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We investigate some aspects of quintessence models with a nonminimally coupled scalar field and in
particular we show that it can behave as a component of matter with23&P/r&0. We study the properties of
gravitational waves in this class of models and discuss their energy spectrum and the cosmic microwave
background anisotropies they induce. We also show that gravitational waves are damped by the anisotropic
stress of the radiation and that their energy spectrum may help to distinguish between the inverse power law
potential and supergravity motivated potential. We finish with a discussion on the constraints arising from their
density parameterVGW .

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

Recent astrophysical and cosmological observations s
as the luminosity distance-redshift relation for superno
type Ia @1–3#, the recent observations of the cosmic micr
wave background temperature anisotropies@4#, gravitional
lensing @5#, and velocity fields@6# tend to indicate that a
large fraction of the matter of the universe today is co
posed of matter with negative pressure~see, e.g., Ref.@7# for
a comparison of the different observations!. Recent analyses
@8,9# seem to indicate that the energy densityr and the pres-
sureP of this fluid satisfies

21<P/r<20.6, ~1!

which is compatible with a cosmological constantL for
which P/r521 ~see also Ref.@10# for arguments in favor
of P/r,21). A typical value ofVL.0.7 for its energy
density in units of the critical density of the universe cor
sponds to an energy scale of order 5310247 GeV4 which is
very far from what is expected from high energy physi
this is the well known cosmological constant problem@11#.
To circumvent this problem different solutions have be
proposed starting from the idea of a dynamical cosmolog
constant@12# and leading to the class of models known
quintessence@13#, where a spatially homogeneous sca
field f is rolling down a potential decreasing whenf tends
to infinity. An example of such a potential which has be
widely studied is the inverse power law potential. It can
obtained from some high-energy physics models, e.g., wh
supersymmetry is broken through fermion condensates@14#.
Recently, it has been argued@15# that supergravity has to b
taken into account since today one expects the scalar fie
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be of order of the Planck massMPl and corrections to the
potential appear at this energy. This leads to a better ag
ment with observations@16#.

An important point about this family of models is th
existence of scaling solutions@17,18# ~referred to astracking
solutions!, i.e., such thatf evolves as the scale factor of th
universe at a given power. These solutions are attractor
the dynamical system describing the evolution of the sc
factor and of the scalar field. This implies that the pres
time behavior of the field is almost independent of its init
conditions@19,20#. This property allows us to address@21#
~i! the coincidence problem, i.e., the fact thatf starts to
dominate today and~ii ! the fine tuning problem, i.e., the fac
that one does not have to fine tune the initial condition of
field f.

One of us extended these models to include a nonmini
couplingjR̄f (f) between the scalar field and the scalar c
vature R̄ @22#. Such a coupling term appears, e.g., wh
quantising fields in curved spacetime@23,24# and in multidi-
mensional theories@25–27#. It was shown that whenf (f)
5f2/2 tracking solutions still exist@22# and this result was
generalized@28# to any coupling functionf and potentialV
satisfyingV(f)} f n(f). However, such a coupling is con
strained by the variations of the constants of nature@29#
which fix bounds onj @30#. A way to circumvent this prob-
lem is to consider quintessence models in the framework
scalar-tensor theories@31,32# where a double attracto
mechanism can occur, i.e., of the scalar-tensor theory
wards general relativity and of the scalar fieldf towards its
tracking solution.

Among all the possible observations of cosmology, gra
tational waves give an insight on epochs where there wa
variation of the background dynamics since every su
variation affects the shape of the stochastic graviton ba
ground spectrum@33,34#. We can then view our universe a
containing a sea of stochastic gravitational waves from
mordial origin, as predicted by most models of structure f
mations such as inflation@33,34# ~see also Ref.@35# for a
©2000 The American Physical Society06-1
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review! and topological defects scenarios@36#. Their spec-
trum extends typically from 10218 Hz ~for wavelengths of
order of the size of the Hubble radius today! to .1010 Hz
~the smallest mode that has been inflated out of the Hub
radius! and they could be detected or constrained by com
experiments such as the Laser Interferometric Gravitatio
Wave Observatory ~LIGO! @37#, VIRGO @38# ~at
.102 Hz), and the Laser Interferometer Space Anten
~LISA! @39# ~at .1024 Hz). Gravitational waves, which ar
perturbations in the metric of the universe have also an ef
on the cosmic microwave~CMB! temperature anisotrop
@40–44# and polarization@45# allowing to extract informa-
tion on their amplitude from the measure of the CM
anisotropies. For instance, bounds on the energy den
spectrum of these cosmological gravitational waves in u
of the critical density,VGW, have been obtained from th
CMB @40–42#

dVGW

d ln v U
10218 Hz

&10210.

Gravitational waves are also a very good probe of
conditions in the early universe since they decouple earl
its history and can help, e.g., testing the initial conditions
f. An example was put forward by Giovannini@46,47# who
showed that in a class of quintessential inflation models@48#
there was an era dominated by the scalar fieldf before the
radiation dominated era which implies that a large part of
gravitational wave energy of orderVGW.1026 ~about eight
orders of magnitude higher than for standard inflation! was
in the GHz region. This may happen in any scenario wh
the inflation ends with a kinetic phase@24,49# or when the
dominant energy condition is violated@50#. On the other
hand, the CMB temperature fluctuations give information
the history of the gravitational waves in between the l
scattering surface and today through the integrated Sa
Wolfe effect, whereas the polarization of the CMB radiati
gives mainly information on the gravitational waves at d
coupling. These three observables~energy spectrum, CMB
temperature and polarization anisotropies! are thus comple-
mentary and we aim to present here a global study of
cosmological properties of the gravitational waves.

The goals of this article are~i! to study in more details the
cosmology with a nonminimal quintessence field and~ii ! to
study gravitational waves in this class of models. In Sec
we set up the general framework and describe the two
tentials we shall consider. In Sec. III we introduce and defi
the observable quantities associated with the gravitatio
waves: their energy density spectrum and their imprint on
CMB radiation anisotropies and its polarization. In Sec. I
we point out the general mechanism of damping by the
isotropic stress of the radiation. In Sec. V we discuss
parameters of the problem and investigate the tuning of
potential parameters; we also describe the evolution of
background spacetime and show that a nonminim
coupled quintessence field is a candidate for
(v,21)-matter. In Sec. VII we describe the main prope
ties of the gravitational waves. We finish in Sec. VIII b
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presenting numerical results and we underline the com
mentarity of the different observational quantities.

This work gives a detailed study of the observational
fects of gravitational waves in the framework of quinte
sence, including some recent developments, and allowing
nonminimal coupling. This extends the work on quintess
tial inflation @46# by including the effects on the CMB. I
also extends the studies on the cold dark matter model wi
cosmological constant (LCDM) @51# to quintessence and is
as far as we know, a more complete study of the effect
gravitational waves on the CMB polarization. We hope
show that a joint study of the gravitational wave detecti
experiments@37–39# of the CMB experiments@4,52,53# and
of the polarization experiments@53# can lead to a better de
termination of their properties.

II. GENERAL FRAMEWORK

A. Background spacetime

We consider a universe described by a Friedma
Lemaı̂tre model with Euclidean spatial sections so that
metric takes the form

ds25a2~h!@2dh21d i j dxidxj #[ḡmndxmdxn, ~2!

wherea is the scale factor andh the conformal time. Greek
indices run from 0 to 3 and latin indices from 1 to 3.

