (x) - -
6 “()=7 ~h)+[(x)+2 2 +4 : 69)
(62) D . _
_ Now, (i) sinceH=KkH, we deduce thatl>HH, (ii) since
A=+ 1 i) +21|(X) 63  KPa’=MHey, it follows that (32/15kPa?H/ 7="HZyl 7<kH
_2 X . -

~H, and(iii) sinceh=h/r, Hh<Hh and in conclusion in
where a prime denotes a derivative with respect to the argdhe limit (65) the equation of evolution of the gravitational

mentx. waves in presence of the anisotropic stré&®) reduces to
Beside the small contribution due to the polarization in 16
Eq. (58), the temperature fluctuation in the directignre- h=— EKPaZTh. (70

duce to the well known result by Sachs and W{B&]

ST 1 (n We deduce that a modeis damped from the time it enters
—(y)=— _f 0 hij)/i yidz, (64)  the Hubble radius, i.e.p= k! since it happens during the
T 2) mss radiation era, to roughly the time when the anisotropic stress

. ] becomes negligible, i.e., approximately at the time of last
where the subscript LSS stands for last scattering surfac@catterings, s. It follows that

The “visibility function” 7e~7 appearing in equations

(59),(60) takes a nonzero value only at the time of decou- 16 ( nsskPa?
pling so that, contrarily to temperature anisotropies which h(k,mss):ex;;( - 1_5f

are constantly generated by gravitational interactions with

photons, polarization is generated only at the last scatteringhis damping of the gravitational waves by the anisotropic

k7

dy;) h(k,1K). (72)

surface. stress of the photon fluid is analogous to the damping of the
scalar modesdensity fluctuationsknown as the Silk damp-
IV. DAMPING OF THE GRAVITATIONAL WAVES ing [74] a description of which, in the formalism used here,

i . .. can be found in Ref[58]. Note however that the origin of
We first study the effect of the damping of the gravita- the damping is different.

tional waves due to the anisotropic stress of the photons. This effect is small but, apart from Ref73], was not

\?:r?guz Sizrgopdggcg;r:;s rirgo?ig[iii %Lgaa\élltrigzlr;aclji\;v(?:sesseldnﬂm?]mh emphasized in the literature before. Assuming that the
. o . N [ [ letely ioni il the | [ -

Ref. [73]: we give a description of this damping in the for- iverse is completely ionized until the last scattering sur

malism we use here in order to quantify precisely its effectface’ the integral of Bq(71) is of order[75]

on CMB anisotropies. On subhorizon scales larger than thel Yo Q0 mox
diffusion lengthxp=r"1 of the photons, i.e., such that Zl1- —“e) — P ay(miss— 1K) =10"3(1— 1k, s9),
3 200 om
He= 77, <k< T, (65) (72)

where m, is the proton massgy, is Thomson scattering

the set of equationt52)—(57) implies that cross section. The real damping factor is greater than the

44 \/— estimate(72) because the universe becomes neutral at the
05 =— 3= and E(2)=— T®(2t2)' (66) last scattering surfacgo that the termr is smalley. In Fig.
T 1 (left), we plot this damping factor for the modes that en-

. (+2) - . (+2) ) tered into the Hubble radius long before the last scattering
Since 'S proportlonal t0®2. ; We can insert the_ surfacei.e., such thak> 7, o9). As a consequence, the com-
former expressions in the gravitational waves evolution,, i< petween the damped case to the undamped case,
equation(41) to get the back reaction of the anisotropic gq,n on Fig. 1right) does not show significant differences.
stress The amplitude of the high-ail of the CMB anisotropy spec-
: trum is lowered by roughly 10% when one includes this
H+ 2HoqH + K2H = — 3—2KPa2.ﬂ. (67)  effect. The same occurs of course for polarization. We em-
15 T phasize that this result does not depend on any particular
model, and is not included in the most recé&h®) version of
Setting CMBFAST.
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FIG. 1. Damping of the gravitational waves due to its coupling to the photons anisotropic stress. The dé&ftdiggre) is generated
only when the universe becomes neutral, i.e., soon before the last scattering surface. As a consequence, all the mode which have already
entered into the Hubble radius at recombination are equally damped, regardless of their wavelength. The influence of this damping on the
CMB anisotropies is shown on the right figure. Since all the modes are equally damped, this translates into a constant ratio of amplitude
between the damped and the undamped cases. Note, however, that our derivation is valid only wB8&napglies, which is not true at

