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Quantum mechanical diffusion in complex surroundings

Shoujirou Mizutori and Sven Åberg
Department of Mathematical Physics, Lund Institute of Technology, P.O. Box 118, S-221 00 Lund, Sweden

~Received 1 November 1995; revised manuscript received 28 October 1996!

The dynamics of a classical, heavy system coupled to a quantum mechanical light system is studied in a
simple time-dependent random matrix model, where the degree of complexity can be changed by a ‘‘chaoticity
parameter.’’ It is shown that the energy of the quantum mechanical system diffuses as it interacts with the
classical system, providing it is chaotic, while a ballistic behavior appears in the ordered case. The energy
diffusion of the chaotic system saturates, and it is shown that the saturation time is related to short-range
correlations in the energy spectrum. In mixed systems the propagation of energy changes from a ballistic to
diffusive behavior at a time related to long-range energy correlations.@S1063-651X~97!10809-1#

PACS number~s!: 05.30.Ch, 05.45.1b, 05.60.1w
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I. INTRODUCTION

Many quantum mechanical systems can be separated
a few slowly varying and several fast degrees of freedom.
understand the influence on the heavy, slowly changing m
roscopic system from the light quantum mechanical, fast s
tem is a central issue in several branches of microsco
physics. In molecular physics the~slow! collective rotational
and vibrational degrees of freedom are naturally separ
from the ~fast! motion of the electrons. In large-amplitud
collective motion phenomena in nuclear physics, such as
sion and fusion, the slow motion corresponds to the coll
tive change of the shape of the nucleus, and the fast quan
mechanical motion to the motion of the individual proto
and neutrons. Another example is the motion of electr
through a cavity, where the fast quantum mechanical sys
corresponds to electrons moving in a complex potential,
the slow motion corresponds to the imposed current.

The quantum mechanical system may give rise to ene
diffusion and be the microscopic origin of dissipation a
friction in the slow system. This question has been addres
by several authors; see, e.g., Ref.@1–5#. While previous
studies assumed that the quantum mechanical system
chaotic properties we shall investigate how the degree
complexity of the quantum mechanical system influences
diffusion properties of the classical system. Our aim is th
to investigate consequences of chaotic and regular dyna
on energy diffusion in a rather general quantum mechan
system. Such a system may be simulated by a random m
model where the Hamiltonians can describe a chaotic en
spectrum, a regular spectrum, or, interpolated in betwee

In the present study we shall restrict the investigation
systems which have time-reversal symmetry, implying t
the random matrices describing the chaotic limit are
Gaussian orthogonal ensemble~GOE!; see, e.g., Ref.@6#.
The classical, slowly varying system moves with a const
velocity, and has a linear time-dependent coupling to
quantum mechanical system. We thus study the~linear! re-
sponse on the quantum mechanical system by numeric
solving the time-dependent Schro¨dinger equation for the
light system, and calculate how the energy diffuses, i.e., h
the energy spreads out over instantaneous eigenstates o
time-dependent Hamiltonian. Similar studies have previou
561063-651X/97/56~6!/6311~6!/$10.00
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been performed by Wilkinson and co-workers@2,3#, and by
Bulgac, Do Dang, and Kusnetzov@4,5#. We shall study rela-
tively small changes of the macroscopic variable, but wh
still is sufficiently large to cover different timescales.

One should also point out the relevance of the pres
type of investigations to understand and possibly justify
application of transport models to quantum mechanical s
tems. In such calculations, where, e.g., a Langevin type
force is added to the Boltzmann equation~and where all
quantum mechanical phases are neglected!, usually the ex-
plicit coupling to the quantum mechanical system is n
glected, and the motion of the macroscopic system is sim
treated by adding effective terms describing friction forc
stochastic forces, etc. A better understanding of the influe
from the quantum mechanical system on the macrosco
variables in very simple models than the one here stud
may ultimately lead to a better understanding also in m
complex situations.

In Sec. II the time-dependent random matrix model
described and motivated. The results from the tim
dependent evolution of the energy diffusion are shown
Sec. III particularly discussing the different time scales th
are obtained from the calculation. Finally, in Sec. IV a sh
summary of the results is given.

