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There is a high demand for a computational model that calculates effectively the phase and amplitude
distribution of the beams emerging from an acousto-optic cell. We present a model based on a new algo-
rithm that is capable to solve the vectorial optical wave equation on consecutive planes in an optically
anisotropic medium with an arbitrary refractive index distribution with limited refractive index ampli-
tude. Strength of the presented method is that it does not require the paraxial approximation. We used
the model successfully to calculate the amplitude and phase distribution of the diffracted and undiffract-
ed beams generated in optically anisotropic and isotropic acousto-optic interaction.

� 2009 Published by Elsevier B.V.
1. Introduction

There are many physical situations requiring the calculation of
vectorial wave propagation in media where the refractive indices
(or the parameters of the wave equation) are spatially varying
and the variance is relatively small.

During the last decades a large number of papers and books
were published dealing with the theory, principals and applica-
tions of light propagation. The complexity and accuracy of calcula-
tions evolve parallelly with the increase of computer speed and
capacity. Analytical formulae [1–3] are deduced mainly for special
cases, paraxial propagation along particular axes [1] or non-parax-
ial beams in isotropic [2] or homogeneous [3] background. Parallel
to analytical formulae several numerical computational models
were developed, some of them calculating scalar diffraction in
the context of acousto-optic interaction [4–11], but nowadays
many papers discuss vectorial diffraction related to various propa-
gation and scattering problems [12–16]. Vectorial calculations are
mostly restricted to homogeneous media [12,13], perturbed but
isotropic media [14] or homogeneous scatterers embedded in
Elsevier B.V.

).
homogeneous backgrounds [15,16]. An important question of the
usability of these methods is the convergence, if the diffraction
efficiency generated by the spatial refractive index variation is
high.

Modeling of the acousto-optic effect also belongs to this prob-
lem area. The original model of Van Cittert (see for instance Ref.
[4]) comprehends the acoustic wave as a series of consecutive
phase gratings and applies the analytic formula of the phase grat-
ing (where the amplitudes of the diffraction orders are described
by Bessel functions). There is something similar physical concept
behind the adaptation of the well known split-step method [7–
11] in the acousto-optic diffraction, where the phase grating is con-
ceived as small perturbation of the field’s phase. Originally in this
method the influence of the phase grating onto the propagation it-
self is neglected. To our best knowledge, these methods use also
scalar field calculation and were elaborated for isotropic interac-
tions where the propagating zeroth and higher order diffracted
beams are of the same polarization. In many reports about propa-
gation and acousto-optic diffraction in anisotropic media paraxial
approximation is used [1,3,7], because it allows simplification of
the algorithm and reduces calculation time. However, some practi-
cal cases do not fulfill the paraxial requirements, like strongly fo-
cused beams – e.g. acousto-optic modulators – or cases where all
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diffracted beams are treated as a common electric field distribu-
tion. The need for non-paraxial approximation in the case of large
angle Bragg diffraction has been also shown numerically [9].
Vectorial representation of the electromagnetic field is needed to
describe anisotropic propagation and diffraction in many practical
acousto-optic devices [4,5]; however, we did not find comprehen-
sive and general vectorial calculation of the anisotropic
acousto-optic interaction where the polarization of the diffracted
beams rotates during diffraction. Most of today’s acousto-optic
deflectors and filters use this anisotropic interaction characteristic
to uniaxial crystals like TeO2, CaMoO4, PbMoO4, etc. These devices
are operating either in the Bragg regime (Klein–Cook parameter
Q� 1), or at its limit (Q � 1) therefore our interest was focused
onto this regime, where, with some limitations, practically only
two diffraction orders, the zeroth and first are of importance. The
anisotropic interaction is favored in these crystals, because of its
high figure of merit and bandwidth. Here the first order diffracted
optical beam is differently polarized than the zeroth order and the
incident beam, therefore the model must handle electromagnetic
field vectors.

We developed a general formalism able to handle vectorial
beam propagation in acoustically perturbed background with high
accuracy where the refractive index is anisotropic (or isotropic).
The variance of the refractive index may be also general providing
that the variance is relatively small. It may be a regular one like
that caused by acoustic waves but it is not restricted only to sinu-
soidal refractive index distributions [4,5] it may be also irregular
one, generated e.g. by thermal effects [6].