the end of decouling, when becomes small. This is why the actual dampiti§% is smaller than what is expected from the left plot.

V. SPECIFICATION OF THE MODEL However, in this class of models one does not try to have a
theory converging towards general relativity at late time and
the couplingé is constant which is the main reasons of the

At this stage, the model we are discussing depends on fivgeyere bounds on its value. This can be improved by gener-
parameters(1) f(¢) which is an arbitrary function of the jjizing this kind of models by considering them in the frame-
scalar fieldg, (2) & the coupling of the scalar field with the \work of scalar-tensor theorié81,32.

A. Model parameters

background spacetimé3) « the slope of the potentidll4) (3) In most models is not constrained theoretically. If
or (16), (4) Q, the energy density in the scalar field today, the matter content of the universe today is dominated by the
and(5) Pt(k) the spectrum of the gravitational waves. matter-radiation fluid then the fact that the observati@is

Indeed there exist some constraints on these functions arglvor — 1< o ,<—0.6 gives a bound on, which is indeeed
parameters and we make the following assumptions anfdot the case anymore if the scalar field starts to dominate. In
choices. Fig. 2 [left], we compare this analytic estimate and the nu-

(1) We assume that( )= ¢?/2; this is the only choice merical determination of the energy scéleas a function of
for which the coupling constarg is dimensionless. More- the slopex. We see that ifr>4 thenA is at least larger than
over such a choice can be seen as the lowest term in apTev (WhenQ%:oj)_
expansion of in powers of¢. As shown in Ref[22] there (4) The density parametdd}, is not severely constrained
exists tracking solutions for the field evolving in the po-  (hegretically, but observations seem to indic&§~0.7.
tential (14) with such a coupling. _ . One has to check that if the scalar field was dominating the

((2) Ifthe scalar fields is coupled to the spacetime metric, patter content of the universe at some early stage then it has
this coupling must be weak enough so that it does not geng, pe subdominant at the time of nucleosynthési, e.g.,
erate a significant time variation of the constants of naturg, ¢ [69]). The choice o2 fixes the value of the energy
[29]. Taking into account the bound on the variati@ G|  scaleA in Eq. (14) or (16); this is thecoincidence problem
of the Newton constari66] and on the variatioha/a| of the  On Fig. 2(right), we depict the variation of the energy scale
fine structure constaf67], it was showr[30] that A with Q% and «. It is not very sensitive ttﬂgS as long as
0.1<Q%<0.9. In fact, when the quintessence field starts to
dominate the matter content and if we have reached the at-
tractor thend?V/d¢?=H? (see Ref[18]), and H>=V/M?3,

This bound is, however, sensitive to the shape of the poterso that we can estimate that the variationAofwith « fol-
tial. On the other hand the experimental constraifian the  lows

Shapiro effect and the light deflection in the Solar sygtem

the post-Newtonian parametds7,68 imply [30]

—-10%<¢<102%-10L (73

A=(peitMp) U(dta), (79
3.9x10 2
(74)

s —.
N Va(a+2) We conclude that

083506-8



QUINTESSENCE AND GRAVITATIONAL WAVES PHYSICAL REVIEW D62 083506

1015 | ' 10" ; . . ;
1 010 i 1 010 _ ------------- _
5 [ _
%\ 10° %
< G 100F _
< 100} ¢
10° | _
10° | o -
Numerical calculation S
1070 : Analytic estimatg - - | | | e
1 10 0 0.2 0.4 0.6 0.8 1
o Qg

FIG. 2. Variation of the energy scale of the potential14) with the energy density of the scalar fie(l@ and the slope of the potential
a. We first show(left) the variation ofA with « whenQ‘;: 0.7 and the comparison with the analytic estim@® and(right) the variation
of A with 0, for a=2,6,12.