II. MODEL

Our basic assumption is that the Hamiltonian describ
the total system can be separated into one slow part and
fast part,

Htotal5Hslow~q,q̇!1Hfast~ q̇;pi !, ~1!

whereq is the~only! slow degree of freedom andpi denotes
all fast degrees of freedom. In our study we shall concent
on the fast degrees of freedom, and assume that the cou
only occurs in terms of a constant velocity of the mac
scopic variable. Will we thus assume a driven system a
neglect the feed-back from the fast system on the slow s
tem. Throughout the paper we shall writeH[Hfast.

We want to describe the intrinsic quantum mechani
system in a very simple model, containing only the ve
basic elements of physics. Our aim is not to consider a sp
6311 © 1997 The American Physical Society
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6312 56SHOUJIROU MIZUTORI AND SVEN ÅBERG
fied physical situation, but we generally want to study h
the macroscopic system would respond to an underlying
croscopic system of various dynamical nature. The mic
scopic system will be described by random matrix theory
a model that allows for a smooth parametric change fr
regular to chaotic dynamics. The time dependence is in
duced by assuming a constant velocity of the macrosco
variable.

In Sec. II A the time-dependent random matrix model
described. The time evolution is obtained by numerica
solving the time-dependent Schro¨dinger equation, and the
energy diffusion is calculated as is shown in Sec. II B.

A. Simple time-dependent random matrix model

Assuming time-reversal symmetry, the fast quantum m
chanical system may be described by the following time
pendent random matrix model@7#:

H~ t !5 (
n52N8

N8

~«n1q̇tAn!cn
†cn1 (

n.k
Vnk~cn

†ck1ck
†cn!,

~2!

where the creation and annihilation operators refer to
diabatic basis,un&. The basis states either may be thought
as describing single-particle states, or many-body config
tions by Slater determinants. The time-dependent termq̇tAn
represents the coupling to the slow system. The interac
V, with matrix elementsVnk , describes a residual interactio
that we shall control by a parameter,D. All matrix elements
in Eq. ~2! are defined as random numbers:

«nPGF0,S 2

ND 1/2G , ~3!

AnPsAGF0,S 1

ND 1/2G , ~4!

VnkPDGF0,S 1

ND 1/2G , ~5!

i.e., H(t) constitutes an ensemble ofN-dimensional, time-
dependent random matrices with Gaussian-distributed ma
elements. As a standard we shall consider 30 ensembles
dimensionsN52N8115201. The matrix elements«n , An ,
and Vnk are all time independent. Also, the velocity of the
classical system,q̇, is constant, i.e., the collective variable

q5q̇t. ~6!

The two parametersD andsA determine the properties o
the system. By varying the strength of the residual inter
tion, ‘‘the chaoticity parameter’’D between 0 and 1, the
fluctuations of the energy spectrum as well as of the eig
functions smoothly change between Poisson~‘‘regular’’ ! to
GOE ~‘‘chaos’’! @7#.

In the limit of no residual interaction (D50! each energy
eigenvalue has a set of good quantum numbers, and the
sical counterpart to the fast system is regular. The assu
tion in Eq. ~2! is that the coupling to the classical syste
~represented by the external forceq̇tAn) only has diagonal
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matrix elements, i.e. does not incorporate the breaking of
good quantum numbers. In many physical situations, e
nuclear fission, the degree of freedom expressed as the
motion approximately has such a property. In theD50 limit
the instantaneous energy eigenvalues ofH(t) thus depend
linearly on the collective variableq, i.e., ~diabatic! straight
lines with sharp crossings,

Ẽn~q5q̇t !5«n1qAn . ~7!

The parametersA determines the dispersion of the slope
]Ẽn /]q, and is a physically relevant parameter to be det
mined for each specific system. In the present model
properties are determined by the product,sAq̇.

Our simplification to choose a linear dependence on
collective variableq is done to keep the number of param
eters to a minimum. This can easily be changed, although
do not expect that our main results will be changed.

When DÞ0 the random residual interactionV is intro-
duced, acting between all states. This interaction is assu
not to depend onq. This is a quite reasonable approximatio
i.e., to assume the matrix elements of the residual interac
between unmixed~diabatic! eigenstates,̂nuVuk&, to be inde-
pendent ofq. In many realistic cases, as, e.g., for nucle
fission, the coupling matrix elements may, however, show
small but smooth variation with the collective variable~i.e.,
nuclear deformation!.