Though accuracy depends on the amount of afforded computa-
tional operations, our model does not require huge capacities of
networks or supercomputers to obtain reasonable and practically
far acceptable accuracy. The model does not utilize paraxial
approximations, the approach is based on the integration of the
complex wave equation along properly selected spatial directions.

The only restriction that we assumed is that reflecting beams
are negligible which is true in the most cases. In some situations
this condition is not fulfilled but it can be checked either experi-
mentally or by calculation.

In connection with the acousto-optical methods mentioned
above, it is important to underline that our method is substantially
different from those based on successive diffraction, since it does
not just add the modulated phase to the field in these intermediate
planes but creates a perturbation approach that acts on the full
field vector (amplitude, phase, polarization) as well as on the prop-
agation between consecutive planes.

While our intention was primarily to model the Bragg regime
and its limit nonetheless the presented method is not restricted
to the Bragg regime, other diffraction orders are also well
reproduced without additional effort if the Q parameter is
lowered.

Section 2 contains the deduction of our model from the
vectorial wave equation valid for anisotropic medium. Firstly we
discuss the relations between accuracy and boundary conditions,
then we deduce the anisotropic light propagation algorithm for
homogeneous medium, and finally we extend it to inhomogeneous
media.

We compare our computational results with physical expecta-
tions in Section 3 and conclude our work in Section 4.
2. Formalism

2.1. Boundary conditions and accuracy

Our goal was to calculate the most accurate solution of the elec-
tromagnetic wave equation for the case of light propagating in
anisotropic and inhomogeneous medium (mainly conditions char-
acteristic to the anisotropic acousto-optic interaction).

Using monochromatic light source we restrict the temporal var-
iation of the field to the expð�ixtÞ time dependence. For this case
the Maxwell’s equations result in the following complex wave
equation:

r�r� E� k2
0eðrÞE ¼ 0; ð1Þ

where k0 = x/c is the vacuum wave number, and the dielectric
tensor

eðrÞ ¼ eB þ DeðrÞ and DeðrÞ � eB:

The inhomogeneous nature of the background is represented in
the DeðrÞ tensor which is a regular or irregular function of the space
coordinate r. In the case of acousto-optic interaction this modula-
tion is caused by the acoustic wave via the photoelastic effect and
thermal effects [6].

Nevertheless, it is well known that certain solving methods can-
not be carried out directly. For example the time-integration of the
Maxwell’s equations in the entire volume is not solvable, but be-
cause of the linearity it is even not necessary. In the case when
the steady state light distribution corresponds to a monochromatic
wave, the wave equation (1) – which is a second order partial dif-
ferential equation – can be integrated along a spatial direction that
must be properly selected. We call this special axis and the coordi-
nate along it as z. The x and y axes are chosen perpendicular to the
z axis to form a Euclidean coordinate system, and they can be freely
chosen in the plane perpendicular to z.

The electric field and its partial derivate by z are known in a gi-
ven plane perpendicular to z, at z = 0: Eðx; y;0Þ and @=@zEðx; y;0Þ,
and from these, the electric field and its spatial derivatives can
be determined with (1) in a parallel adjacent plane at a distance
d from the source plane: Eðx; y; dÞ and @=@zEðx; y; dÞ. The problem
is solvable when we introduce the assumption that d is infinitesi-
mally small.

Nevertheless, beside its accuracy, this direct method also has a
disadvantage: high technical requirements and computational
time. Therefore it is useful to find an algorithm, which reduces
computational time, but preserves accuracy.

We search an Eðx; y; zÞ function, which satisfies the boundary
conditions set by Eðx; y;0Þ, @=@zEðx; y;0Þ, and also wave equation
(1) with the approximation that the coordinate z is little. Substitut-
ing d into z: Eðx; y; zÞjz¼d, can be perceived as a subsequent bound-
ary condition for the next step.

The Eðx; y;0Þ boundary condition and (1) can be satisfied by a
wave Eþðx; y; zÞ propagating forward (towards increasing z) and
by another wave E�ðx; y; zÞ propagating backward (towards
decreasing z) and also by their linear combination. For example a
forward propagating plane wave is described by exp(i � k+ � r) and
that of the backward propagating counterpart by exp(i � k� � r),
where k+z < 0 and k�z > 0.

Uniqueness of the complete solution is ensured by the
@=@zEðx; y;0Þ boundary condition. This term provides the ratio of
the backward and forward propagating beams. (If there is no back-
ward propagating beam then the field is completely described by
Eðx; y;0Þ).