SA 1 593) where it dominates the matter content of the universe at a
- very early stage. SituatiolC1) implies that at the end of
A dta of reheating
and thus a prescision of 10% @!]35 requires to tune\ at a py= 10_4p7, (78
1% level if e.g.«=6, which is a less drastic tuning than the
usual cosmological constant fine tuning problem. where the factor 10* is roughly the inverse of the number
(5) Pt has to be determined by a specific model, such asof degrees of freedom at that time. Since the quintessence
e.g., inflation, and we parametrize it as field is already subdominant at this epoch, one does not need
to care about its effect on nucleosynthesis since it remains
Pr(k)=A{k"T (76) subdominant until recently. In the second situatit?), the

field starts by dominating and inflation ends by a kinetic
whereAr is a constant dansy is the tensor mode spectral phase rapidly thap., and will thus become subdominant.
index. Ay is obtained by normalizing the CMB temperature One has to check that this happens before nucleosynthesis
anisotropies to the Cosmic Background Explof@OBE)  [46,48. A realization of such initial conditions can be ob-

data atl =10 for which tained in quintessential inflatio8].
In Fig. 3, we depict the evolution of the energy density of
- [(1+1) COO_30 4K 77 the quintessence field, matter and radiation for the initial
0 27 KB conditions(IC1) (left) and (IC2) (right). We see that for a

very large range of initial conditions(roughly for
Since some measurements tend to show that there is a pegf—47 Ge\/45p¢s 10113 GeV* at a redshift oz=10>%) we
at the degree scald], we conclude that a significant part of end up with a quintessence field which starts to dominate
the anisotropies may be generated by the scalar modes. In thgqay. This explains briefly how the fine tuning problem is
“standard” slow-roll inflation picture, this is compatible golved[21]. We can also check that with these values the
with an almost scale-invariant spectrum with a low tensorsca|ar field does not dominate the matter content of the uni-
an upper limit on the amplitude of the gravitational waves  an interesting point concerns the evolution of the scalar
spectrum. Nevertheless, we point out that it is also possiblge|q equation of state in the cad€2) whené&=0. The field

that most of the large scale anisotropies can be generated By|is down very fastly so that we are first in a regime where
gravitational waves. This assumes a strong deviation from

scale invariance rs=1.69 andn;=0.0), but is in good 1 ¢2
agreement with observational d4f0]. p=P= 52 (79
a
B. Initial conditions and behavior of the background

. from which we conclude that its equation of statavig=1
spacetlme

(see Fig. 4. But, because of the exponential behavior contri-
Concerning the initial conditions for the scalar fieddwe  bution of the potential, the field is stopped whér M p, and
will consider the two extreme casd$C1) where we assume then rolls back to smaller valuésee Fig. % so that the field
that the scalar field is at equipartition with the mattee.,  undergoes a series of damped oscillatighscause of the
mainly with the radiationdeep in the radiation era aiC2)  friction term coming from the expansion in the Klein-
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FIG. 3. The behavior of the energy density of the matteng-dashed ling radiation(short-dashed line and scalar fieldsolid and
dotted lineg, as a function of the redshift for the two class of initial conditiofi€1), when the field is at equipartition with the radiation
(left), and(IC2), when the field initially dominates the matter content of the univéigat). The solid line represents the case when the field
evolves in an inverse power-law potential, and the dotted line represents the case when the field evolves in the suf®tifBiRMy

potential. Note that when the field dominates at early times, the SUGRA potential stabilizes the field, which reaches the tracking solution

earlier.

