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Quantum mechanical diffusion in complex surroundings

Shoujirou Mizutori and Sven Aberg
Department of Mathematical Physics, Lund Institute of Technology, P.O. Box 118, S-221 00 Lund, Sweden
(Received 1 November 1995; revised manuscript received 28 Octobey 1996

The dynamics of a classical, heavy system coupled to a quantum mechanical light system is studied in a
simple time-dependent random matrix model, where the degree of complexity can be changed by a “chaoticity
parameter.” It is shown that the energy of the quantum mechanical system diffuses as it interacts with the
classical system, providing it is chaotic, while a ballistic behavior appears in the ordered case. The energy
diffusion of the chaotic system saturates, and it is shown that the saturation time is related to short-range
correlations in the energy spectrum. In mixed systems the propagation of energy changes from a ballistic to
diffusive behavior at a time related to long-range energy correlatj@1€963-651X97)10809-1

PACS numbgs): 05.30.Ch, 05.45tb, 05.60+w

I. INTRODUCTION been performed by Wilkinson and co-work¢gs3], and by
Bulgac, Do Dang, and Kusnetz§4,5]. We shall study rela-

Many quantum mechanical systems can be separated inttyely small changes of the macroscopic variable, but which
a few slowly varying and several fast degrees of freedom. Tétill is sufficiently large to cover different timescales.
understand the influence on the heavy, slowly changing mac- One should also point out the relevance of the present
roscopic system from the light quantum mechanical, fast systype of investigations to understand and possibly justify the
tem is a central issue in several branches of microscopi@Pplication of transport models to quantum mechanical sys-
physics. In molecular physics tislow) collective rotational ~ tems. In such calculations, where, e.g., a Langevin type of
and vibrational degrees of freedom are naturally separatel@rce is added to the Boltzmann equatiend where all
from the (fash motion of the electrons. In large-amplitude guantum mechanical phases are neglectesually the ex-
collective motion phenomena in nuclear physics, such as fielicit coupling to the quantum mechanical system is ne-
sion and fusion, the slow motion corresponds to the collecglected, and the motion of the macroscopic system is simply
tive change of the shape of the nucleus, and the fast quantutffated by adding effective terms describing friction forces,
mechanical motion to the motion of the individual protons Stochastic forces, etc. A better understanding of the influence
and neutrons. Another example is the motion of electrond’om the quantum mechanical system on the macroscopic
through a cavity, where the fast quantum mechanical systei@riables in very simple models than the one here studied
corresponds to electrons moving in a complex potential, anghay ultimately lead to a better understanding also in more
the slow motion corresponds to the imposed current. complex situations.

The quantum mechanical system may give rise to energy In Sec. Il the time-dependent random matrix model is
diffusion and be the microscopic origin of dissipation anddescribed and motivated. The results from the time-
friction in the slow system. This question has been addresse@gpendent evolution of the energy diffusion are shown in
by several authors; see, e.g., REf-5]. While previous Sec. Il particularly discussing the different time scales that
studies assumed that the quantum mechanical system hage obtained from the calculation. Finally, in Sec. IV a short
chaotic properties we shall investigate how the degree ofummary of the results is given.
complexity of the quantum mechanical system influences the
diffusion properties of the classical system. Our aim is thus Il. MODEL
to investigate consequences of chaotic and regular dynamics ) o o .
on energy diffusion in a rather general quantum mechanical OUr basic assumption is that the Hamiltonian describing
system. Such a system may be simulated by a random matrie total system can be separated into one slow part and one
model where the Hamiltonians can describe a chaotic energ{St Part,
spectrum, a regular spectrum, or, interpolated in between. _ .