After solving the time-independent Schro¨dinger equation,

Hum~q!&5Em~q!um~q!&, ~8!

for different values of the collective variable a set of no
crossing energy levelsEm(q) are obtained versusq. This
implies that the good quantum numbers are not good
longer. In the classical counterpart this means that the co
sponding constants of motion disappear, and chaos se
smoothly according to the KAM theorem. Correspondi
eigenstatesum(q)& ~adiabatic basis states! have thus been
given aq dependence that is fully controlled by the size ofD
~strength of residual interacion, ‘‘chaoticity parameter’’!, as
well as of the relative slopes of the unperturbed energy st
~controlled by the parametersA). The q dependence of the
correlation function,̂ m(q)un(q8)&, is consequently param
etrized only through these two physically related parame
D andsA , while additional parameters were used to descr
the correlation function in Refs.@4,5#. We shall generally
choosesA50.1 andq̇50.001, and study the system up
times t51000, which means that few Landau-Zener cro
ings appear in the studied time interval.

B. Evolution with time

The time evolution of a prepared initial state is obtain
by solving the time-dependent Schro¨dinger equation

i\
]

]t
uC~ t !&5H~ t !uC~ t !&. ~9!
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56 6313QUANTUM MECHANICAL DIFFUSION IN COMPLEX . . .
Equation~9! is numerically solved with the initial condition
that the middle eigenstate~state No. 0! of H(t50) is occu-
pied. This is done in the conventional way, i.e., by maki
the ansatz

uC~ t !&5 (
m52N8

N8

am~ t !e2~ i /\!Emtum&, ~10!

which, inserted into Eq.~9!, givesN coupled first-order dif-
ferential equations,

ȧm~ t !5
i

\(
n

^muHtun&eivmntan~ t !. ~11!

The basis states

um&[um~q50!&5(
n

bmnun& ~12!

and energiesEm[Em(q50) are eigenstates and eigenvalu
of H at q50, and the frequencies are defined as

vmn5~Em2En!/\. ~13!

The matrix elements of the time-dependent part of
HamiltonianH,

Ht5(
n

q̇tAncn
†cn , ~14!

are transformed into the basis$um&% giving

^muHtun&5q̇t(
n

bnmbnnAn[q̇tAmn8 . ~15!

The nondiagonal coupling of the time-dependent term t
solely comes from the complexity~mixing! of the adiabatic
eigenstates, i.e., from the residual~time-independent! inter-
action. In order to compare the result for differentD values,
the energy levelsEm are unfolded atq50 so that the averag
level density is constant and equal tor̄ 5100.

To study how the energy diffuses with time, we expa
the calculated wave function in the basis states of insta
neous eigenvalues ofH(q) @adiabatic basis; See Eq.~8!#,

uC~ t !&5(
m

dm~ t !um~q!&, ~16!

and calculate the variance of the energy as

vE~ t !5 (
m52N8

N8

udm~ t !u2@Em~q!#22S (
m

udm~ t !u2Em~q! D 2

.

~17!

III. RESULT

In Fig. 1 it is shown how the energy spreads out on
adiabatic eigenstates for four different values of the ‘‘cha
ticity parameter’’ D. In general, it is seen that the chaot
system shows a diffusion linear in time@Fig. 1~a!#, while
quadratic diffusion~‘‘ballistic behavior’’! appears for the~al-
s

e

s

a-

e
-

most! regular system@Fig. 1~d!#.
This behavior can be understood from the followin

simple picture. In the regular limit~small D) the interaction
between energy levels occurs at rather sharpq values~time
values!, at so-called avoided crossings, while in the chao
case~large D) the interaction between the different ener
levels takes place over a very extended region inq ~i.e., in
time!. In the regular case energy transport from one occup
level to other unoccupied levels can thus be considered
occur through a number of ‘‘jumps’’ in energy. If we deno
the number of avoided crossings in the considered interva
q asn, and the spread in energy that occurs at each cros
as dE, we obtain a total spread of the energy,DE5ndE.
Since the number of avoided crossings is directly prop
tional to the size of the considered interval inq, i.e., the
elapsed time, the total spread in energy is directly prop
tional to time,DE}t, or the variancevE5 DE2}t2. This
situation corresponds to a relatively small number of ‘‘col
sions,’’ and may be termed ‘‘ballistic.’’ In the chaotic cas
on the other hand, the energy spreads out to unoccupied
els in a continous way, resulting in a diffusive spread of t
energy,vE5DE2}t.