Gordon equation This implies that there exist times such when the field starts to dominate and comes from the fact
that =0 and thus small period around them where thethat the bound-1<w,<1 no longer applies, and one can

equation of state varies rapidly to,=—1 (see Fig. 4 This
sudden change in the equation of statepofiappen while it
is dominating the matter content of the univefsee Fig. 3
so that it implies variations in the evolution of the scale
factor of the universe which, in principle, should let a signa-
ture in the gravitational waves energy spectrum. Indeed, thils
does not happen in standard quintessence and is a speciﬁ]égl
feature of the SUGRA quintessence.

When £+ 0, there are no significant modifications to the
background dynamics as long as the field has not reached t
Planck mas$because 2«f(¢) is small compared to unity,

see Eq(5)]. Then, the main difference appears at late times

get lower values ofw,. Equivalently, the equation of state
parameterw = (Pyiq+ P )/ (pruiat py4) for the whole back-
ground fluids can reach values smaller that (see Fig. 6
where we plot the variation ab , as a function of redshijt

As pointed out by Caldwell10], such a matter fits the cur-
ent observational data. Different candidates such as a decay-

dark matter componef71] and a kinetic quintessence

d [72] were proposed. Here, we show that any nonmini-
mally coupled scalar field may be a good candidate for a
component of matter witlhh<<—1. The constraint§73) on ¢
implies that for our class of models

05 05 F
0Fr 0F
8 3

-0.5 + -0.5 |
-1 F -1+

Quintessence, (IC1) —— Quintessence, (IC2) ——

SUGRA Quintessence, (IC1) SUGRA Quintessence, (IC2) -
18 =% 25 20 5 0 5 0 1.5 = : ' : ' ' ;
107 107 107 107 107 10° 10 10%  10® 102 10 107" 105 10°

1/(1+2)

1/{1+z)

FIG. 4. The behavior of the equation of state parameter as a function of the redshift for the two class of initial coritfitionsethen
the field is at equipartition with the radiatigteft), and(IC2), when the field initially dominates the matter content of the univérght).

The solid line represents the case when the field evolves in an inverse power-law potential, and the dotted line represents the case when the
field evolves in the SUGRA potential. In the case(i£2), the field reaches the tracking solution only when SUGRA corrections to the
potential are considered. Note also the spikes in the SUGRA (cabd), which illustrate the fact that the field bounces around the Planck
scale(see Fig. 5 beloy
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FIG. 5. The behavior of the quintessence field as a function of the redshift for the two class of initial condi@dnswhen the field
is at equipartition with the radiatiofleft), and(1C2), when the field initially dominates the matter content of the univéigét). The solid
line represents the case when the field evolves in an inverse power-law potential, and the dotted line represents the case when the field
evolves in the SUGRA potential. In the case(li1), the field always reaches the tracking solution before today, whered€®)r the field
reaches the tracking solution only when it evolves in the SUGRA potential.

if the scalar field dominates. We emphasize thgtis not  wherei runs on all the matter species. This corresponds to
uniquely defined according to the way one splif§) in (6).  the value ofw as it may be reconstructed from observational
In Fig. 6, we used the Friedmann equatig@g(8) to extract ~ data such as, e.g., the supernovae type la.
o from

VI. QUALITATIVE DISCUSSION

E —1=— §(1+ )Q A. Gravitational waves spectrum
2

H 2 Equation(41) describes the evolution of a damped oscil-

lator. Injecting the ansatz

and thenw,, from

HM=AMexnik 7) (80)
wQ:Z ;) in Eq. (41) and performing a WKB approximation leads to
! the equation
AM 4 AM=0 (81)

for the evolution of the amplitud&™ where Ho4=a/3,
with

a=a\1-2«x&f(¢). (82)

This WKB approximation holds only for “sub-horizon”
modes. Before a mode has a wavelength smaller than the
Hubble radius, its amplitude evolves according to

