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A diagrammatic technique is developed to describe nonlocal effects �e.g., pseudogap formation� in the
Hubbard-like models. In contrast to cluster approaches, this method utilizes an exact transition to the dual set
of variables, and it therefore becomes possible to treat the irreducible vertices of an effective single-impurity
problem as small parameters. This provides a very efficient interpolation between weak coupling �band� and
atomic limits. The antiferromagnetic pseudogap formation in the Hubbard model is correctly reproduced by
just the lowest-order diagrams.
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Lattice fermion models with a strong local interaction
�Hubbard-like models1� are believed to catch the basic
physics of various systems, such as high-temperature
superconductors,2,3 itinerant-electron magnets,4 Mott
insulators,5 ultracold atoms in optical lattices,6 etc. Unfortu-
nately, the analytical treatment of these problems is essen-
tially restricted by the lack of explicit small parameters for
the most physically interesting interactions. Direct numerical
methods, such as exact diagonalization7 or quantum Monte
Carlo �QMC�,8,9 are limited by the clusters being of a rela-
tively small size, or face other obstacles such as the famous
sign problem for QMC simulations at low temperature.10

There is a very successful approximate way to treat these
models via the framework of so-called dynamical mean-field
theory �DMFT�,5 where the lattice many-body problem is
replaced with an effective impurity model. This approach is
essentially based on the assumption of a local �i.e., momen-
tum independent� fermionic self-energy. Indeed, there are
numerous interesting phenomena which are basically deter-
mined by local electron correlations, such as Kondo effect,11

Mott-Hubbard transitions,5 and local moment formation in
itinerant-electron magnets.12 At the same time, momentum
dependence of the self-energy is of crucial importance for
Luttinger liquid formation in low-dimensional systems,3,13

d-wave pairing in high-Tc superconductors,2,14,15 and non-
Fermi-liquid behavior due to van Hove singularities in two
dimensions.16 Recently, a rather strong momentum depen-
dence of the effective mass renormalization in photoemission
spectra of iron was observed.17

Currently, nonlocal many-body effects in strongly corre-
lated systems are mainly studied via the framework of
various cluster generalizations of DMFT.14,15,18,19 Cluster
methods do catch the basic physics of d-wave pairing and
antiferromagnetism in high-Tc superconductors14,15 and the
effects of intersite Coulomb interaction in various transition-
metal oxides.20–22 At the same time, however, effects like
Luttinger liquid formation or van Hove singularities cannot
be described in cluster approaches. In such cases, the corre-
lations are essentially long ranged and it is more natural to
describe the correlations in momentum space. Recently, at-
tempts have been made to consider nonlocal correlation ef-
fects in momentum space starting from DMFT as a zeroth-
order approximation.23,24 This approach requires a solution

of ladder-like integral equation for complete vertex � and the
subsequent use of the Bethe-Salpeter equation to obtain
Green’s functions. The first step here exploits an irreducible
vertex of the effective impurity problem ��4�, whereas the
second step uses just the bare interaction parameter U. This
second step makes the generalized DMFT approach mostly
suitable to the weak-coupling regime.25

In this Brief Report, we present a scheme which is accu-
rate in both small-U and large-U limits and does not require
numerically expensive solutions of any integral equations. A
comparison of the results with lattice QMC simulations for
the two-dimensional �2D� Hubbard model in the pseudogap
regime demonstrates that the scheme is actually accurate
even in the less-favorable case of intermediate U.

We proceed with a 2D Hubbard model with the corre-
sponding imaginary-time action

S�c,c*� = �
�k�

��k − � − i��c�k�
* c�k� + U�

i
�

0

�

ni↑	ni↓	d	 .

�1�

Here, � and � are the inverse temperature and chemical
potential, respectively, �= �2j+1�
 /� , j=0, ±1, . . ., are the
Matsubara frequencies, and �= ↑ ,↓ is the spin projection.
The bare dispersion law is �k=−2t�cos kx+cos ky�, c* and c
are the Grassmannian variables, and ni�	=ci�	

* ci�	, where the
indices i and k label sites and quasimomenta.