If we write

vE~ t !52Dta, ~18!

whereD is a ‘‘diffusion constant,’’ the potencya is directly
given by the slope~log-log scale!. Three time scales can b
identified from Fig. 1. For short time valuest,t1* , the dif-
fusion is seen to vary quadratically with time (a52!; for

FIG. 1. The variance of energyvE as a function of time~log-log
scale! for ~a! D51, ~b! D50.02, ~c! D50.005, and~d! D50.001,
corresponding to chaotic, mixed, mixed, and regular energy spe
respectively, are shown by thick lines. The four cases are sele
from the ensembles. The thin lines show quadratic~dashed lines;
‘‘ballistic behavior’’!, linear ~dot-dashed! and constant~solid! dif-
fusion, respectively. The time values where the diffusive behav
changes character are denoted ast1* and t2* . In ~d! only quadratic
diffusion appears. The change from quadratic to linear diffusion
t1* '2.5 in ~a! is an unphysical effect appearing due to the fin

size of the system. In all casessA50.1 andq̇50.001. Dimension-
less units are used forvE as well as fort.
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6314 56SHOUJIROU MIZUTORI AND SVEN ÅBERG
intermediate timest1* ,t,t2* , it varies linearly with time
(a51!; and after some larger time valuet.t2* , the energy
diffusion saturates (a50!. In Fig. 1 all three time scales onl
appear for the largerD values@Figs. 1~a! and 1~b!#. @Actu-
ally, the quadratic diffusion behavior seen fort,2.5 in Fig.
1~a! corresponds to the finite size (N 5201! of the consid-
ered model, and is thus unphysical; see Sec. III A 2 belo#

Different time scales

The different types of diffusive behavior observed in t
numerical calculations can be understood from the follow
approximations. The time-dependent problem of Eq.~9! with
the initial conditionam(0)5dm,0 gives, in first-order pertur-
bation, formÞ0,

am~ t !52
i

\E0

t

eivm0t8q̇t8Am08 dt8

52
i

\
q̇Am08 F S 1

vm0
2

2 i
t

vm0
D eivm0t2

1

vm0
2 G , ~19!

and, form50,

a0~ t !512
i

2\
q̇A008 t2, ~20!

whereAmn8 is defined by Eq.~15!. Whenq̇tAmn8 is small, the
adiabatic wave functionsum(q)& can be expanded inq50
wave functions,um&, using second-order perturbation theo
This gives the amplitudes in the adiabatic basis@Eq. ~16!#,

u^m~q!uC~ t !&u25udm~ t !u25S q̇

\
D 2

~Am08 !2
4

vm0
4

sin2~ 1
2 vm0t !.

~21!

The spectrum is symmetric aroundm50 ~at least for the
ensemble average!, implying that Eq.~21! inserted into Eq.
~17! gives the variance in energy,

vE~ t !'8q̇2 (
m51

N8

~Am08 !2
sin2~ 1

2 vm0t !

vm0
2

. ~22!

The distribution of the matrix elements,Am08 , thus deter-
mines the time dependence of the energy diffusion. Two l
iting cases can be distinguished, corresponding to small
large values ofD.

If D is small ~regular spectrum! the transformation coef
ficients Am08 can be calculated in second-order perturbati
This givesAm082 5 sA

2D2/(N\vm0)2, and consequently

vE~ t !58q̇2sA
2D2

1

N2

1

\2 (m51

N8 sin2~ 1
2 vm0t !

vm0
4

. ~23!

To estimatevE(t), we assume a picket-fence spectrum, i.

vm05mv0 , ~24!

wherem is an integer. For largeN8 the summations can b
carried out analytically@8#, resulting in
.

g

.

-
nd

.

,

vE~ t !52D1t2F12
v0t

p
1

3

14S v0t

p D 2G , ~25!

where

D15
p2

6
~sAq̇!2

1

N2S D

\v0
D 2

. ~26!