3 L5000 - - - AM 4 27 AM =, (83
107 1074 1078 1072 107! 10° 10 ¢

the solutions of which are a constant mode and a decaying
FIG. 6. Evolution of the equation of state parameieras a  Mmode. Neglecting the decaying mode, we see that the wave
function of the redshift for different values of the coupliggAs IS “frozen” as long as its wavelength is larger than the
soon as the coupling is not minimal can reach values smaller Hubble radius, and that it undergoes damped oscillations
than — 1. The parameters of the model considered here @5, once its wavelength is shorter than the Hubble radius. The
potential (16) including SUGRA correctionsﬂ?bzo.? and(IC1) damping of a mode of wavenumbkrbetween the time it
initial conditions. enters the Hubble radius and today is then proportional to
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FIG. 7. The temperature et polarization of the CMB induced by gravitational wgaftsand their energy density spectrunight) in a
standardA CDM model withn+=0.

In conclusion, we have found three behaviors for the gravi-
= (84)  tational waves spectrum according to the wavelength. In Fig.
0 9, we give an example of such a spectrum in a case where
- one has a scalar field dominating at early stigéial con-
wherea, is the scale factor evaluated at the timg when  dition (IC2)]. These results hold also whei#0 but the
the modek enters the Hubble radiuge., when{=k) and  sjopes of the spectrum are slightly changed since the time

a, is scale factor today. Injecting this behavior in E86),  behavior ofa has to be replaced by the oneaf
we obtain that the energy density spectrum of gravitational

waves scales as B. CMB anisotropies
Qew > For scales smaller than the Hubble radius at decoupling,
din(k) *k“ajPr(k). (85 one can follow the same lines to predict the tensor part of the

CMB temperature anisotropies. The main difference is that
First let us assume tha§=0. For wavelengths corre- the expression fok(I+1)C; does not involve any factdc®
sponding to modes that have entered the Hubble radius in tits in Eq.(45), the reason being that E¢8) can be inte-
matter dominated eréfor which a= 72 and thusp=k~),  grated by parts to drop the time derivative l#f™, which

one can easily sort out that shows that anisotropies are mostly generated on the last scat-
tering surface with an amplitude ¢H™)|2. Therefore, the
=k 2 (86) spectrum behaves as
[(I1+1)CoelM=4 02 =t (90)

and the gravitational waves spectrum behaves as

for modes which have entered the Hubble radius is the mat-

k™ 2P+(K). (87)  ter dominated, radiation dominated and kinetic scalar field
dominated eras respectively. With standard cosmological pa-

- : ameters, the radiation to matter transition occurs soon be-
Equivalently, for wavelengths corresponding to modes entel;ore the decoupling, and the scalar field dominates only at

ing the Hubble radius in the radiation dominated éfar very early times. As a consequence, one sees almost only the
which a«x 7) one can show that the gravitational waves en- y |3|/+1 c'o<|“T*2 - q d ’ hich enter int thy
ergy spectrum behaves as regime | ( . )C, - For modes which enter into the
Hubble radius after the last scattering surface, one can show
dQcw [44] that the produced spectrum scales as

kP (K). 88
dIn(k) (k) 9 [(I14+1)C=Im, (91

Qew
oC
din(k)

To finish, if it happens that there exist wavelengths correNote that this expression is indeed an approximation and that
sponding to modes that have entered the Hubble radius whilgis not easy to calculate an accurate analytical solUtih.

the scalar field was dominatin@or which ax= /5 sincep,  These results are illustrated in Fig. 7. As already stressed, the
«1/a®) one obtains that result of Eq.(91) applies at large angular scales which have
not entered into the Hubble radius at recombination. For
standard cosmologies, this occurs for multipoles smaller than
=100 (in addition, there are also some corrections to this

ck!P(K). (89)
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104 . . . of the value of the coupling, which cause some slight dif-
ferences in the CMB anisotropies at the very first multipoles
(I=<5). We have also seen that the polarization is generated
] by gravity and therefore different gravitational constants lead
to different normalization between the polarization and the
temperature spectra. Since we normalize the “bare” Einstein
] constantk so that the effective Einstein constant corresponds
to what we measurén e.g. a Cavendish experimgninod-
b3 els with a different¢ have differentx. At decoupling, the
] scalar field does not dominate and therefa€ = «53°.
This induces different amplitudes for the polarization anisot-
- ropy spectra. For the lowest values €there is a factor 2
. —4 in amplitude as compared with the=0 case, which
10 100 1000 roughly corresponds to the square of the variationkgf
I (and, hencés) between the last scattering surface and now.
Note that the effect o€ depends on its sign. This is the