In the present study we shall restrict the investigation to Htota= Hsiow( d,9) + Hras{( A5 Pi), 1
systems which have time-reversal symmetry, implying that
the random matrices describing the chaotic limit are thewhereq is the(only) slow degree of freedom amg} denotes
Gaussian orthogonal ensemhl6OE); see, e.g., Ref[6].  all fast degrees of freedom. In our study we shall concentrate
The classical, slowly varying system moves with a constanbn the fast degrees of freedom, and assume that the coupling
velocity, and has a linear time-dependent coupling to theonly occurs in terms of a constant velocity of the macro-
guantum mechanical system. We thus study (theean re-  scopic variable. Will we thus assume a driven system and
sponse on the quantum mechanical system by numericallyeglect the feed-back from the fast system on the slow sys-
solving the time-dependent Scilinger equation for the tem. Throughout the paper we shall wris=Hq,g.
light system, and calculate how the energy diffuses, i.e., how We want to describe the intrinsic quantum mechanical
the energy spreads out over instantaneous eigenstates of ty¢stem in a very simple model, containing only the very
time-dependent Hamiltonian. Similar studies have previoushpasic elements of physics. Our aim is not to consider a speci-
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fied physical situation, but we generally want to study howmatrix elements, i.e. does not incorporate the breaking of the
the macroscopic system would respond to an underlying migood quantum numbers. In many physical situations, e.g.,
croscopic system of various dynamical nature. The micronuclear fission, the degree of freedom expressed as the slow
scopic system will be described by random matrix theory inmotion approximately has such a property. In the0 limit

a model that allows for a smooth parametric change fronthe instantaneous energy eigenvaluesHgt) thus depend
regular to chaotic dynamics. The time dependence is introlinearly on the collective variablg, i.e., (diabatig straight
duced by assuming a constant velocity of the macroscopitines with sharp crossings,

variable.
In Sec. Il A the time-dependent random matrix model is _ .
described. The time evolution is obtained by numerically E,(g=qt)=¢g,+qA,. )

solving the time-dependent Schiinger equation, and the
energy diffusion is calculated as is shown in Sec. Il B. _ ) )
The parametes, determines the dispersion of the slopes,
A. Simple time-dependent random matrix model JEn/dq, and is a physically relevant parameter to be deter-

. . mined for each specific system. In the present model the
Assuming time-reversal symmetry, the fast quantum me- P y b

chanical system may be described by the following time deProperties are determined by the produeiq.
pendent random matrix modgT]: Our simplification to choose a linear dependence on the

collective variableq is done to keep the number of param-

N’ eters to a minimum. This can easily be changed, although we
Ht= > (en+QtAy)Cic,+ > Vo clectclen), do not expect that our main re;ults vy|ll be changepl.
n=-N’ n>k When A#0 the random residual interactiov is intro-

2 duced, acting between all states. This interaction is assumed
é]ot to depend onq. This is a quite reasonable approximation,

where the creation and annihilation operators refer to th ; . A .
I.e., to assume the matrix elements of the residual interaction

diabatic basis|n). The basis states either may be thought Ofbetvveen unmixeddiabatio eigenstates/n|V|k), to be inde-

as describing single-particle states, or many-body configuraz 2
g sihgie-p y y 9 pendent ofg. In many realistic cases, as, e.g., for nuclear

tions by Slater determinants. The time-dependent &, fission, the coupling matrix elements may, however, show a

represents the coupling to the slow system. The interactiogmg| hut smooth variation with the collective varialies.,
V, with matrix element¥/,,,, describes a residual interaction ,,clear deformation

that we shall control by a parametdr, All matrix elements After solving the time-independent Sckiinger equation,
in Eq. (2) are defined as random numbers:
1/2
6rcG 0(%) | @ Hl () =E (@) (@), ®)
1\12 for different values of the collective variable a set of non-
AneanG|0 N ' (4) crossing energy level&,(q) are obtained versug. This

implies that the good quantum numbers are not good any
1\ 12 longer. In the classical counterpart this means that the corre-
Ve AG O(N) } (5 sponding constants of motion disappear, and chaos sets in

smoothly according to the KAM theorem. Corresponding
i.e., H(t) constitutes an ensemble df-dimensional, time- €igenstated(q)) (adiabatic basis statediave thus been
dependent random matrices with Gaussian-distributed matrigiven aq dependence that is fully controlled by the size\of
elements. As a standard we shall consider 30 ensembles witftrength of residual interacion, “chaoticity parametgras
dimensionsN=2N’+1=201. The matrix elements,, A,, well as of the relative slopes of the unperturbed energy states
andV,, are alltime independentAlso, the velocity of the (controlled by the parameter,). The q dependence of the

classical systenyy, is constant, i.e., the collective variable correlation function(u(a)|»(d")), is_consequently param-
’ T ' etrized only through these two physically related parameters

q=qt 6) A andop, while additional parameters were used to describe
' the correlation function in Refd4,5]. We shall generally