Since in the practical cases that we intend to model reflecting
beams are not measurable, we do not use the @=@zEðx; y;0Þ bound-
ary condition for fitting, and so the backward propagating beams
are completely neglected.

The partial differentials are calculated by Fourier transform. The
experiences give the theoretically expected effect, that above a cer-
tain sampling frequency the results do not change (Sampling The-
orem) which provides high accuracy without high computational
need.
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2.2. Propagation through homogeneous and anisotropic medium

If the medium is homogeneous, anisotropic (DeðrÞ ¼ 0), then the
Eðx; y; zÞ can be calculated from Eðx; y;0Þ using Fourier transform
for arbitrary z. In this case the wave equation simplifies to

r�r� E� k2
0eBE ¼ 0: ð2Þ

The Fourier transform represents mathematically the decomposi-
tion of the beam into plane waves. The field vector of a plane wave
characterized by the wave vector k is depending on the spatial posi-
tion vector r as EkðrÞ ¼ ~E expðikrÞ. The corresponding equation holds
for each particular plane wave component

k� ðk� ~EÞ � k2
0eB

~E ¼ 0:

From this equation two values for kz can be obtained as a function of
kx and ky, depending on the direction of ~E. The amplitude vector ~E
can be decomposed into ordinary and extraordinary components
whose propagation is governed by these two kz values. (The ordin-
ary is denoted by subscript ‘o’, the extraordinary by ‘e’.)

Similarly, the full field can be split to extraordinary and ordin-
ary components also

Eðx; y; zÞ ¼
ZZ

~Eoðkx; kyÞ � exp½iðkxxþ kyyÞ� � exp½i � kozðkx; kyÞ � z�

� dkxdky

4p
þ
ZZ

~Eeðkx; kyÞ � exp½iðkxxþ kyyÞ�

� exp½i � kezðkx; kyÞ � z� �
dkxdky

4p
ð3Þ

To deduce ~Eoðkx; kyÞ and ~Eeðkx; kyÞ we take the Fourier transform of
E(x,y, 0): ~Eðkx; kyÞ ¼ ðx; y;0Þ exp �iðkxxþ kyyÞ

� �
dx � dy. The polariza-

tion unit vectors are denoted by eoðkx; kyÞ and eeðkx; kyÞ, for the or-
dinary and extraordinary polarizations, respectively. Using these
unit vectors the plane wave amplitudes are represented by the
decomposition: ~Eðkx; kyÞ ¼ ~Eo þ ~Ee :¼ ~Eo � eo þ ~Ee � ee: According to
this the ordinary and extraordinary components can be directly cal-
culated from the x, y components

~Eoðkx; kyÞ
~Eeðkx; kyÞ

" #
¼

eo;xðkx; kyÞ ee;xðkx; kyÞ
eo;yðkx; kyÞ ee;yðkx; kyÞ

� ��1 ~Exðkx; kyÞ
~Eyðkx; kyÞ

" #
2.3. Light propagation through inhomogeneous and anisotropic
medium

Here we discuss the case when the medium is inhomogeneous
and anisotropic (DeðrÞ–0). The solution of the wave equation for
the homogeneous medium is denoted by Eh, given by (3). The same
for the inhomogeneous medium (perturbed with DeðrÞ) is E, and
their difference is denoted by Ei

E ¼ Eh þ Ei: ð4Þ
In this manner the strategy is similar to that from the previous sec-
tion: to determine Eðx; y; zÞ from Eðx; y;0Þ, where z is small.

The basic idea is that Eðx; y; zÞ � Ehðx; y; zÞ ¼ Eiðx; y; zÞ is small if z
is small. We can write from (1) and (4)

r� ðr� ðEh þ EiÞÞ � k2
0ðeB þ DeðrÞÞðEh þ EiÞ ¼ 0; ð5Þ

and (2)

r� ðr� EhÞ � k2
0eBEh ¼ 0 ð20Þ

Subtracting ((20)) from (5)

r� ðr� EiÞ � k2
0ðeB þ DeðrÞÞEi � k2

0DeðrÞEh ¼ 0: ð6Þ

If it is true that

lim
z!0

Eiðx; y; zÞ ¼ 0; ð7Þ
and z is infinitesimally small, then (6) can be further simplified

r� ðr� EiÞ � k2
0eBEi ¼ k2

0DeðrÞEh: ð8Þ

The right side of the equation is known. For simplicity we denote it
with a new variable

k2
0DeðrÞEh :¼ MðrÞ:

Thus

r� ðr� EiÞ � k2
0eBEi ¼ MðrÞ: ð9Þ

Taking the Fourier transform of M(x,y,0):
~Mðkx; kyÞ ¼

RR
Mðx; y;0Þ exp½�iðkxxþ kyyÞ�dx � dy, similar to the

inverse Fourier transform:

Mðx; y;0Þ ¼
ZZ

~Mðkx; kyÞ exp½iðkxxþ kyyÞ�dkx � dky=4p;

we can get for small z:

Mðx; y; zÞjz�small ¼
ZZ ~Mx expðidkzxzÞ

~My expðidkzyzÞ
~Mz expðidkzzzÞ

2
64

3
75 expðikozzÞ

� exp½iðkxxþ kyyÞ�dkx � dky=4p; ð10Þ

which is true for the zeroth and first order (of z) when the wave vec-
tor like dkzi parameters are properly chosen. All ~Mi and dkzi are func-
tions of (kx,ky).

Similar to the above procedure, according to the basic idea we
search Ei in the following form to solve Eq. (9):

EiðrÞ ¼
ZZ

~Eiðkx; ky; zÞ exp½iðkxxþ kyyÞ�dkx � dky=4p: ð11Þ

An important novelty of the model is that we assume the compo-
nents of ~Eiðkx; ky; zÞ as polynomial functions of z (the legitimacy of
this is discussed in the Appendix A)

~Eiðkx; ky; zÞ ¼
bxzþ axz2 þ . . .

byzþ ayz2 þ . . .

bzzþ azz2 þ . . .

2
64

3
75 expðikozzÞ: ð12Þ

All ai-s and bi-s are also functions of kx,, ky and koz.
Using this assumption Eq. (9) is solvable, and we get as solution

values for ai and bi for each considered (kx,ky) pair.
Nevertheless (7) is not generally true. A small constant term c

appears in the square brackets in the general case

~Eiðkx; ky; zÞ ¼
cx þ bxzþ axz2 þ � � �
cy þ byzþ ayz2 þ � � �
cz þ bzzþ azz2 þ � � �

2
664

3
775 expðikozzÞ: ð13Þ

We found it practical to introduce a new variable

~Ei;cðkx; ky; zÞ :¼
cx

cy

cz

2
64

3
75 expðikozzÞ ¼ c expðikozzÞ:

Thus Eq. (8) is modified for Ei:

r� r� Eið Þ � k2
0eBEi ¼ k2

0DeðrÞðEh þ Ei;cÞ: ð14Þ

This is an implicit equation which can be solved by iteration in the
following way:

Ei;c :¼ 0) substituting this into Eq. (14), Ei can be determined.
It also contains a term Ei,c. Repeatedly substituting the new Ei,c into
Eq. (14), the value of Ei becomes more and more accurate. How-
ever, the value of the Ei,c is always very small since DeðrÞ � eB, so
the second step of the iteration is also always sufficient.



Fig. 1. Evolution of the electromagnetic energy carried by the ordinary beam,
extraordinary beam and both along the z axis within an anisotropic acousto-optic
interaction governed by the parameters listed in Section 3.1. (a) The resolution
along the z axis is 100, (b) the resolution along the z axis is 500.

Fig. 2. Evolution of the diffracted beam’s energy related to the sum energy along z,
compared at resolution 100 and 500 along z.
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In the first iteration step we substitute (10), (11), and (13) into
Eq. (14), abandoning the integral (it can be done because of the lin-
earity), and get the following equation:

�k2
0eB þr�r�

� � cx þ bxzþ axz2 þ � � �
cy þ byzþ ayz2 þ � � �
cz þ bzzþ azz2 þ � � �

2
4

3
5eiðkxxþkyyþkozzÞ

0
@

1
A

¼
~Mx expðidkzxzÞ
~My expðidkzyzÞ
~Mz expðidkzzzÞ

2
64

3
75eiðkxxþkyyþkozzÞ; ð15Þ

for each (kx,ky).
If the equality is solved to zeroth order (in z), then it gives 3 sca-

lar equations (zeroth order solution), if solved to zeroth and first
order, then it gives 6 scalar equations (first order solution). It can
be shown that the vector c has neither ordinary nor extraordinary
projection, which means that it must be perpendicular to them, so
the direction of c is determined, only its length is indefinite.

cðkx; kyÞ ¼ cðkx; kyÞ � ecðkx; kyÞ:

Consequently in the zeroth order solution we get c, bx and by,
and in the first order solution ax, ay, bx, by, bz and c (all coefficients
are functions of kx and ky).