If D approaches 1~chaotic spectrum! the couplingAm082 is
approximately equal~5sA

2/N2) for all m. In this case the
energy denominator in Eq.~22! remains quadratic,

vE~ t !'8q̇2sA
2 1

N2 (m51

N8 sin2~ 1
2 vm0t !

vm0
2

, ~27!

and, after some algebra, using the same assumption
above, we obtain the energy dispersion@8#

vE~ t !52D2tS 12
v0t

2p D , ~28!

where the diffusion constant is

D25p~sAq̇!2
1

N2

1

v0
. ~29!

For finite N8 a change from quadratic to linear time depe
dence ofvE in Eq. ~27! appears att1* 'p/(N8v0). We have
thus achieved an understanding of the diffusive behavio
the two limits, chaotic and regular energy spectrum, see
Fig. 1, i.e., thatvE;t in the chaotic case@Eq. ~28!#, and that
vE;t2 in the regular case@Eq. ~25!# @9#. We also see that in
both cases the ‘‘diffusion constant’’D1, @Eq. ~26!# as well as
D2 @Eq. ~29!#, is proportional to the square of the velocit
q̇2.

Ensemble averages of the two time valuest1* and t2* ,
defined in Fig. 1, are shown in Fig. 2 for different degrees

FIG. 2. Time scalest1* ~a! and t2* ~b!, obtained from the simu-
lations~ensemble averages; thick lines! vs the degree of complexity
of the spectrum. In~a!, t1* is shown vsLmax, as defined fromD3

statistics by the schematic inset of the figure. HereP stands for
Poisson, the ordered limit, and GOE is the chaotic limit. In theD
region considered in~a!, 0.01–0.05,Lmax increases from 0 to 12.5

The dashed line shows the estimatep\ r̄ /(4Lmax) @Eq. ~33!#. In ~b!,
t2* is shown vs the Brody mixing parameterp (p50 corresponds to
a regular spectrum andp51 to a chaotic spectrum!, and the esti-
mate from Eq.~31! is shown by the dashed line.D50.001, 0.005
and 0.02 correspond to Brody mixing parametersp50.1, 0.4, and
0.85, respectively. The time scale is dimensionless,t/\r.
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56 6315QUANTUM MECHANICAL DIFFUSION IN COMPLEX . . .
complexity of the system. We shall now relate the two tra
sition times to the degree of complexity of the mixed syste

1. Relating t2* to the Brody mixing parameter

The time t2* , i.e., when the diffusion saturates, corr
sponds to relatively small energy distances in the spectr
From Eq.~27! it is seen that up to some maximum time val
each term in the sum is a monotonically increasing functi
The term that reaches its maximum at the largest time va
corresponds to the smallest energy excitation. Thus the
fusion increases with time, but saturates at latest at the
p/v10. The energy distance to the nearest-neighboring s
\v10 thus mainly determines the time for saturation. Fo
mixed system several functions have been used to mimic
proper behavior of the nearest-neighbor energy distribut
Here we shall consider the Brody distribution@10#, that gives
a distribution of nearest-neighboring energies,s, at a mixing
p between regularity and chaos,

P~s!5g~p11!spe2gsp11
, ~30!

where g is obtained from normalization, givingg5
@G„(p12)/(p11)…#p11. When p50 P(s) becomes expo-
nential ~i.e., a Poisson process!, mimicking a regular energy
spectrum, and a Wigner distribution that quite well appro
mates the chaotic energy spectrum~GOE! appears when
p51.

Utilizing Brody mixing, the expectation value oft2* in a
mixed system may be estimated as

^t2* &5 K p\

s L r̄ 5p\rE 1

s
P~s!ds

5p\ r̄ GS p12

p11DGS p

p11D , ~31!

and is shown by a dashed line in Fig. 2~b!. The function
shows a strong increase for smallp values, and saturates a
p51 to

^t2* &5p2\ r̄ /2. ~32!