In the spirit of DMFT, we introduce a single-site reference
system �an effective impurity model� with the action

Simp = �
�,�

��� − � − i��c�,�
* c�,� + U�

0

�

n↑	n↓	d	 , �2�

where �� is as yet an undefined hybridization function de-
scribing the interaction of the effective impurity with a bath.
We suppose that all properties of the impurity problem are
known, so that its single-particle Green’s function gw is
known, and the irreducible vertex parts ��4� ,��6�, etc. Our
goal is to express the Green’s function G�k and vertices � of
the lattice problem in Eq. �1� via these quantities.

Since � is independent of k, the action �1� can be repre-
sented in the form

PHYSICAL REVIEW B 77, 033101 �2008�

1098-0121/2008/77�3�/033101�4� ©2008 The American Physical Society033101-1

http://dx.doi.org/10.1103/PhysRevB.77.033101


S�c,c*� = �
i

Simp�ci,ci
*� − �

�k�

��� − �k�c�k�
* c�k�. �3�

We utilize a dual transformation to the set of new Grass-
mannian variables f and f*. The following identity:

eA2c�k�
* c�k� = B−2� e−AB�c�k�

* f�k�+f�k�
* c�k��−B2f�k�

* f�k�df�k�
* df�k�

�4�

is valid for arbitrary complex numbers A and B. We chose
A2= ���−�k� and B2=g�

−2���−�k�−1 for each set of indices �,
k, and �.

With this identity, the partition function of the lattice
problem Z=�e−S�c,c*�Dc*Dc can be presented in a form Z
=Zf ��e−S�c,c*,f ,f*�Df*DfDc*Dc, where

S�c,c*, f , f*� = �
i

Simp�ci,ci
*� + �

�k�

�g�
−1�f�k�

* c�k� + c�k�
* f�k��

+ g�
−2��� − �k�−1f�k�

* f�k�� �5�

and Zf is a product ��kg�
2 ���−�k�.

As a next step, we establish an exact relation between the
Green’s function of the initial system G	−	�,i−i�=−�Tc	ic	�i�

* 	
and that of the dual system G	−	�,i−i�

dual =−�Tf	i f	�i�
* 	. To this

aim, we can replace �k→�k+��k with a differentiation of
the partition function with respect to ��k. Since we have
two expressions for the action �1� and �5�, one obtains

G�,k = g�
−2��� − �k�−2G�,k

dual + ��� − �k�−1, �6�

where the last term follows from the differentiation of Zf.
The crucial point is that the integration over the initial

variables ci
* and ci can be performed separately for each

lattice site, since �k�fk
*ck+ck

*fk�=�i�f i
*ci+ci

*f i�. For a given
site i, one should integrate out ci

* and ci from the action that
is equal to Ssite�ci ,ci

* , f i , f i
*�=Simp�ci ,ci

*�+��g�
−1�f�

*c�

+c�
* f��. We obtain

� e−SsiteDci
*Dci = Zimp exp
− �

��

g�
−1f�i�

* f�i� − V�f i, f i
*�� ,

�7�

where Zimp is a partition function of the impurity problem
�2�. The Taylor series for V�f i , f i

*� in powers of f i and f i
*

starts from −�1234
�4� f1

*f2f3
*f4 �indices stand for a combination

of � and �, for example, f1
* means f�1,�1

* �. Further Taylor
series terms yield similar combinations including ��n� of
higher orders.

We arrive with an action S depending on the new vari-
ables f and f* only:

S�f , f*� = �
�k�

g�
−2���� − �k�−1 + g��f�k�

* f�k� + �
i

Vi, �8�

with Vi�V�f i
* , f i�. In this dual action, the interaction terms

remain localized in space, but are nonlocal in imaginary

time, since, for example, ��4� depends on the three indepen-
dent Matsubara frequencies. To obtain the dual potential V
for a practical calculation, one should solve then the impurity
problem �2�.