It can be seen that if the applied distance between the consec-
utive planes, d, is small enough, the first order solution does not
improve the accuracy of the full solution effectively. (Small d is
needed for the Eqs. (8) and (14) to remain true.) In this case it is
enough if the wave equation is satisfied to zeroth order. Thus bz

and all ai-s are negligible, they do not increase the convergence.
The described method differs substantially from the well known

successive approximation method [4,7,8,10], since it does not only
multiply the field distribution in the consecutive planes with a
transmission term, but combines the propagation with the inho-
mogeneous refractive index distribution to form a perturbation,
which affects all parameters of the field (phase, amplitude,
polarization).

We implemented the above calculation numerically using fast
Fourier transform algorithms. After the proper selection of the x,
y and z axes, matched to the propagation direction of the incident
beams and the optic axis we generate a grid in the x, y plane with
the mesh points distanced by sx and sy, respectively. For simplicity
the x and y axes are chosen parallel and perpendicular to the
acoustical plane wave.

The spatial grid determines a reciprocal kx, ky grid in the Fourier
plane, of the same resolution. We get the c, bx and by parameters for
each mesh point in the Fourier plane by (15) and get the Ei field
vector values in a next plane distanced by d in z direction by in-
verse Fourier transformation according to (11). The full field at
the grid points is given by (4), where Eh is obtained from (3).

3. Modeling results

3.1. Physical environment

We used the following parameters to test our model (material is
TeO2). We chose ordinary polarized Gaussian beam as input field
distribution. The symmetry axes of the optical and acoustic beams
lie in the x–z plane, which can be called interaction plane. The z
axis is chosen perpendicular to the acoustic beam. To get a real
configuration geometry and to fulfill the Bragg condition in a given
acoustic frequency range, the incident optical beam must propa-
gate at a certain angle s relative to the z axis and at a second angle
c relative to the optic axis. In our case the angle c between the z
axis and the optical axis is of 3�. We performed the calculation at
different angles s to find the angle where the highest diffraction
efficiency at a given interaction length and acoustic perturbation
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occurs. For the Figs. 1, 2, 5, 6 and 8 as an input parameter we ap-
plied the s angle of �0.75� (outside the crystal it seems to be
�1.7�).
Ordinary refractive index:
Fig. 3. Dependence of the diffraction efficiency on the incidence a
function has two maxima indicating two Bragg angles. The bla
correspond to the Bragg angles and diffraction efficiencies c
analytical formulae derived from the Dixon equations. Note t
between the Bragg angles calculated analytically and with our mod
no = 2.2588,

extraordinary:
 ne = 2.4118.
The optical axis lies in the x–z plane, its angle to axis z:

c ¼ 3	:

Gaussian beam parameters:

wavelength in vacuum: k = 633 nm,
0
beam waist width:
 W0 = 46.269 lm.
Sizes of the processed volume:

Fig. 4. Dependence of the maximum diffraction efficiency on the incidence angle.
The dashed lines denote the Bragg angles calculated with analytical formulae.
size in x direction:
 hx = 0.8 mm,
size in y direction:
 hy = 0.4 mm,

size in z direction:
 hz = 2.5 mm.
The applied refractive index distribution:

DeðrÞ ¼ A � De0 � sinðK � xÞ;

where

De0 ¼
0 1 0
1 0 0:007313
0 0:007313 0

0
B@

1
CA; A ¼ 6:511
10�4;

acoustic wavelength: 2p/K = 9.0286 lm.

the Klein–Cook parameter:
 Q = hz K2/k = 54.
3.2. Electromagnetic energy conservation

During the calculation we did not need to set the energy conser-
vation as a condition. Thus energy conservation can be used as a
proof of mathematical and physical accuracy.
ngle and z. The
ck solid curves
alculated with
he coincidence
el.
One can expect that decreasing step size and increasing resolu-
tion increases accuracy and decreases the error. We calculated the
energy sum of all diffracted orders in each consecutive processed
plane along the z axis and defined the energy error as the differ-
ence between this sum and the incident beam’s energy. Our main
observation was in concordance with the expectations, so that the
error in the energy conservation is linearly proportional to the res-
olution (number of processed planes) along the propagation
direction.