We assume that the matter content of the universe ca
described by a mixure of matter and radiation~mainly bary-
ons, CDM, photons and three families of massless, non
generate neutrinos! and a scalar fieldf nonminimally
coupled to gravity evolving in a potentialV(f) that will be
described later. The action for this system is

S5E d4xA2ḡF R̄

2k
2jR̄f ~f!

2
1

2
]mf]mf2V~f!1LmatterG , ~3!

with k[8pG, G being the Newton constant, and whe
Lmatter is the Lagrangian of the ordinary matter which is u
coupled to the scalar field andf (f) is an arbitrary function
of the scalar field that will be specified later. The action~3!
can be rewritten under the interesting form

S5E d4xA2ḡF R̄

2keff@f#
2

1

2
]mf]mf2V~f!1LmatterG ,

~4!

with

keff@f#[
k

122jk f ~f!
. ~5!

The stress-energy tensor of the scalar field is obtained
varying its Lagrangian@2jR̄f (f)2 1

2 ]mf]mf2V(f)# to
get
6-2
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Tmn
(f)5¹̄mf¹̄nf2

1

2
ḡmn¹̄lf¹̄lf2V~f!ḡmn

12j@ ḡmn¹̄lf¹̄lf2¹̄mf¹̄nf

2f¹̄m¹̄nf1fhfḡmn1Ḡmn f ~f!# ~6!

where Ḡmn is the Einstein tensor of the metricḡmn , ¹̄ its

covariant derivative andh[¹̄m¹̄m.
The equations governing the evolution of the backgrou

spacetime are then obtained by varying Eq.~3! with respect
to ḡmn , f and the ordinary matter fields to get, respective
the Friedmann equations, the Klein-Gordon equation, and
fluid conservation equation

H 25
ka2

3
~r1rf!, ~7!

Ḣ2H 252
ka2

2
~r1P1rf1Pf!, ~8!

f̈12Hḟ1a2
dV

df
16j~2H 21Ḣ!50, ~9!

ṙ523H~r1P!. ~10!

An overdot denotes a derivative with respect to the con
mal time andH[ȧ/a is the comoving Hubble paramete
The matter fluid energy densityr and pressureP are as-
sumed to satisfy the equation of stateP5vr. The factorv
varies from 1/3 deep in the radiation era to 0 in the ma
era. The scalar field energy densityrf and pressurePf are
obtained from its stress-energy tensor~6! and are then ex-
plicitely given by

rf5
1

2

ḟ2

a2
1V~f!1

2j

a2
@3H 2f ~f!13H ḟ ~f!#, ~11!

Pf5
1

2

ḟ2

a2
2V~f!2

2j

a2
@~2Ḣ13H 2! f ~f!

1H ḟ ~f!1 f̈ ~f!#. ~12!

We stress that the conservation equation derived from~6!
reduces to the Klein-Gordon equation~9!. For each matter
component,X say, we introduce the density parameterVX
defined as

VX[
ka2rX

3H 2
. ~13!

To completely specify the model, we have to fix the p
tential V(f). Following our previous work@22# and as dis-
cussed in the introduction we choose it to behave as

V~f!5L4S L

f D a

, a.0, ~14!
08350
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whereL is an energy scale. As shown in Ref.@22#, such a
potential leads to the existence of tracking solutions wh
ever the value ofj and for which the scalar field behaves
a barotropic fluid of equation of state~as long as the back
ground fluid dominates!

Pf5vfrf with vf5211
a~11v!

a12
. ~15!

We also consider another class of potentials arising w
one takes supergravity into account@15,16# and given by

Ṽ~f!5L4S L

f D a

exp~kf2/2!, a.0. ~16!

The effect of the exponential term is important only at la
time so that the scaling properties of the tracking solution
not affected during the matter and radiation era. Howe
when the field starts to dominate it leads to its stabilizat
@16# which has an effect on the effective equation of state
the scalar fluid.

B. Gravitational waves

In this article, we want to focus on the properties of t
gravitational waves which are tensorial perturbations. At l
ear order, the metric is expanded as

gmn5ḡmn1 f mn ~17!

where f mn is a transverse traceless~TT! perturbation, i.e.,
satisfying

f 005 f 0i50, f mnḡmn50, ¹̄m f mn50. ~18!

It is also useful to define the perturbationhmn by

f mn[a2hmn ~19!

which, from Eq.~18!, satisfies

h005h0i50, hkld
kl50, ]kh

kl50. ~20!

The equation of evolution ofhkl is obtained by consider
ing the TT part of the perturbed Einstein equation~see, e.g.,
Ref. @54#! which leads to

ḧkl12@H2keffj ḟ ~f!#ḣkl2Dhkl52kPa2p̄kl , ~21!

where D[] i]
i is the Laplacian and where the anisotrop

stress tensor of the matterp̄kl is defined as the tensor com
ponent of the matter stress-energy tensor

dTj
i [Pp̄ j

i , p̄k
k5] ip̄k

i 50. ~22!

The anisotropic stress of the matter fluid is dominated by
contribution of the neutrinos and of the photons and its fo
can be obtained by describing these relativistic fluids b
Boltzmann equation@55# ~see Sec. III B below!.
6-3



an
w

by
e

m

rg

s-

, w

t-

a
h

ld
-

n

huk
k-
f the

as

r-

pace

nal

he

r

ALAIN RIAZUELO AND JEAN-PHILIPPE UZAN PHYSICAL REVIEW D 62 083506
III. OBSERVATIONAL QUANTITIES

The goal of this section is to define the observable qu
tities related to the gravitational waves. We start by revie
ing the computation of the energy densityrGW of a stochas-
tic background of gravitational waves and finish
describing their effect on the CMB radiation, namely, w
present the computation of the coefficientsCl of the devel-
opment of the angular correlation function of the CMB te
perature anisotropy and polarization.

A. Gravitational waves energy density

The definition of the gravitational waves stress-ene
tensortmn can be found in, e.g., Ref.@11# in the case of a
Minkowski background spacetime, in, e.g., Ref.@56# in the
case of a Friedmann-Lemaıˆtre spacetime, and a general di
cussion can be found in, e.g., Ref.@57#.

To define the gravitational waves stress-energy tensor
have to expand the Einstein-Hilbert action~4! to second or-
der in the perturbationf mn , which implies to develop the
curvature scalarR at second order in the perturbations~see
Refs.@11,56,57#! to get ~up to divergence terms and forge
ting the contribution arising fromLmatter)

d (2)S52E 1

4keff@f#
¹̄m f ab¹̄m f abA2ḡd4x. ~23!