Finally, a regular diagrammatic expansion in powers of V
can be performed. We draw skeleton diagrams, so that the
lines in diagrams are renormalized dual Green’s function,
whereas the vertices are ��n�. The rules of diagram construc-
tion are very similar to usual ones, but the six-leg and higher-
order vertices appear because ��6� and higher terms are
present in the series for V. Figure 1 shows several diagrams
contributing dual self-energy ��,k

dual=−����−�k�−1g�
−2+g�

−1

+ �G�,k
dual�−1�.

We use the skeleton-diagram expansion for the dual self-
energy since it leads to the conserving theories, exactly like
in conventional diagram technique.26–28 The Baym criterion
of a conservative theory is the existence of a functional of
the Green function ��G� such that �

G =�. Here, the variation
G comes from the infinitesimal variation of the Gaussian
part of the action, �G0�−1c*c. In our consideration, we con-
sider also the infinitesimal variations of the dual potential
�Gdual

0 �−1c*c. One can call an approximation dually � de-
rivable if there exists a functional �dual�Gdual� such as
�dual

Gdual =�dual, where the variation comes from �Gdual
0 �−1.

Now, it turns out that the theory is � derivable if it is dually
� derivable. The proof uses the relation between functional
� and the partition function ln Z=�−Tr �G−Tr ln�−G�+C
�here, C is an additive constant; see Eq. �47� of Ref. 27�.
Since a similar relation takes place for �dual and ln Z, and
since the partition function is the same for the initial and dual
variables, this gives a one-to-one correspondence between
��G� and �dual�Gdual�.

It is important to understand what can be a small param-
eter in the expansion in dual diagrams. Clearly, if U is small,

FIG. 1. �Color online� Various diagrams for �dual and the
scheme of calculation. The calculation includes “big” and “small”
loops. The small loop is to determine the renormalized dual Green’s
function Gdual in a self-consistent way, for a given �, g, and ��n�.
The big loop is to determine �. Only the big loop requires a solu-
tion of the impurity problem.
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then ��4��U ,��6��U2, etc., and in the weakly correlated re-
gime, vertices in the diagrams will be small �Fig. 1�, and
higher-order vertices will be even smaller.

At this point, we establish a condition for �, which was so
far an arbitrary quantity. We use a self-consistent condition

�
k

G�,k
dual = 0. �9�

It means that the simple closed loops in the diagrams vanish.
In particular, this leads to the vanishing of the first-order
“Hartree” corrections in the diagrammatic expansion. The
diagram series of this kind has several important peculiari-
ties. First of all, let us consider the zeroth-order approxima-
tion, ��dual�=0. In this case, condition �9� becomes

�
k

1

g� + ��� − �k�−1 = 0. �10�

It is easy to show that this is exactly equivalent to the DMFT
equation for the “hybridization function” ��.5 It is known
that DMFT behaves correctly near the atomic limit. In terms
of the dual variables, one can observe that since � ,��g−1

near the atomic limit, it follows from condition �10� that
Gdualg�

2 �k�g� in this case. It is easy to check that this
argumentation is valid for the scheme of an arbitrary dia-
grammatic order: the dispersion of Gdual is small near the
atomic limit and, therefore, Eq. �9� means that lines in dual
diagrams carry a small factor �g−1. This ensures the fast con-
vergence of a new diagrammatic expansion in the strong-
coupling limit.

It should be noted that although Eq. �8� is formally similar
to Eq. �1�, analytical properties of Gdual differ from those of
G. For example, since dual fermions are much more delocal-
ized in time domain than the original one, G�→�

dual ��−2, as
one can observe from Eq. �6�. Further, it is clear from Eq. �9�
that the local part of Gdual cannot have always-positive
imaginary part. However, this does not result in a causality
problem: analytical properties of the nonlocal space part
Gij

dual are similar to that of the Gij for i� j, whereas the local
part of the dual propagator does not enter any diagram.