The two parameterd ando, determine the properties of chooseo,=0.1 andq=0.001, and study the system up to
the system. By varying the strength of the residual interactimes t=1000, which means that few Landau-Zener cross-
tion, “the chaoticity parameter’A between 0 and 1, the ings appear in the studied time interval.
fluctuations of the energy spectrum as well as of the eigen-
functions smoothly change between Poisgtregular”) to
GOE (“chaos”) [7]. B. Evolution with time

In the limit of no residual interaction=0) each energy The time evolution of a prepared initial state is obtained
eigenvalue has a set of good quantum numbers, and the clagy solving the time-dependent Sctiger equation
sical counterpart to the fast system is regular. The assump-
tion in Eq. (2) is that the coupling to the classical system

(represented by the external forgeA,) only has diagonal

J
i [ W (1)) =HO[¥ (D). (9)
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Equation(9) is numerically solved with the initial condition

10 - L T 108 . . .

that the middle eigenstatstate No. 0 of H(t=0) is occu- 1a) Ib)
pied. This is done in the conventional way, i.e., by making 105 104
the ansatz o’ ’ ;
= 1n* 10° 7 n* 3
N’ 10%4 4 6 1
. 10° & L
W)= 2 a,(t)e WEL L), (10 7 A=1.0 q A=0.02
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which, inserted into Eq(9), givesN coupled first-order dif- 100 10° . . .
ferential equations, . d)
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v 107 4
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) ] ] FIG. 1. The variance of energy: as a function of timglog-log
and energieg€ ,=E ,(q=0) are eigenstates and eigenvaluesscalg for (a) A=1, (b) A=0.02,(c) A=0.005, and(d) A=0.001,

of H atq=0, and the frequencies are defined as corresponding to chaotic, mixed, mixed, and regular energy spectra,
respectively, are shown by thick lines. The four cases are selected
wW:(E,L_EV)/ﬁ- (13 from the ensembles. The thin lines show quadrédi@shed lines;

. . “ballistic behavior”), linear (dot-dashefland constantsolid) dif-
The matrix elements of the time-dependent part of the*usion, respectively. The time values where the diffusive behavior

HamiltonianH, changes character are denoted’asndt} . In (d) only quadratic
diffusion appears. The change from quadratic to linear diffusion at
He=> qtAsclcn, (14) t1 ~25in(a is an unphysical effect appearing due to the finite
n size of the system. In all cases,=0.1 andg=0.001. Dimension-
. L less units are used farg as well as fort.
are transformed into the badiku)} giving
mosd regular systeniFig. 1(d)].
<M|Ht|V>:nt bnﬂbvnAneqA,'w- (15) This behavior can be understood from the following
n simple picture. In the regular limiismall A) the interaction
between energy levels occurs at rather shiprmlues(time
Yalues, at so-called avoided crossings, while in the chaotic
case(large A) the interaction between the different energy
levels takes place over a very extended region ifi.e., in

The nondiagonal coupling of the time-dependent term thu
solely comes from the complexitymixing) of the adiabatic
eigenstates, i.e., from the residu@ime-independentinter-
ahctlon. In olrderltEo comparfe ltjhedreSL_ll'Bfor drllffen?walues, time). In the regular case energy transport from one occupied
the energy levelk,, are unfolded a =0 so that the average g | 1o other unoccupied levels can thus be considered to

level density is constant and equal ge=100. occur through a number of “jumps” in energy. If we denote
To study how the energy diffuses with time, we expandthe number of avoided crossings in the considered interval in
the calculated wave function in the basis states of |nStantQ] asn, and the Spread in energy that occurs at each Crossing

neous eigenvalues ¢f(q) [adiabatic basis; See E(B)], as S5E, we obtain a total spread of the energyE=ndE.
Since the number of avoided crossings is directly propor-