FIG. 8. Influence of the coupling on the CMB temperature and regson why the constraint derived by Chf88] are stronger
polarization anisotropies. The value &finfluences the angular g, negative values of. The same can be seen in Fig. 6.
diameter-distance relation and therefore affects the (_)verall position \n/e conclude that the temperature anisotropies and polar-
of the spectrum. The parameters of the model considered here e tion give mainly information on the spectral index, the

the same as in Fig. Gr=6, potential(16) including SUGRA cor- . . . .
rections,Qg=0.7 andn; =0. Znergy density of the scalar field todég% and its coupling

rough estimate which occur at the very smallest multipoles
and slightly boost the spectrum, as can also be seen on Fig.
7). Then, at higher multipoles the result of £0) is valid. e now turn to the more unusual case where the scalar
The matter dominated regime before recombination is rathefféld dominates at the end of inflation and where the universe
short, and occurs only betweés 100 and =200 (less than ~ Undergoes a kinetic phase before the radiatior{ 2449 as

one oscillation in the spectrumFor | =200, one sees the N €.9., quintessential inflatidi8]. The wavelengths corre-

10% o 1
10?

10°

T3 [I(+1) C, / 21 (uk?)
6..O

B. Field ¢ dominates at early stage

regimel (1 +1)C,xI"7~2 (see also Fig. 1 of Ref44]). sponding to the observable CM_B muItipoIel%(ZOOO)_are
much larger than the Hubble radius at nucleosynthesis, epoch
C. Results of theACDM model at which we have to be radiation dominated. As a conse-

Before turning to a more general numerical study of thequence, we expect no signature from this early phase on the
class of models we consider in this article, we recall in Fig. 7CMB anisotropies and polarization.
the general results for the temperature and polarization an- As first pointed out in Refs[46,48, if the scalar field
gular power spectra and the gravitational waves density speglominates at early stage, there is an excess of gravitational
trum for aA CDM model. This spectrum has two branches: awaves at high frequendsee equatiori89)]. On Fig. 9, we
soft branch at lower frequenciésorresponding to the matter present such a spectrum and we will discuss the implication
dominated erpand a hard branch at higher frequendiesr-  Of this excess later.
responding to modes that entered the horizon in the radiation An interesting effect concerns the difference between the
era. Following Ref.[34], we set the cutoff on this spectrum Spectra obtained from an inverse power law potential and a
to the last mode that has been inflated out of the Hubbl®UGRA-like potential. As shown on Fig. ®ight], the am-

radius. plitude of the spectrum at high frequency in roughly 30%
higher for inverse power law potentials. The relative de-
VII. NUMERICAL RESULTS crease in amplitude at these frequencies for SUGRA-like po-
tentials depends on the dynamics of the scalar field in the
A. Field ¢ initially at equipartition bounce(see Figs. 4 and)Fluring which the equation of state

Since the scalar field only starts to dominate at very receritaries from+1 to —1 and to+1 again. Thus, during this
time, we expect no effect on the gravitational waves energ§ime, the modes that had just entered into the Hubble radius
spectrum(since at earlier time the universe is always radia-(@nd thus which had just started to undergo damped oscilla-
tion dominatedt However, the change in today’s universe tions) went out of it(during thew<0 epoch and their am-
equation of state yield a specific signature in the angu|aplitude was frozen before reentering the Hubble radius again.
diameter-distance relation. Hence, one expects to see th¢ence, the modes of larger wavelengths are less damped
quintessence field behavior in the positions of the peaks iMhich explains this decrease in amplitude. Now, if the slope
the CMB anisotropy spectra. of the potential is less steep, the bounce Ias_ts lorigere