In Fig. 1 light propagates through a Dz = 2.5 mm long refractive
grid. For optimal performance we set the incident beam’s angle s to
the optimal – lets say Bragg angle. In a first case this distance was
partitioned into 100 equidistant steps (Fig. 1a). It can be seen that
the energy sum of the ordinary and extraordinary beams’ energy is
not constant with z, but increased altogether by �13% within the
full propagated length (Dz). In Fig. 1b all parameters are the same,
except the number of processed planes, which is five times greater,
increasing the resolution along z by five times. It is obvious from
the figure that in this case the sum energy deviation becomes five
times smaller. Note that the required computational time is also
five times greater.

Thus we demonstrated the linear relation between energy error
and step size along the z axis, namely k times greater resolution re-
sults in k times smaller energy error. Other aspects of the diffrac-
tion, like electromagnetic field distribution in a given plane and
the diffraction efficiency’s dependence on s are not affected drasti-
cally by the computational resolution along the z axis.

However, the energy in the different diffracted beams gives di-
rectly the diffraction efficiency, as a main output parameter.

Since the energy of the diffracted field can be calculated directly
from its electric field distribution and also from the shrinkage of
the zero order beam’s energy, a question arises that which energy
calculation method converges faster (hereby we can simply reduce
computational time).

After examining simulations with different parameters we
found the following formula as the most rapidly converging
expression for the diffracted field’s energy:

Efinal
diffractedðzÞ ¼ EdiffractedðzÞ �

P
Eð0ÞP
EðzÞ ; ð16Þ

where Efinal
diffractedðzÞ is the energy in the diffracted field at the z coordi-

nate, Ediffracted(z) is the diffracted energy calculated from its field dis-
tribution, RE(0) is the incident energy and RE(z) is the sum energy
at z.
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In the case when the incident beam is the ordinary and the dif-
fracted is the extraordinary beam and the other diffracted orders
do not appear (in Bragg regime) the diffraction efficiency can be
written as

gfinal
e ¼ Ecalc

e

Ecalc
e þ Ecalc

o

: ð17Þ

where gfinal
e is the diffraction efficiency, Ecalc

e and Ecalc
o are the energies

in the extraordinary and ordinary beams, respectively, calculated
from their field distributions.

It is visible from Fig. 2 that this expression gives good estima-
tion of the diffraction efficiency and it is almost independent of
the number of partitions along the distance Dz.

3.3. Geometrical considerations – Bragg diffraction

To get efficient acousto-optic interaction at high Klein–Cook
parameter values a strong geometric condition must be fulfilled
commonly called Bragg condition. This geometrical rule imposes
the directions and polarizations of the incident beam for which
the diffraction efficiency reaches its maximum within the shortest
interaction length at a given acoustic power. For birefringent
(anisotropic) medium these geometrical constraints are described
by the Dixon equations.

One can see that at a given acoustic frequency and propagation
direction there are two optical incidence angles that satisfy the
Dixon equations. We call these angles Bragg angles, and define
them as the angles between the incident optic and acoustic beams,
s.

To verify if the model fulfills the geometrical condition we cal-
culated the dependence of the diffraction efficiency on the angle s
(Fig. 3). The diffraction efficiency curves calculated with the Bragg
angles resulting from analytical (geometrical) formulae are marked
black. In Fig. 4 we show the dependence of the maximal diffraction
efficiency on the incident beam angle’s sine. Here the Bragg angles
derived from Dixon equations are marked with dashed lines.
Fig. 5. Spatial intensity distribution of the incident Gaussian beam. (a) Shown on
the whole calculation area. (b) Magnified to show the details. Intensity values are
represented by the gray scale (arbitrary units).
It is visible that our model gives the maximal diffraction effi-
ciencies exactly at the Bragg angles calculated from the Dixon
equations. Thus we have shown that the model satisfies well the
geometrical condition.