W ()= d, (O] (@), (16)  fional to the size of the considered intervaldn i.e., the
u elapsed time, the total spread in energy is directly propor-

tional to time, AExt, or the variancevg= AE?xt?. This
situation corresponds to a relatively small number of “colli-
) sions,” and may be termed “ballistic.” In the chaotic case,
on the other hand, the energy spreads out to unoccupied lev-
ve(t)= EN, |dM(t)|2[EM(q)]2— % |d”(t)|2Eﬂ(q)) ' els in a continous way, resulting in a diffusive spread of the
- (17)  energy,ug=AE®xt.
If we write

and calculate the variance of the energy as

N’

Il. RESULT ve(t)=2Dte, (18

In Fig. 1 it is shown how the energy spreads out on the
adiabatic eigenstates for four different values of the “chao-whereD is a “diffusion constant,” the potency is directly
ticity parameter” A. In general, it is seen that the chaotic given by the slopélog-log scal¢. Three time scales can be
system shows a diffusion linear in tini€&ig. 1(a)], while  identified from Fig. 1. For short time valu¢s:ty , the dif-
quadratic diffusior(*ballistic behavior”) appears for théal-  fusion is seen to vary quadratically with timex€2); for
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intermediate timeg} <t<t3 , it varies linearly with time
(a=1); and after some larger time valte-t5 , the energy
diffusion saturates¢=0). In Fig. 1 all three time scales only
appear for the largeA values[Figs. 1a) and Xb)]. [Actu-
ally, the quadratic diffusion behavior seen ter2.5 in Fig.
1(a) corresponds to the finite siz&(=201) of the consid-
ered model, and is thus unphysical; see Sec. Ill A 2 bglow. 0-00

b)

4 3 2 "0 o2 04 05 08 10
max P
Different time scales

FIG. 2. Time scale$] (a) andt} (b), obtained from the simu-
lations(ensemble averages; thick lines the degree of complexity
gof the spectrum. In(@), t7 is shown vsL ., as defined from\,
statistics by the schematic inset of the figure. HBrestands for
Poisson, the ordered limit, and GOE is the chaotic limit. In the

The different types of diffusive behavior observed in the
numerical calculations can be understood from the followin
approximations. The time-dependent problem of @ywith
the initial conditiona,(0)= 45, o gives, in first-order pertur-

bation, forx.#0, region considered ifa), 0.01-0.05] ., increases from 0 to 12.5.
it _ The dashed line shows the estimatp/(4L ) [EQ. (33)]. In (b),
a,(t)=- %Joe'“’uot/qt’Al’Lodt’ t3 is shown vs the Brody mixing paramefer(p=0 corresponds to

a regular spectrum anpl=1 to a chaotic spectrumand the esti-
mate from Eq.(31) is shown by the dashed lind=0.001, 0.005

_ |_ N i_ i L eloot i (19 and 0.02 correspond to Brody mixing parameters0.1, 0.4, and
ﬁq KO )2 ®,0 w2l 0.85, respectively. The time scale is dimensionleSsp.
10 H u0
and, foru=0, wot 3/ wot)?
_ 2(q_ 20, 2 X0
i ve(t)=2Dt {1 - +14( — | (29
=1 — —. I +2
20(V =1~ 770Aod", 20 where
whereA , , is defined by Eq(15). Whenth/’w is small, the w2 . ,1[ A 2
adiabatic wave functionku(q)) can be expanded ig=0 D1=-45(0a0) N\ oo (26)

wave functions|u), using second-order perturbation theory.