This expression is valid whatever the background metric
long as f mn is a transverse traceless perturbation. Note t
contrarily to the ‘‘standard’’ situation,k now depends onf
because of the nonminimal coupling with the scalar fie
Using the fact that¹̄m f ab5a2]mhab we can rewrite the pre
vious expression as

d (2)S52E 1

4keff@f#
]mhkl]

mhklA2ḡd4x, ~24!

which assumes a Friedmann-Lemaıˆtre background and the
decomposition~20!. Now, we decomposehkl on its two po-
larizations as

hkl5 (
l51,3

h(l)~h,x!ekl
(l)~x!, ~25!

whereekl
(l)(x) is the polarization tensor defined as

ekl
(l)~x![~ek

1el
12ek

2el
2!d3

l 1~ek
1el

21el
1ek

2!d1
l ~26!

for a wave propagating along the directione3 and where
(e1 ,e2 ,e3) is a local orthonormal basis. Since this basis a
the polarization tensor satisfy

ei
aeb

i 5db
a , ekl

(l)e (l8)
kl

52dl8
l , ~27!

we can rewrite the action~24! of the graviton as

d (2)S52(
l
E 1

2keff@f#
]mh(l)]mh(l)A2ḡd4x, ~28!
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which is the action for two massless scalar fieldshl evolving
in the background spacetime, as first noticed by Grishc
@33,34#. By varying this action with respect to the bac
ground metric, we then deduce the stress-energy tensor o
gravitational waves

tmn52
1

2keff@f# (
l

~]mh(l)]nh(l)2ḡmn]ah(l)]ah(l)!.

~29!

If we decomposeh(l) in Fourier modes as

h(l)~x,h!5E d3k

~2p!3
ĥ(l)~k,h!eik.x, ~30!

we can relateĥ(l)(k,h) to its initial valueĥ(l)(k,h in) , i.e.,
its value deep in the radiation era~e.g., at the end of the
inflationary phase! through the transfer functionT(k,h) by
solving Eq.~21! to get

ĥ(l)~k,h!5T~k,h!ĥ(l)~k,h in!. ~31!

Defining the initial power spectrum of the tensor modes

^ĥ(l)~k,h in!ĥ
~l8!
* ~k8,h in!&[k23Ph~k!d~k2k8!dl8

l

~32!

(d is the Dirac distribution!, we can express the space ave
age oft0

0(x,h) as

2^t0
0~x,h!&5

1

2keff@f#a2 (
l

^] ih
(l)] jh

(l)d i j &

5
1

keff@f#
E k2

2pa2
Ph~k!T2~k,h!d ln~k!,

~33!

where we used an ergodic hypothesis to replace the s
average by an ensemble average. Now, since^t0

0(x,h)& os-
cillates, we define the energy density of the gravitatio
waves by taking the average of Eq.~33! over n periods. It
follows that

rGW~h!5
1

keff@f#
E k2

2pa2
Ph~k!T̄2~k,h!d ln~k!, ~34!

whereT̄(k,h) is the root mean square ofT(k,h) over n pe-
riods which is well defined as long as the amplitude of t
wave varies slowly with respect to its period.

The energy densityrGW and energy density paramete
VGW by frequency band are then obtained~after averaging
on several periods of the wave! by

drGW~k,h!

d ln~k!
5

1

2p2keff@f#
S k

aD 2

Ph~k!T̄2~k,h!, ~35!
6-4
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dVGW~k,h!

d ln~k!
5

1

6p2 S k

keff@f# D S k

HD 2

Ph~k!T̄2~k,h!.

~36!

Let us stress some important points. Since we have
average on several periods, these expressions are valid
in a ‘‘shortwave limit’’ ~see Ref.@57# for discussion! where
~i! the amplitude of the perturbation is small and~ii ! the
wavelength of the wave is small compared to the typi
radius of the background spacetime. In our case this ca
rephrased ask/H.1 which implies that the expressions~35!
and ~36! are valid only for modes which are ‘‘subhorizon
today, i.e., whose wavelength is smaller than the Hub
radius today. For such modes the ergodic hypothesis is
justified. In fact, because of the averaging procedure of
transfer function, we have to restrict to modes such t
k/H0*60 if we want to average on about ten periods. Aga
we emphasize that there is an explicit dependence ofVGW
and rGW on the scalar fieldf because of the non-minima
coupling and our expressions reduce to the standard
@11,35,43,44,46,57# when j50. We have described th
gravitational waves by two stochastic variablesĥ(l) which
can be understood as being the classical limit of a comp
quantum description of the gravitational waves~see, e.g.,
Refs.@33,34,56# for details!.

Before turning to the effects of the gravitational waves
the CMB, let us make a comment that will lead us to intr
duce some new notations. In the previous analysis we
composed the metric perturbationhi j on the basisQ̃i j

l (x,k)
[e i j

l exp(ik•x) of TT eigenfunctions of the Laplacian, i.e
such that

DQ̃i j
l 52k2Q̃i j

l with ] i Q̃i j
l 5d i j Q̃i j

l 50. ~37!

Such a decomposition is indeed not unique and we co
have chosen any other such basis. In the CMB literature,
often prefers@58# to use the basisQi j

(62)(x,k) defined by

Qi j
(62)[2A3

8
~e16 ie2! i~e16 ie2! je

ik•x, ~38!

the vectorse1 ande2 being defined above in Eq.~26!. If we
decomposehi j on the latter basis as

hi j 5 (
m562

E d3k

~2p!3
2H (m)Qi j

(m)~x,k!, ~39!

then the two decompositions are related by

ĥ(3)52A3

2
@H (12)1H (22)#,

ĥ(1)52A3

2
i @H (12)2H (22)#. ~40!

The two polarizationsH (62) are then solution of Eq.~21!
which reads
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Ḧ (m)12@H2keffj ḟ ~f!#Ḣ (m)1k2H (m)5kPa2p (m),
~41!

wherep (m) is the coefficient of the development ofdTi j as
in Eq. ~39! so that the transfer functions forH (m) andĥ(l) are
the same. If we now define the power spectrum
H (m)(k,h in) as

^H (m1)~k,h in!H (m2)* ~k8,h in!&

5~2p!3k23PT~k!d~k2k8!dm1 ,m2
~42!

one can easily check that

PT~k!5
1

3
Ph~k! ~43!

and that if the two polarizations1 and 3 are independen
thenH (12) andH (22) are also independent. With these n
tations, the energy density spectra are given as

drGW

d ln~k!
5

3

2p2k
S k

aD 2

PT~k!T̄2~k,h!, ~44!

dVGW

d ln~k!
5

1

2p2 S k

keff
D S k

HD 2

PT~k!T̄2~k,h!.

~45!

Indeed, this does not change the result but we found in
esting to make the link between the notations used in
gravitational waves literature@11,35,43,44,46,57# and in the
CMB literature@45,58#, specially because we want to prese
both in a unified framework and language. From now on,
use the second decomposition and its interest will be enlig
ened by the study of the CMB anisotropies.

B. CMB temperature and polarization anisotropies

Gravitational waves, being metric perturbations, have
effect on the temperature and polarization of the CMB ph
tons. Any metric perturbation induces a fluctuation on t
CMB temperatureQ through the Sachs-Wolfe effect@59#
and any anisotropic distribution of photons scattered by e
trons will become polarized and vice versa. Since Thom
scattering generates linear polarization, we only need to c
sider the Stokes parametersQ andU and more conveniently
their two combinationsQ6 iU which are invariant under ro
tation.

Following Hu and White@58#, we decompose the tenso
rial part of the temperature anisotropies according to
6-5
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Q~h,x,n̂!

5E d3k

~2p!3 (
l

(
m562

Q l
(m)~k,h!Gl

m~k,x,n̂!,

~46!