This behavior is similar to what is extracted from the fu
calculations. For each value of the chaoticity parameterD,
the Brody parameterp has been obtained from a fit to th
nearest-neighbor energy distribution. Ensemble average
t2* vs p are shown by a thick line in Fig. 2~b!. The saturation
time t2* is thus related to the complexity of the spectrum,
measured by the nearest-neighbor energy distribution, an
understood from Eq.~31!. Also, the fact that no saturation i
seen in Fig. 1~d! for the ~more or less! regular spectrum~i.e.,
a smallp value! is understood from Eq.~31!: ^t2* & goes to
infinity as p goes to zero.

2. Relating t1* to D3 statistics

In the perturbative regime, Eq.~23! was obtained, result
ing in a quadratic time dependence ofvE , and for large
couplings we obtained Eq.~27! and a linear time depen
dence. The timet1* , where the energy spread changes fro
ballistic ~quadratic! behavior to diffusive~linear! behavior, is
-
.

.

.
e

if-
e
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determined by the highest frequency~energy!, giving a sub-
stantial contribution to the sum in Eq.~22!, i.e., how far in
energy the coupling matrix elements,Am08 , reach. For large
values ofD ~chaotic spectrum! the width is so large that we
can approximate the matrix element with a constant indep
dence of energy, as was done above. In this ca
t1* 'p/(N8v0). This impliest1* 50 for a chaotic system with
infinitely many levels. In real calculations finite-size effec
always imply a small but finitet1* ; cf. Fig. 1~a!. For small
values ofD ~near-regular spectrum! Am08 is inversely propor-
tional to the energy distance\vm,0 , and t1*→`, i.e., the
energy transport follows a ballistic behavior for all times.

In the mixed spectrum the coupling matrix elementsAm08
are large in the energy intervalGA , giving t1* '2p\/GA .
Long-range correlations in the energy spectrum can be m
sured byD3 statistics. In Ref.@7# it was shown that the
mixed spectrum may show GOE properties restricted to
energy intervalLmax/ r̄, and nonchaotic correlations at larg
energy distances; see the inset of Fig. 2~a!. Furthermore, it
was shown@7# that the energy region with GOE correlation
is proportional to the spreading width of adiabatic wa
functions on diabatic eigenstates,Gm'0.5GA , finally leading
to the estimate

t1* '
p\ r̄

4Lmax
. ~33!

In Fig. 2~a! this estimate is shown by a dashed line, while t
thick line showst1* , as obtained from the dynamical calcu
lation for different D values. For each value ofD the D3
statistics was studied, and GOE properties were found
certain energy range corresponding toL,Lmax. The en-
semble averages oft1* andLmax are shown by the thick line
in Fig. 2~a!. The similarity between the two curves sugge
that the time where the diffusion changes from a quadrati
a linear behavior is inversely proportional toLmax. The esti-
mate is not valid in the perturbative region~as discussed
above!, explaining the deviations at smallerLmax values.

IV. SUMMARY

In a simple model we have shown that a fast quant
mechanical system, driven with a constant velocity by a sl
classical system, shows a diffusive behavior of the ene
that strongly depends on the complexity of the quantum m
chanical system. In a regular system energy is transporte
a ballistic way ~quadratic time dependence!, while normal
energy diffusion~linear time dependence! appears if the sys-
tem is chaotic. In a system with mixed dynamics betwe
regularity and chaos, a ballistic behavior is seen up to a t
limit, t1* , determined by long-range energy correlations
the static spectrumt1* }1/Lmax, where theD3 statistics are of
GOE type forL,Lmax. The energy then diffuses in a norm
way over some time interval, and finally, saturates at a ti
value t2* determined by the nearest-neighbor energy sta
tics; see Eq.~31!. The saturation situation corresponds to
localized wave function.

In addition, the energy diffusion of the completely chao
system saturates. In the semiclassical limit the distance
tween energy levels go to zero, i.e.,r̄→`, and conse-
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6316 56SHOUJIROU MIZUTORI AND SVEN ÅBERG
quently, t2*→`; see Eq.~32!. The saturation is thus a pur
quantum effect, and may be viewed as a kind of quant
mechanical suppression of classical chaos, similar to w
has been found, e.g., in the quantum version of the kic
rotor @11#.

We have also shown that the diffusion constant is prop
tional to the square of the velocity for all kinds of complexi
A

m
at
d

r-

of the system. All presented results are valid under the c
dition that the time-dependent perturbation is rather sma
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