This gives the amplitudes in the adiabatic bd&g. (16)], 12

If A approaches Ichaotic spectrumthe couplingA 5 is
q 2 4 approximately equa{za,z_\/NZ) for all w. In this case the
(e (q)| W (1))]?= |dM(t)|2=(g) (A}0)2—SIP(Fw,0t). energy denominator in E422) remains quadratic,
@ L0

(21) g2 1 NE Si(% @ ,0t) -
ve(t)= [0 -5,
The spectrum is symmetric around=0 (at least for the el a ANZiSh wio

ensemble avera@geimplying that Eq.(21) inserted into Eq.
(17) gives the variance in energy, and, after some algebra, using the same assumptions as
above, we obtain the energy dispers[@

N’ . 1
_ SINP(5 @ 0t)
ve() =802 2 (A2 ———. (22) ot
=1 M wio ve(t)=2Dyt l_z ) (28)
The distribution of the matrix elements’ ,, thus deter-

/—Lo ] . . .
mines the time dependence of the energy diffusion. Two Iim—Where the diffusion constant is

iting cases can be distinguished, corresponding to small and 11
large values ofA. D,=m(0aQ)%2— —. (29)
If A is small(regular spectrumthe transformation coef- N? wg

ficientsA,’Aﬁm be calculated in second-order perturbation. o . . _
This givesAl’L%= a'iAZ/(NﬁwMO)Z, and consequently For finite N’ a change from quadratic to linear time depen-

dence ofvg in Eq. (27) appears at} ~m/(N’ wg). We have

1 1 NV SIf(% o ,ot) thus achieved an understanding of the diffusive behavior in
UE(t)zg{;]ZUiAZ_ - 2—4"0_ (23 the two limits, chaotic and regular energy spectrum, seen in
N? 24=1 w0 Fig. 1, i.e., thabg~t in the chaotic casgEqg. (28)], and that

) , ~ ve~t?inthe regular casgEq. (25)] [9]. We also see that in
To estimatevg(t), we assume a picket-fence spectrum, i.e.,poth cases the “diffusion constanD, [Eq. (26)] as well as
D, [Eq. (29)], is proportional to the square of the velocity,
© 0= p2g, 9 D2 [Eq. (29)], is prop q y
wherew is an integer. For largdl’ the summations can be Ensemble averages of the two time valugsand t3 ,
carried out analytically8], resulting in defined in Fig. 1, are shown in Fig. 2 for different degrees of
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complexity of the system. We shall now relate the two tran-determined by the highest frequen@nergy, giving a sub-
sition times to the degree of complexity of the mixed systemstantial contribution to the sum in E¢2), i.e., how far in
energy the coupling matrix element%,’w, reach. For large
1. Relating ¢ to the Brody mixing parameter values ofA (chaotic spectrumthe width is so large that we
The timet* , i.e., when the diffusion saturates, corre- @0 approximate the matrix element with a constant indepen-

sponds to relatively small energy distances in the spectrunfic"'c® O': energy, as was done above. In this case,
From Eq.(27) it is seen that up to some maximum time value t1 = 7/ (N" @) This impliest; =0 for a chaotic system with
each term in the sum is a monotonically increasing function!nfmltely many levels. In re_a! calculano_ns finite-size effects
The term that reaches its maximum at the largest time valug!ways imply a small but finite] ; cf. Fig. 1(a). For small
corresponds to the smallest energy excitation. Thus the ditvalues ofA (near-regular spectrumi , is inversely propor-
fusion increases with time, but saturates at latest at the timgonal to the energy distancko,, o, andt} —«, i.e., the
7lwqy. The energy distance to the nearest-neighboring statenergy transport follows a ballistic behavior for all times.
fiwqo thus mainly determines the time for saturation. For a In the mixed spectrum the coupling matrix eIemeA;,%
mixed system several functions have been used to mimic there large in the energy interval,, giving t7 ~27h/T 4.
proper behavior of the nearest-neighbor energy distribution.ong-range correlations in the energy spectrum can be mea-
Here we shall consider the Brody distributift0], that gives  sured byA; statistics. In Ref[7] it was shown that the

a distribution of nearest-neighboring energigsat a mixing  mixed spectrum may show GOE properties restricted to an

p between regularity and chaos, energy interval 5,/ p, and nonchaotic correlations at larger
pe1 energy distances; see the inset of Fi¢p)2Furthermore, it