~Q6 iU !~h,x,n̂!

5E d3k

~2p!3 (
l

(
m562

~El
(m)6 iBl

(m)!~k,h!

3 62Gl
m~k,x,n̂!. ~47!

The coefficientsEl
(m) andBl

(m) transform asEl→(2) lEl and
Bl→2(2) lBl under parity and are called the ‘‘electric’’ an
‘‘magnetic’’ part of the polarization. The functionsGl

m ,

62Gl
m form three independent sets of orthonormal functio

and depend both on the positionx and on the direction of
propagation of the photonsn̂ and are defined as

Gl
m~k,x,n̂![~2 ! lA 4p

2l 11
Yl

m~ n̂!exp~ ik•x!, ~48!

62Gl
m~k,x,n̂![~2 ! lA 4p

2l 1162Yl
m~ n̂!exp~ ik•x!,

~49!

where the functionsYl
m(n̂) are the standard spherical ha

monics and the functions62Yl
m(n̂) are the spin-weighted

spherical harmonics@60–62#. Note that the decompositio
on the basisQi j

(62) in the previous section is enlightened b
the fact thatQi j

(m)ninj5G2
(m) @45,58#.

The angular correlation function of these temperatu
polarization anisotropies are observed on a two-sph
around us and can be decomposed in Legendre polynom
Pl as

K dU

T
~ ĝ1!

dV

T
~ ĝ2!L 5

1

4p (
l

~2l 11!Cl
UVPl~ ĝ1 .ĝ2!,

~50!

whereU, V stand forQ, E, or B. Now the brackets stand fo
an average on the sky, i.e., on all pairs (ĝ1 ,ĝ2) such that
ĝ1•ĝ25cosu12. Using the orthonormality properties of th
eigenfunctionsG, equations~46!,~47! can be inverted to ex
tract the angular power spectraCl

UV of the temperature and
polarization anisotropies as

T0
2~2l 11!2Cl

UV~h0!5
2

pE dk

k (
m562

k3Ul
(m)~h0 ,k!

3Vl
(m)* ~h0 ,k!. ~51!

The equations of evolution of the temperature and po
ization multipolesQ l

(m) , El
(m) , andBl

(m) can be obtained by
08350
s

/
re
als

r-

decomposing the Boltzmann equation satisfied by the pho
~or neutrino! distribution function on the eigenfunctionsG to
get

Q̇ l
(m)5kF 0k l

m

2l 21
Q l 21

(m) 2
0k l 11

m

2l 13
Q l 11

(m) G2 ṫQ l
(m)1d l ,2S

(m),

~52!

Ėl
(m)5kF 2k l

m

2l 21
El 21

(m) 2
2m

l ~ l 11!
Bl

(m)2
2k l 11

m

2l 13
El 11

(m) G
2 ṫ~El

(m)1d l ,2A6P(m)!, ~53!

Ḃl
(m)5kF 2k l

m

2l 21
Bl 21

(m) 1
2m

l ~ l 11!
El

(m)2
2k l 11

m

2l 13
Bl 11

(m) G
2 ṫBl

(m) , ~54!

where

S(m)[ṫP(m)2Ḣ (m), ~55!

P(m)[
1

10
~Q2

(m)2A6E2
(m)!, ~56!

sk l
m[ lAS 12

m2

l 2 D S 12
s2

l 2 D . ~57!

The differential optical depthṫ vanishes for neutrinos~ex-
cept in the very early universe, but the observable wa
lengths in the CMB are not affected by this! and is propor-
tional to the free electron density in the case of photons
has to be calculated by solving the relevant kinetic recom
nation equations for hydrogen and helium@63–65#.

The quantityP(m) represents the coupling between tem
perature and polarization. Due to our choice of decompo
tion, only the electric part of the polarization is affected
temperature anisotropies. However, electric and magn
part of polarization couple themselves as photons propag
The Clebsch-Gordan coefficientssk l

m arise from product
properties of spherical harmonics. They are obtained in
same way as for the scalar modes@65#.

Q l
(m)~h0 ,k!

2l 11
5E

0

h0
dhe2tS(m) j l

(m)
„k~h02h!…, ~58!

El
(m)~h0 ,k!

2l 11
52A6E

0

h0
dh ṫe2tP(m)

3e l
(m)

„k~h02h!…, ~59!

Bl
(m)~h0 ,k!

2l 11
52A6E

0

h0
dh ṫe2tP(m)

3b l
(m)

„k~h02h!…. ~60!
6-6
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The functionsj l
(m) , e l

(m) andb l
(m) are defined in terms of the

spherical Bessel functions,j l(x) as

j l
(62)~x![A3

8

~ l 12!!

~ l 22!!

j l~x!

x2
, ~61!

e l
(62)~x![

1

4 F2 j l~x!1 j l9~x!12
j l~x!

x2
14

j l8~x!

x G ,

~62!

b l
(62)~x![6

1

2 F j l8~x!12
j l~x!

x G ~63!

where a prime denotes a derivative with respect to the a
mentx.

Beside the small contribution due to the polarization
Eq. ~58!, the temperature fluctuation in the directionĝ re-
duce to the well known result by Sachs and Wolfe@59#

dT

T
~ ĝ !52

1

2EhLSS

h0
ḣi j g

ig jdh, ~64!

where the subscript LSS stands for last scattering surf
The ‘‘visibility function’’ ṫe2t appearing in equation
~59!,~60! takes a nonzero value only at the time of deco
pling so that, contrarily to temperature anisotropies wh
are constantly generated by gravitational interactions w
photons, polarization is generated only at the last scatte
surface.

IV. DAMPING OF THE GRAVITATIONAL WAVES

We first study the effect of the damping of the gravit
tional waves due to the anisotropic stress of the photo
Such a damping of the amplitude of gravitational waves
various viscous cosmic media has been already discuss
Ref. @73#; we give a description of this damping in the fo
malism we use here in order to quantify precisely its eff
on CMB anisotropies. On subhorizon scales larger than
diffusion lengthlD[ṫ21 of the photons, i.e., such that

Heff[tH
21!k! ṫ, ~65!

the set of equations~52!–~57! implies that

Q2
(62)52

4

3

Ḣ

ṫ
and E2

(62)52
A6

4
Q2

(62) . ~66!

Since p (62) is proportional toQ2
(62) , we can insert the

former expressions in the gravitational waves evolut
equation ~41! to get the back reaction of the anisotrop
stress

Ḧ12HeffḢ1k2H52
32

15
kPa2

Ḣ

ṫ
. ~67!

Setting
08350
u-
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-
h
h
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n

in
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n

H[H̄h, ~68!

with H̄ solution of the homogeneous equation of evoluti
~i.e., with p (m)50), we get

H̄ḧ1S 2Ḣ̄12HeffH̄1
32

15
kPa2

Ḣ̄

ṫ
D ḣ1

32

15
kPa2

Ḣ̄

ṫ
h50.

~69!

Now, ~i! sinceḢ̄.kH̄, we deduce thatḢ̄@HeffH̄, ~ii ! since

kPa2.Heff , it follows that (32/15)kPa2Ḣ̄/ ṫ.Heff
2 / ṫ!kH̄

. Ḣ̄, and~iii ! sinceḧ.ḣ/tD , H̄ḧ! Ḣ̄ ḣ and in conclusion in
the limit ~65! the equation of evolution of the gravitationa
waves in presence of the anisotropic stress~69! reduces to

ḣ52
16

15
kPa2ṫh. ~70!