The temperature anisotropies plots of Fig. 8 are therefor¢ghat we always reaclh=—1 at the point whereb)=0) and
identical at high multipoles except for their overall position thus the damping is stronger. This signature, even if not de-
which are different. At low redshift, the scalar field domi- tectable by coming experiment is nevertheless a clear feature
nates and the dynamics of the expansion depends expliciteyf supergravity.
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FIG. 9. Gravitational waves spectrum in a quintessence model(l@&) initial conditions with a SUGRA-like potential. The spectrum
has been normalized to be compatible with COBE at large scales. The spike in the evolution of the equation of state of the gsalar field
Fig. 4) yields to a losgright) of about 20% in the amplitude of the spectrum at high frequehey, >10* Hz).

To finish, let us discuss the total energy density of gravi-o p 4! pragat the end of reheatlngQGW can be estimated by
tational waves¢,, today. As pointed out in Ref46], ithas  the surface of the spectrum below the part with a positive
also to be negligible at nucleosynthesis; this constraint islope (i.e., the high frequency part; see Fig. &d thus of
more drastic than the only requirement t% be negligible  order
at that time. Let us emphasize that the Constraint&’lﬁw
cannot be avoidedsince it involves background dynamijcs 0 E dQew (92)
whereas the one oft,, depends omA; and n; and thus Wk, dink |,
leads to a combined constraint on the initial conditions of the
scalar field and on the initial power spectrum of the gravitawhere kg andk, are, respectively, the modes entering the
tional waves. In addition té; andny, Q,, mainly depends Hubble radius at the reheating andzat. Thus the “bump”
on the initial values ofp, and p.,q Which can be param- at short wavelength cannot be too high. Moreover, the en-
etrized by the reheating temperatufg (related roughly to  ergy density at the end of reheating cannot be higher that
prag @t that timeg and the redshifz, of equality between the Planck scale, so that it fixes a limit on the shortest mode in
kinetic scalar field era and the radiation érelated roughly  which gravitational waves are produced. On Fig. 10, we first

*
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FIG. 10. Variation of the gravitational waves spectrum with the cutoff and with the epoch of transition between scalar field in kinetic
regime and radiatiofleft) and contour plotright) of the safe zone for nucleosynthesis for the parameterTsgtz(, ) (above the dotted and
dot-dashed lingsBoth plots are for a spectral index=0 and for maximun®; allowed by COBE measurements. The solid line is obtained
by imposing that the scalar field dominates at the end of inflation: points lying on or above this line have a corresponding solid power
spectrum on the left plot. The horizontal dot-dash line is obtained by imposing that we are radiation dominated at nucleo@ynthesis
z,>10'"). The diagonal dotted line is obtained by imposing that the energy density at the end of inflation is smaller than the Planck density.
The diagonal dot-dashed lifEGW backgrourd . . . ") is obtained by imposing thzﬂgW< 108,
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plot [left] the variation of the gravitational wave spectrum [47]) is already tilted, giving as stronger constraint on our
with the parametersT,z,) and we then givdright] the  model. For instance, ifny=0.2, the amplitude atv

“safe” zone of parameters for nucleosynthefisr n;=0] =10 GHz is boosted by a factor3x10°. As a conse-
and defined 46,48 by Q2,,=10°%. Let us briefly explain duence, the quantity of gravitational waves at high frequency
how this bounds are obtained. cannot be boosted as much as in the case of a scale invariant
(1) We first rephrase in terms & the fact that the field spectrl_Jm, an_d the allowed range of parameters for our model
is dominating at the end of the inflation phase, i.e., (see Fig. 1Dis narrowed.
7, <zpez, <aTg, (93) VIIl. CONCLUSION

where«, is some numerical coefficient. This corresponds to In this artu(:jlel, we Eave StUd'.eq sollme pr0||3e(;t|es (I)f q]glr?(-j
the solid line on Fig. 10. tessence models with a nonminimally coupled scalar fie