P(s)=vy(p+1)sPe™ " (300 was showr{7] that the energy region with GOE correlations

] ) o o is proportional to the spreading width of adiabatic wave
where vy is obtained from normalization, givingy=  fynctions on diabatic eigenstatdy,~ 0.5 4, finally leading

[T((p+2)/(p+1))]°"t. Whenp=0 P(s) becomes expo- to the estimate

nential (i.e., a Poisson processnimicking a regular energy

spectrum, and a Wigner distribution that quite well approxi- _

mates the chaotic energy spectrlOE) appears when o~ i p

p= 1. 1 4Lmax.
Utilizing Brody mixing, the expectation value ¢ in a

mixed system may be estimated as

(33

In Fig. 2(a) this estimate is shown by a dashed line, while the
thick line showst} , as obtained from the dynamical calcu-

mh\ _ (1 lation for differentA values. For each value af the A;
<t§>:<?> P=7Tﬁpf SP(s)ds statistics was studied, and GOE properties were found in a
certain energy range corresponding lte<L .. The en-
—[pt2 p semble averages ¢f andL,.are shown by the thick line
=mhp (m I m) CONT Fig. 2(a). The similarity between the two curves suggests

that the time where the diffusion changes from a quadratic to
and is shown by a dashed line in Figlb2 The function a linear behavior is inversely proportional ltg,,,. The esti-

shows a strong increase for smplivalues, and saturates at mate is not valid in the perturbative regidas discussed
p=1to above, explaining the deviations at smallef,,, values.

(t5) = m2h pl2. (32) IV. SUMMARY
. o , In a simple model we have shown that a fast quantum
This _behawor is similar to what is extrag:t_ed from the full e chanical system, driven with a constant velocity by a slow
calculations. For each value of the chaoticity param&ter cjassical system, shows a diffusive behavior of the energy
the Brody parametep has been obtained from a fit to the 4 strongly depends on the complexity of the quantum me-
nearest-neighbor energy distribution. Ensemble averages ghanical system. In a regular system energy is transported in
t5 vs p are shown by a thick line in Fig.(B). The saturation 5 pallistic way (quadratic time dependencewhile normal
time t; is thus related to the complexity of the spectrum, asenergy diffusion(linear time dependengeppears if the sys-
measured by the nearest-neighbor energy distribution, and i{&m is chaotic. In a system with mixed dynamics between
understood from Eq(31). Also, the fact that no saturation is regularity and chaos, a ballistic behavior is seen up to a time

seen in Fig. {d) for the (more or lessregular spectruni.e.,  |imit, t¥, determined by long-range energy correlations in
a smallp valug is understood from Eq31): (t3) goes to  the static spectrurti o 1/L .y, Where theA , statistics are of
infinity as p goes to zero. GOE type forL <L 4. The energy then diffuses in a normal
_ o way over some time interval, and finally, saturates at a time
2. Relating § to A statistics valuet} determined by the nearest-neighbor energy statis-

In the perturbative regime, E23) was obtained, result- tics; see Eq(3D). Thg saturation situation corresponds to a
ing in a quadratic time dependence of, and for large localized wave function. _
couplings we obtained Eq27) and a linear time depen- In addition, the energy diffusion of the completely chaotic
dence. The time? , where the energy spread changes fromsystem saturates. In the semiclassical limit the distance be-
ballistic (quadrati¢ behavior to diffusivelinear behavior, is  tween energy levels go to zero, i.ep,—, and conse-
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quently,t3 —; see Eq.(32). The saturation is thus a pure of the system. All presented results are valid under the con-

quantum effect, and may be viewed as a kind of quantunglition that the time-dependent perturbation is rather small.

mechanical suppression of classical chaos, similar to what

has been found, e.g., in the quantum version of the kicked ACKNOWLEDGMENTS
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