We deduce that a modek is damped from the time it enter
the Hubble radius, i.e.,h.k21 since it happens during th
radiation era, to roughly the time when the anisotropic str
becomes negligible, i.e., approximately at the time of l
scatteringhLSS. It follows that

h~k,hLSS!.expS 2
16

15E1/k

hLSSkPa2

ṫ
dh D h~k,1/k!. ~71!

This damping of the gravitational waves by the anisotro
stress of the photon fluid is analogous to the damping of
scalar modes~density fluctuations! known as the Silk damp-
ing @74# a description of which, in the formalism used her
can be found in Ref.@58#. Note however that the origin o
the damping is different.

This effect is small but, apart from Ref.@73#, was not
much emphasized in the literature before. Assuming that
universe is completely ionized until the last scattering s
face, the integral of Eq.~71! is of order@75#

1

3 S 12
YHe

2 DVg
0

Vb
0

mpk

sTh
a0~hLSS21/k!.1023~121/khLSS!,

~72!

where mp is the proton mass,sTh is Thomson scattering
cross section. The real damping factor is greater than
estimate~72! because the universe becomes neutral at
last scattering surface~so that the termṫ is smaller!. In Fig.
1 ~left!, we plot this damping factor for the modes that e
tered into the Hubble radius long before the last scatter
surface~i.e., such thatk@hLSS

21 ). As a consequence, the com
parison between the damped case to the undamped
shozn on Fig. 1~right! does not show significant difference
The amplitude of the high-l tail of the CMB anisotropy spec
trum is lowered by roughly 10% when one includes th
effect. The same occurs of course for polarization. We e
phasize that this result does not depend on any partic
model, and is not included in the most recent~3.2! version of
CMBFAST.
6-7
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FIG. 1. Damping of the gravitational waves due to its coupling to the photons anisotropic stress. The damping~left figure! is generated
only when the universe becomes neutral, i.e., soon before the last scattering surface. As a consequence, all the mode which ha
entered into the Hubble radius at recombination are equally damped, regardless of their wavelength. The influence of this damp
CMB anisotropies is shown on the right figure. Since all the modes are equally damped, this translates into a constant ratio of a
between the damped and the undamped cases. Note, however, that our derivation is valid only when Eq.~65! applies, which is not true a

the end of decouling, whenṫ becomes small. This is why the actual damping~10%! is smaller than what is expected from the left plot.
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V. SPECIFICATION OF THE MODEL

A. Model parameters

At this stage, the model we are discussing depends on
parameters:~1! f (f) which is an arbitrary function of the
scalar fieldf, ~2! j the coupling of the scalar field with th
background spacetime,~3! a the slope of the potential~14!
or ~16!, ~4! Vf

0 the energy density in the scalar field toda
and ~5! PT(k) the spectrum of the gravitational waves.

Indeed there exist some constraints on these functions
parameters and we make the following assumptions
choices.

~1! We assume thatf (f)5f2/2; this is the only choice
for which the coupling constantj is dimensionless. More
over such a choice can be seen as the lowest term in
expansion off in powers off. As shown in Ref.@22# there
exists tracking solutions for the fieldf evolving in the po-
tential ~14! with such a coupling.

~2! If the scalar fieldf is coupled to the spacetime metri
this coupling must be weak enough so that it does not g
erate a significant time variation of the constants of nat
@29#. Taking into account the bound on the variationuĠ/Gu
of the Newton constant@66# and on the variationuȧ/au of the
fine structure constant@67#, it was shown@30# that

21022&j&102221021. ~73!

This bound is, however, sensitive to the shape of the po
tial. On the other hand the experimental constraints~from the
Shapiro effect and the light deflection in the Solar system! on
the post-Newtonian parameters@57,68# imply @30#

uju&
3.931022

Aa~a12!
. ~74!
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However, in this class of models one does not try to hav
theory converging towards general relativity at late time a
the couplingj is constant which is the main reasons of t
severe bounds on its value. This can be improved by ge
alizing this kind of models by considering them in the fram
work of scalar-tensor theories@31,32#.

~3! In most modelsa is not constrained theoretically. I
the matter content of the universe today is dominated by
matter-radiation fluid then the fact that the observations@9#
favor 21,vf,20.6 gives a bound ona, which is indeeed
not the case anymore if the scalar field starts to dominate
Fig. 2 @left#, we compare this analytic estimate and the n
merical determination of the energy scaleL as a function of
the slopea. We see that ifa.4 thenL is at least larger than
1 TeV ~whenVf

0 50.7).
~4! The density parameterVf

0 is not severely constraine
theoretically, but observations seem to indicateVf

0 .0.7.
One has to check that if the scalar field was dominating
matter content of the universe at some early stage then it
to be subdominant at the time of nucleosynthesis~see, e.g.,
Ref. @69#!. The choice ofVf

0 fixes the value of the energ
scaleL in Eq. ~14! or ~16!; this is thecoincidence problem.
On Fig. 2~right!, we depict the variation of the energy sca
L with Vf

0 anda. It is not very sensitive toVf
0 as long as

0.1,Vf
0 ,0.9. In fact, when the quintessence field starts

dominate the matter content and if we have reached the
tractor thend2V/df2}H2 ~see Ref.@18#!, and H2.V/MPl

2

so that we can estimate that the variation ofL with a fol-
lows

L5~rcritMPl
a !1/(41a). ~75!

We conclude that
6-8
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FIG. 2. Variation of the energy scaleL of the potential~14! with the energy density of the scalar fieldVf
0 and the slope of the potentia

a. We first show~left! the variation ofL with a whenVf
0 50.7 and the comparison with the analytic estimate~75! and~right! the variation

of L with Vf
0 for a52,6,12.
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;

1

41a

dVf
0

Vf
0

and thus a prescision of 10% onVf
0 requires to tuneL at a

1% level if e.g.a56, which is a less drastic tuning than th
usual cosmological constant fine tuning problem.

~5! PT has to be determined by a specific model, such
e.g., inflation, and we parametrize it as

PT~k![ATknT ~76!

whereAT is a constant dansnT is the tensor mode spectra
index. AT is obtained by normalizing the CMB temperatu
anisotropies to the Cosmic Background Explorer~COBE!
data atl 510 for which

T0Al ~ l 11!

2p
Cl

QQ.30 mK. ~77!

Since some measurements tend to show that there is a
at the degree scale@4#, we conclude that a significant part o
the anisotropies may be generated by the scalar modes. I
‘‘standard’’ slow-roll inflation picture, this is compatible
with an almost scale-invariant spectrum with a low ten
contribution, in which case the COBE results would put on
an upper limit on the amplitude of the gravitational wav
spectrum. Nevertheless, we point out that it is also poss
that most of the large scale anisotropies can be generate
gravitational waves. This assumes a strong deviation fr
scale invariance (nS51.69 andnT50.0), but is in good
agreement with observational data@70#.