(2) We then impose that the scalar field is subdominant afMong Which the spectrum of gravitational waves. We have
P shown that such a quintessence field can behave as a fluid
nucleosynthesis, i.e., that .
with w<—1 and our models lead te 3=w=0 when the
z, >10' (94)  field dominates. We related the energy scalef the poten-
tial to its slopea and to the scalar field energy density today
This Corresponds to the horigontal dash-dot line on Flg 10@0 . In particu|ar, we showed that is almost independent
(3)_ At the end of the inflation phase, we want the_: energyof Q?b' The coincidence problem, i.e., the fact trﬁ@pl
density to be smaller that the Planck energy density. If thmpies a tuning ofA (roughly the precision o has to one
scalar field is dominating if gives order of magnitude higher than the one &) which is,

(1425 however, less severe than the fine tuning needed for a cos-
p?ﬁ—z(1+zeq)<ppl<:>z*>a2T§, (950  mological constant. This being fixed, the tracking mecha-
(1+z,) nism allows to span a very wide range of initial conditions

. _ . . for the scalar field and there is no fine tuning in that respect.
where «, is another numerical coefficient. This corresponds We then showed that the combined study of the gravita-
to th.e dot line 02n F'zg' 10. Note that .snlce we are |n a f'eldtional waves energy spectrum and of their imprint on the
domlnatedzera—l <a” and thus on this "Planck limit” we CMB radiation temperature and polarization enables to ex-
ha\g/e KrZg/z, and k, >z, (and thuskgxl/zg and K,  {ract many complementary informations on the models: the
«zg) from which we conclude that the maximum of the cg mainly gives results org, Q% andny: the energy

- 4 : - by
power spectrum is roughly located on a curvezgll/zz)  spectrum gives results on the initial conditions of the scalar

(see Fig. 10 o field. As pointed out in Refd46,48, there is an excess of
(4) To finish, we want that the gravitational waves energygravitational waves today if inflation ends by a kinetic phase.
density does not alter nucleosynthesis, i.e., that In that case, one has to check that b6t and Qg are

negligible at the time of nucleosynthesis and we relate the
amount of gravitational waves today to the reheating tem-
perature and the time of equality between the kinetic scalar
era and the radiation era.

We also pointed out that gravitational waves are damped
by the anisotropic stress of radiation, which implies that the

tional waves. The solid line separates the two sets of initiaFNIB anisotropy and polarization spectra are lowered

I . _ 0 : .
conditions we have considered. We must emphasize that thi ughly by 10% for high _mL!ItlpoIes. It was also shown that
result was obtained fan;=0 and that the spectrum can be the amplitude of the gravitational waves spectrum for inverse

tited, which modifies the bounds on the parameter Sepowerllaw potgntials is-30% higher th:?m _for SUGRAike
(Tr.z.) (more precisely, taking smallék; or negativeny potentials at hlgh frequenpy. Indeed _thls is propably not de-
lowers the diagonal dot-dashed [n&uch constraints may tectable by coming experiments but it could ultimately lead

be important for instance while considering models where 4o a signature of supergravity.
scalar field dominates at baryogendsig].

In the case of a “blue” initial power spectruii.e., with
ny>0 in our notations, oB>—2 in the notations of Ref. It is a pleasure to thank Pierre Bingy, Nathalie
[78]), as advocated for example in RET8], the flat branch  Deruelle, Thibault Damour, David Langlois, Patrick Peter,
of Fig. 9 (corresponding to the “semihard” branch of Ref. and Filippo Vernizzi for fruitful discussions.

02,=10 %=Tr<agz, , (96)

where a3 is a third numerical coefficient. This corresponds
to the dot-dash line on Fig. 10.

For all the points Tg,z,) above the dotted and dot-
dashed lines of Fig. 1Qight), there is no excess of gravita-
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