As the most challenging test of our approximation scheme
in the intermediate regime, we performed the calculation for
the half-filled square-lattice Hubbard model at sufficiently
low temperature �−1= �t� /5. The value of U was varied from
small numbers to a bandwidth 8 � t�. The block scheme of our
calculation is shown in Fig. 1. It has good practical conver-
gence: typically, about ten iterations are enough to ensure
convergence.

In order to obtain a reference point for a further compari-
son with the results of our approximation scheme, we per-
formed a direct lattice QMC calculation with the continuous-
time QMC code.30 There are strong antiferromagnetic
fluctuations in the system, although true antiferromagnetism
is impossible at finite temperature in the 2D system with an
isotropic order parameter.29 Consequently, the increase of U
results in the formation of an antiferromagnetic pseudogap.

It was also noticed that a single-site DMFT calculation for
this system shows no pseudogap in the density of states,
although the data for the local part of the self-energy are

reproduced quite well in DMFT. Thus, we concluded that the
formation of a pseudogap is entirely related to the nonlocal
part of �, neglected in DMFT.

We present the results of the dual fermion calculation with
only diagram �b� �Fig. 1� taken into account. All other dia-
grams are smaller both in the strong-coupling and weak-
coupling regimes, due to extra vertices or extra lines, respec-
tively. Computational results are illustrated in Fig. 2. The
upper panel shows an imaginary part of the self-energy. In
the DMFT, this quantity is momentum independent. Our cal-
culations show a very strong k dependence, with a maximum
near the Fermi surface. At relatively small value U=1, the
peaks of Im � are located near the van Hove singularities
�left picture�, as can be understood from the weak-coupling
expansion. On the contrary, for an antiferromagnetic system
near the atomic limit, Im �k,�=0 would be a simple delta

FIG. 2. �Color online� Fermi-energy properties of the half-filled
Hubbard model calculated with the leading dual diagram correction
b. The calculations have been performed for the bandwidth 8t=2 at
�=20, for different values of U. Upper panels are contour plots for
Im �k at the Fermi energy. At U=1, Im � peaks in the four van
Hove points, whereas Im ��U=1� is approximately constant in all
points of the Fermi surface. Note also that the change from U=1 to
U=2 leads to a 102 increase in Im �. The lower panel shows a
graph of the effective dispersion law, �k+Im �k at Fermi level, plot-
ted along the �0,0�-�
 ,
� direction. The initial “cosine” dispersion
law �k is almost not renormalized at U=1. On the contrary, for U
=2, the curve shows the antiferromagnetic properties. The results of
the direct QMC 10�10 lattice simulation are shown with dots and
confirm this picture.
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function peaking at the Fermi surface. For a pseudogap re-
gime at finite � and U, the width of this peak is, of course,
finite, but the altitude almost does not depend on the point at
the Fermi surface �right picture�. The lower panel shows an
effective renormalized dispersion law �k+Re �k,�=0. For the
metallic regime, there renormalization is small. For an anti-
ferromagnetic insulator, there would be a pole in Re �k,�=0 at
the Fermi surface. For the pseudogap regime, fluctuations
virtually move this pole from the real-frequency axes, as the
curve for U=2 shows.

Thus, our scheme continuously interpolate between the
two very different regimes. It should be stressed that the
quantities under study have very strong k dependence and
that it would be very difficult to obtain the result of this kind,
for example, in cluster calculations. Whereas for the weak-
coupling regime effective schemes to calculate nonlocal self-
energy are known, such as FLEX �Ref. 28� or parquet,16 to our

knowledge, there is no alternative scheme yet for the strong-
coupling case.

To conclude, we have formulated an effective perturba-
tion theory to calculate the momentum dependence of self-
energy starting with single-site DMFT or any local approxi-
mations. The vertices of the effective impurity problem play
the role of formal small parameters. Due to the transforma-
tion to dual fermionic variables, consideration of a few lead-
ing diagrams provides a quite satisfactory description of the
nonlocal correlation effects in a broad range of parameters,
up to the atomic limit. This scheme can be easily generalized
to the multiband case to be implemented into realistic elec-
tronic structure calculations for strongly correlated systems.
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