B. Initial conditions and behavior of the background
spacetime

Concerning the initial conditions for the scalar fieldf, we
will consider the two extreme cases:~IC1! where we assume
that the scalar field is at equipartition with the matter~i.e.,
mainly with the radiation! deep in the radiation era and~IC2!
08350
s,

ak

the

r
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m

where it dominates the matter content of the universe a
very early stage. Situation~IC1! implies that at the end o
reheating

rf&1024rg , ~78!

where the factor 1024 is roughly the inverse of the numbe
of degrees of freedom at that time. Since the quintesse
field is already subdominant at this epoch, one does not n
to care about its effect on nucleosynthesis since it rema
subdominant until recently. In the second situation~IC2!, the
field starts by dominating and inflation ends by a kine
phase rapidly thanrg and will thus become subdominan
One has to check that this happens before nucleosynth
@46,48#. A realization of such initial conditions can be ob
tained in quintessential inflation@48#.

In Fig. 3, we depict the evolution of the energy density
the quintessence field, matter and radiation for the ini
conditions~IC1! ~left! and ~IC2! ~right!. We see that for a
very large range of initial conditions~roughly for
10247 GeV4&rf&10113 GeV4 at a redshift ofz.1030) we
end up with a quintessence field which starts to domin
today. This explains briefly how the fine tuning problem
solved @21#. We can also check that with these values t
scalar field does not dominate the matter content of the
verse at nucleosynthesis, i.e., at a redshift of orderz.1010.

An interesting point concerns the evolution of the sca
field equation of state in the case~IC2! whenj50. The field
rolls down very fastly so that we are first in a regime whe

r.P.
1

2

ḟ2

a2
~79!

from which we conclude that its equation of state isvf.1
~see Fig. 4!. But, because of the exponential behavior con
bution of the potential, the field is stopped whenf*MPl and
then rolls back to smaller values~see Fig. 5! so that the field
undergoes a series of damped oscillations~because of the
friction term coming from the expansion in the Klein
6-9
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FIG. 3. The behavior of the energy density of the matter~long-dashed line!, radiation~short-dashed line!, and scalar field~solid and
dotted lines!, as a function of the redshift for the two class of initial conditions:~IC1!, when the field is at equipartition with the radiatio
~left!, and~IC2!, when the field initially dominates the matter content of the universe~right!. The solid line represents the case when the fi
evolves in an inverse power-law potential, and the dotted line represents the case when the field evolves in the supergravity~SUGRA!
potential. Note that when the field dominates at early times, the SUGRA potential stabilizes the field, which reaches the tracking
earlier.
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Gordon equation!. This implies that there exist times suc
that ḟ.0 and thus small period around them where
equation of state varies rapidly tovf.21 ~see Fig. 4!. This
sudden change in the equation of state off happen while it
is dominating the matter content of the universe~see Fig. 3!
so that it implies variations in the evolution of the sca
factor of the universe which, in principle, should let a sign
ture in the gravitational waves energy spectrum. Indeed,
does not happen in standard quintessence and is a sp
feature of the SUGRA quintessence.

When jÞ0, there are no significant modifications to th
background dynamics as long as the field has not reache
Planck mass@because 2jk f (f) is small compared to unity
see Eq.~5!#. Then, the main difference appears at late tim
08350
e

-
is
ific

the

s

when the field starts to dominate and comes from the
that the bound21,vf,1 no longer applies, and one ca
get lower values ofvf . Equivalently, the equation of stat
parameterv[(Pfluid1Pf)/(rfluid1rf) for the whole back-
ground fluids can reach values smaller than21 ~see Fig. 6
where we plot the variation ofvf as a function of redshift!.
As pointed out by Caldwell@10#, such a matter fits the cur
rent observational data. Different candidates such as a de
ing dark matter component@71# and a kinetic quintessenc
field @72# were proposed. Here, we show that any nonmi
mally coupled scalar field may be a good candidate fo
component of matter withv,21. The constraints~73! on j
implies that for our class of models

23<vf,0
e when the
the

nck
FIG. 4. The behavior of the equation of state parameter as a function of the redshift for the two class of initial conditions:~IC1!, when
the field is at equipartition with the radiation~left!, and~IC2!, when the field initially dominates the matter content of the universe~right!.
The solid line represents the case when the field evolves in an inverse power-law potential, and the dotted line represents the cas
field evolves in the SUGRA potential. In the case of~IC2!, the field reaches the tracking solution only when SUGRA corrections to
potential are considered. Note also the spikes in the SUGRA case~right!, which illustrate the fact that the field bounces around the Pla
scale~see Fig. 5 below!.
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FIG. 5. The behavior of the quintessence field as a function of the redshift for the two class of initial conditions:~IC1!, when the field
is at equipartition with the radiation~left!, and~IC2!, when the field initially dominates the matter content of the universe~right!. The solid
line represents the case when the field evolves in an inverse power-law potential, and the dotted line represents the case whe
evolves in the SUGRA potential. In the case of~IC1!, the field always reaches the tracking solution before today, whereas for~IC2!, the field
reaches the tracking solution only when it evolves in the SUGRA potential.
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if the scalar field dominates. We emphasize thatvf is not
uniquely defined according to the way one splitsT(f)

mn in ~6!.
In Fig. 6, we used the Friedmann equations~7!,~8! to extract
v from

Ḣ
H 2

2152
3

2
~11v!V

and thenvf from

vV5(
i

v iV i ,

FIG. 6. Evolution of the equation of state parameterv as a
function of the redshift for different values of the couplingj. As
soon as the coupling is not minimal,v can reach values smalle
than21. The parameters of the model considered here are:a56,
potential ~16! including SUGRA corrections,Vf

0 50.7 and~IC1!
initial conditions.
08350
where i runs on all the matter species. This corresponds
the value ofv as it may be reconstructed from observation
data such as, e.g., the supernovae type Ia.

VI. QUALITATIVE DISCUSSION

A. Gravitational waves spectrum

Equation~41! describes the evolution of a damped osc
lator. Injecting the ansatz

H (m)[A(m)exp~ ikh! ~80!

in Eq. ~41! and performing a WKB approximation leads
the equation

Ȧ(m)1HeffA
(m)50 ~81!

for the evolution of the amplitudeA(m) where Heff[ ȧ̃/ã,
with

ã[aA122kj f ~f!. ~82!

This WKB approximation holds only for ‘‘sub-horizon’
modes. Before a mode has a wavelength smaller than
Hubble radius, its amplitude evolves according to

Ä(m)12HeffȦ
(m)50, ~83!

the solutions of which are a constant mode and a deca
mode. Neglecting the decaying mode, we see that the w
is ‘‘frozen’’ as long as its wavelength is larger than th
Hubble radius, and that it undergoes damped oscillati
once its wavelength is shorter than the Hubble radius. T
damping of a mode of wavenumberk between the time it
enters the Hubble radius and today is then proportional t
6-11
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FIG. 7. The temperature et polarization of the CMB induced by gravitational waves~left! and their energy density spectrum~right! in a
standardLCDM model withnT50.
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where ãk is the scale factor evaluated at the timehk when
the modek enters the Hubble radius~i.e., whenH5k) and
ã0 is scale factor today. Injecting this behavior in Eq.~36!,
we obtain that the energy density spectrum of gravitatio
waves scales as

dVGW

d ln~k!
}k2ãk

2PT~k!. ~85!

First let us assume thatj50. For wavelengths corre
sponding to modes that have entered the Hubble radius in
matter dominated era~for which a}h2 and thushk.k21),
one can easily sort out that

ãk.k22 ~86!

and the gravitational waves spectrum behaves as

dVGW

d ln~k!
}k22PT~k!. ~87!

Equivalently, for wavelengths corresponding to modes en
ing the Hubble radius in the radiation dominated era~for
which a}h) one can show that the gravitational waves e
ergy spectrum behaves as

dVGW

d ln~k!
}k0PT~k!. ~88!

To finish, if it happens that there exist wavelengths cor
sponding to modes that have entered the Hubble radius w
the scalar field was dominating~for which a}Ah sincerf
}1/a6) one obtains that

dVGW

d ln~k!
}k1PT~k!. ~89!
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In conclusion, we have found three behaviors for the gra
tational waves spectrum according to the wavelength. In F
9, we give an example of such a spectrum in a case wh
one has a scalar field dominating at early stage@initial con-
dition ~IC2!#. These results hold also whenj5” 0 but the
slopes of the spectrum are slightly changed since the t
behavior ofa has to be replaced by the one ofã.

B. CMB anisotropies

For scales smaller than the Hubble radius at decoupl
one can follow the same lines to predict the tensor part of
CMB temperature anisotropies. The main difference is t
the expression forl ( l 11)Cl does not involve any factork2

as in Eq.~45!, the reason being that Eq.~58! can be inte-
grated by parts to drop the time derivative ofH (m), which
shows that anisotropies are mostly generated on the last
tering surface with an amplitude ofuH (m)u2. Therefore, the
spectrum behaves as

l ~ l 11!Cl} l nT24,l nT22,l nT21, ~90!

for modes which have entered the Hubble radius is the m
ter dominated, radiation dominated and kinetic scalar fi
dominated eras respectively. With standard cosmological
rameters, the radiation to matter transition occurs soon
fore the decoupling, and the scalar field dominates only
very early times. As a consequence, one sees almost onl
regime l ( l 11)Cl} l nT22. For modes which enter into th
Hubble radius after the last scattering surface, one can s
@44# that the produced spectrum scales as

l ~ l 11!Cl} l nT. ~91!

Note that this expression is indeed an approximation and
it is not easy to calculate an accurate analytical solution@76#.
These results are illustrated in Fig. 7. As already stressed
result of Eq.~91! applies at large angular scales which ha
not entered into the Hubble radius at recombination. F
standard cosmologies, this occurs for multipoles smaller t
l .100 ~in addition, there are also some corrections to t
6-12
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QUINTESSENCE AND GRAVITATIONAL WAVES PHYSICAL REVIEW D62 083506
rough estimate which occur at the very smallest multipo
and slightly boost the spectrum, as can also be seen on
7!. Then, at higher multipoles the result of Eq.~90! is valid.
The matter dominated regime before recombination is ra
short, and occurs only betweenl .100 andl .200 ~less than
one oscillation in the spectrum!. For l *200, one sees the
regimel ( l 11)Cl} l nT22 ~see also Fig. 1 of Ref.@44#!.

C. Results of theLCDM model

Before turning to a more general numerical study of
class of models we consider in this article, we recall in Fig
the general results for the temperature and polarization
gular power spectra and the gravitational waves density s
trum for aLCDM model. This spectrum has two branches
soft branch at lower frequencies~corresponding to the matte
dominated era! and a hard branch at higher frequencies~cor-
responding to modes that entered the horizon in the radia
era!. Following Ref.@34#, we set the cutoff on this spectrum
to the last mode that has been inflated out of the Hub
radius.

VII. NUMERICAL RESULTS

A. Field f initially at equipartition

Since the scalar field only starts to dominate at very rec
time, we expect no effect on the gravitational waves ene
spectrum~since at earlier time the universe is always rad
tion dominated!. However, the change in today’s univer
equation of state yield a specific signature in the angu
diameter-distance relation. Hence, one expects to see
quintessence field behavior in the positions of the peak
the CMB anisotropy spectra.

The temperature anisotropies plots of Fig. 8 are there
identical at high multipoles except for their overall positio
which are different. At low redshift, the scalar field dom
nates and the dynamics of the expansion depends explic

FIG. 8. Influence of the couplingj on the CMB temperature an
polarization anisotropies. The value ofj influences the angula
diameter-distance relation and therefore affects the overall pos
of the spectrum. The parameters of the model considered her
the same as in Fig. 6:a56, potential~16! including SUGRA cor-
rections,Vf

0 50.7 andnT50.
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of the value of the couplingj, which cause some slight dif
ferences in the CMB anisotropies at the very first multipo
( l<5). We have also seen that the polarization is genera
by gravity and therefore different gravitational constants le
to different normalization between the polarization and
temperature spectra. Since we normalize the ‘‘bare’’ Einst
constantk so that the effective Einstein constant correspon
to what we measure~in e.g. a Cavendish experiment!, mod-
els with a differentj have differentk. At decoupling, the
scalar field does not dominate and thereforekLSS5keff

LSS.
This induces different amplitudes for the polarization anis
ropy spectra. For the lowest values ofj there is a factor 2
24 in amplitude as compared with thej50 case, which
roughly corresponds to the square of the variation ofkeff
~and, henceG) between the last scattering surface and no
Note that the effect ofj depends on its sign. This is th
reason why the constraint derived by Chiba@30# are stronger
for negative values ofj. The same can be seen in Fig. 6.

We conclude that the temperature anisotropies and po
ization give mainly information on the spectral indexnT , the
energy density of the scalar field todayVf

0 and its coupling
j.

B. Field f dominates at early stage

We now turn to the more unusual case where the sc
field dominates at the end of inflation and where the unive
undergoes a kinetic phase before the radiation era@24,49# as
in, e.g., quintessential inflation@48#. The wavelengths corre
sponding to the observable CMB multipoles (l &2000) are
much larger than the Hubble radius at nucleosynthesis, ep
at which we have to be radiation dominated. As a con
quence, we expect no signature from this early phase on
CMB anisotropies and polarization.

As first pointed out in Refs.@46,48#, if the scalar field
dominates at early stage, there is an excess of gravitati
waves at high frequency@see equation~89!#. On Fig. 9, we
present such a spectrum and we will discuss the implica
of this excess later.

An interesting effect concerns the difference between
spectra obtained from an inverse power law potential an
SUGRA-like potential. As shown on Fig. 9@right#, the am-
plitude of the spectrum at high frequency in roughly 30
higher for inverse power law potentials. The relative d
crease in amplitude at these frequencies for SUGRA-like
tentials depends on the dynamics of the scalar field in
bounce~see Figs. 4 and 5! during which the equation of stat
varies from11 to 21 and to11 again. Thus, during this
time, the modes that had just entered into the Hubble rad
~and thus which had just started to undergo damped osc
tions! went out of it ~during thev,0 epoch! and their am-
plitude was frozen before reentering the Hubble radius ag
Hence, the modes of larger wavelengths are less dam
which explains this decrease in amplitude. Now, if the slo
of the potential is less steep, the bounce lasts longer~note
that we always reachv521 at the point whereḟ50) and
thus the damping is stronger. This signature, even if not
tectable by coming experiment is nevertheless a clear fea
of supergravity.

n
are
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FIG. 9. Gravitational waves spectrum in a quintessence model with~IC2! initial conditions with a SUGRA-like potential. The spectru
has been normalized to be compatible with COBE at large scales. The spike in the evolution of the equation of state of the scalar~see
Fig. 4! yields to a loss~right! of about 20% in the amplitude of the spectrum at high frequency~i.e., .104 Hz).
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To finish, let us discuss the total energy density of gra
tational wavesVGW

0 today. As pointed out in Ref.@46#, it has
also to be negligible at nucleosynthesis; this constrain
more drastic than the only requirement thatVf

0 be negligible
at that time. Let us emphasize that the constraint onVf

0

cannot be avoided~since it involves background dynamic!
whereas the one onVGW

0 depends onAT and nT and thus
leads to a combined constraint on the initial conditions of
scalar field and on the initial power spectrum of the grav
tional waves. In addition toAT andnT , VGW

0 mainly depends
on the initial values ofrf and r rad which can be param
etrized by the reheating temperatureTR ~related roughly to
r rad at that time! and the redshiftz* of equality between the
kinetic scalar field era and the radiation era~related roughly
08350
i-

is

e
-

to rf /r rad at the end of reheating!. VGW
0 can be estimated by

the surface of the spectrum below the part with a posit
slope ~i.e., the high frequency part; see Fig. 9! and thus of
order

VGW
0 ;

kR

k*

dVGW

d ln k U
k
*

, ~92!

wherekR and k* are, respectively, the modes entering t
Hubble radius at the reheating and atz* . Thus the ‘‘bump’’
at short wavelength cannot be too high. Moreover, the
ergy density at the end of reheating cannot be higher
Planck scale, so that it fixes a limit on the shortest mode
which gravitational waves are produced. On Fig. 10, we fi
kinetic

ed
d power
esis
density.
FIG. 10. Variation of the gravitational waves spectrum with the cutoff and with the epoch of transition between scalar field in
regime and radiation~left! and contour plot~right! of the safe zone for nucleosynthesis for the parameter set (TR ,z* ) ~above the dotted and
dot-dashed lines!. Both plots are for a spectral indexnT50 and for maximumAT allowed by COBE measurements. The solid line is obtain
by imposing that the scalar field dominates at the end of inflation: points lying on or above this line have a corresponding soli
spectrum on the left plot. The horizontal dot-dash line is obtained by imposing that we are radiation dominated at nucleosynth~i.e.,
z* .1010). The diagonal dotted line is obtained by imposing that the energy density at the end of inflation is smaller than the Planck
The diagonal dot-dashed line~‘‘GW background . . . ’’! is obtained by imposing thatVGW

0 ,1026.
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plot @left# the variation of the gravitational wave spectru
with the parameters (TR ,z* ) and we then give@right# the
‘‘safe’’ zone of parameters for nucleosynthesis@for nT50#
and defined@46,48# by VGW

0 &1026. Let us briefly explain
how this bounds are obtained.

~1! We first rephrase in terms ofTR the fact that the field
is dominating at the end of the inflation phase, i.e.,

z* ,zR⇔z* ,a1TR , ~93!

wherea1 is some numerical coefficient. This corresponds
the solid line on Fig. 10.

~2! We then impose that the scalar field is subdominan
nucleosynthesis, i.e., that

z* .1010. ~94!

This corresponds to the horizontal dash-dot line on Fig.
~3! At the end of the inflation phase, we want the ener

density to be smaller that the Planck energy density. If
scalar field is dominating if gives

rf
0 ~11zR!6

~11z* !2
~11zeq!,rPl⇔z* .a2TR

3 , ~95!

wherea2 is another numerical coefficient. This correspon
to the dot line on Fig. 10. Note that since we are in a fi
dominated eraH2}a2 and thus on this ‘‘Planck limit’’ we
have kR}zR

2/z* and k* }z* ~and thus kR}1/zR and k*
}zR

3) from which we conclude that the maximum of th
power spectrum is roughly located on a curve (1/zR,1/zR

4)
~see Fig. 10!.

~4! To finish, we want that the gravitational waves ener
density does not alter nucleosynthesis, i.e., that

VGW
0 &1026⇔TR,a3z* , ~96!

wherea3 is a third numerical coefficient. This correspon
to the dot-dash line on Fig. 10.

For all the points (TR ,z* ) above the dotted and do
dashed lines of Fig. 10~right!, there is no excess of gravita
tional waves. The solid line separates the two sets of in
conditions we have considered. We must emphasize that
result was obtained fornT50 and that the spectrum can b
tilted, which modifies the bounds on the parameter
(TR ,z* ) ~more precisely, taking smallerAT or negativenT
lowers the diagonal dot-dashed line!. Such constraints may
be important for instance while considering models wher
scalar field dominates at baryogenesis@77#.

In the case of a ‘‘blue’’ initial power spectrum~i.e., with
nT.0 in our notations, orb.22 in the notations of Ref.
@78#!, as advocated for example in Ref.@78#, the flat branch
of Fig. 9 ~corresponding to the ‘‘semihard’’ branch of Re
08350
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@47#! is already tilted, giving as stronger constraint on o
model. For instance, ifnT50.2, the amplitude atn
510 GHz is boosted by a factor.33105. As a conse-
quence, the quantity of gravitational waves at high freque
cannot be boosted as much as in the case of a scale inva
spectrum, and the allowed range of parameters for our mo
~see Fig. 10! is narrowed.

VIII. CONCLUSION

In this article, we have studied some properties of qu
tessence models with a nonminimally coupled scalar fi
among which the spectrum of gravitational waves. We ha
shown that such a quintessence field can behave as a
with v,21 and our models lead to23&v&0 when the
field dominates. We related the energy scaleL of the poten-
tial to its slopea and to the scalar field energy density tod
Vf

0 . In particular, we showed thatL is almost independen
of Vf

0 . The coincidence problem, i.e., the fact thatVf
0 ;1

implies a tuning ofL ~roughly the precision onL has to one
order of magnitude higher than the one onVf

0 ) which is,
however, less severe than the fine tuning needed for a
mological constant. This being fixed, the tracking mech
nism allows to span a very wide range of initial conditio
for the scalar field and there is no fine tuning in that respe

We then showed that the combined study of the grav
tional waves energy spectrum and of their imprint on t
CMB radiation temperature and polarization enables to
tract many complementary informations on the models:
CMB mainly gives results onj, Vf

0 and nT ; the energy
spectrum gives results on the initial conditions of the sca
field. As pointed out in Refs.@46,48#, there is an excess o
gravitational waves today if inflation ends by a kinetic pha
In that case, one has to check that bothVf and VGW are
negligible at the time of nucleosynthesis and we relate
amount of gravitational waves today to the reheating te
perature and the time of equality between the kinetic sc
era and the radiation era.

We also pointed out that gravitational waves are dam
by the anisotropic stress of radiation, which implies that
CMB anisotropy and polarization spectra are lower
roughly by 10% for high multipoles. It was also shown th
the amplitude of the gravitational waves spectrum for inve
power law potentials is;30% higher than for SUGRA-like
potentials at high frequency. Indeed this is probably not
tectable by coming experiments but it could ultimately le
to a signature of supergravity.
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