The calculations were performed on Gaussian beams (Fig. 5a
and b) whereas exact Bragg condition can be fulfilled only by plane
waves. This fact results in two characteristics: on one hand the the-
oretical efficiency does not achieve 100% and on the other hand
maximum diffraction efficiency dependence on the incidence angle
is not a Dirac delta. As we conceive the Gaussian beam as a sum-
mation of near parallel plane waves we see that only one plane
wave can satisfy the Bragg condition exactly. So the maximal dif-
fraction efficiency occurs when the ‘central’ plane wave compo-
nent – of maximum amplitude – fulfills the Bragg condition. The
direction of this ‘central’ plane wave coincides with the propaga-
tion axis of the Gaussian beam usually referred to as beam axis.

This behavior can be seen well on the spatial intensity spectrum
(absolute square of the Fourier transformed field ðj~Eoðkx; ky; zÞj2Þ),
since this function gives the intensities of different plane waves
as a function of wave vector coordinates (kx,ky). One can see that
Fig. 6. Zoom of the spatial intensity spectrum of the (a) incident ordinary beam, (b)
ordinary (non-diffracted) beam after the acousto-optic interaction in the z = 2.5 mm
plane. (c) extraordinary (diffracted) beam after the acousto-optic interaction in the
z = 2.5 mm plane. Intensity values are represented by the gray scale (arbitrary
units).



Fig. 7. The intensity spectrum of the propagating light: (a) at the plane of z = 4 mm, (b) as a function of z. (The dotted line shows the place of Fig. 7a.) Intensity values are
represented by the gray scale (arbitrary units). The Klein–Cook parameter is 100 times smaller than in Fig. 3 and therefore more orders appear in the diffraction.
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the Fourier transform of the incident ordinary beam has a shape
resembling a two-dimensional normal distribution (Fig. 6a). At
the z coordinate where the diffraction efficiency is maximal the
center of the spot is depleted and the two sides are less lowered
(Fig. 6b). The field lacking from the depleted part of the ordinary
beam is transferred to the diffracted extraordinary beam (Fig. 6c).
Fig. 8. Dependence of the diffraction efficiency – z curve on the relative sound
amplitude.
3.4. Raman-Nath diffraction

In Fig. 7a and b we present a simulation of the field evaluation
with 100 times smaller Q parameter (Q = 0.54). In this case the
interaction is at the limit of the Bragg regime. As expected from
previous simulations [4,5,11] more than one diffracted orders ap-
peared – Raman-Nath diffraction. Their amplitudes vary roughly
periodically with the propagated distance z. One cross section is
presented in Fig. 7a. The intensity spectrum is shown as a function
of the kx wave vector component.

To set these conditions we used the parameters of Section 3.1
except three values: the acoustical wavelength is ten times greater,
90.286 lm (the acoustical frequency and wave vector are ten times
smaller). In fact that change would have been already enough how-
ever for the visibility we needed smaller pattern in the spectrum.
For that we enlarged three times both the incident beam’s waist
width and the sizes of the volume in x and y directions.

Q ¼ LK2=k ¼ 0:54:

3.5. Simulating the efficiency dependence on the acoustical power

Qualitative physical picture of the interaction, resulting also
from the previously used mathematical simulations, shows that
increasing acoustic amplitude causes faster diffraction evolution
along axis z and it is also known that this increases even the dif-
fraction efficiency. The results of the simulation are in complete
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agreement with these expectations (Fig. 8). The diffraction effi-
ciency curves are not simple sine functions because the beams
are not plane waves but Gaussian.

The parameters of these simulations are the same as in the Sec-
tion 3.1, the only difference is that the amplitude of the refractive
index variance is multiplied with the relative sound amplitude de-
noted in Fig. 8.
4. Conclusion

In this paper general formalism was shown to calculate the vec-
torial wave equation (deduced from the Maxwell’s equations) with
high accuracy, in cases where the medium is inhomogeneous and
anisotropic. We provided the detailed mathematical description
of the method.

The only utilized assumptions are that the applied light is
monochromatic, the reflecting beams are negligible, and the ampli-
tude of the dielectric tensor’s spatial variation is relatively small.

These conditions are applicable for the acousto-optic phenom-
ena, for which the model was primarily created.

The presented results of the calculations modeling acousto-op-
tic interaction in uniaxial medium were in concordance with nat-
ural physical expectation: electromagnetic energy was conserved,
the diffraction efficiency was maximal in directions that fulfill
the Bragg condition given by analytic formulae. Qualitatively, the
analytic formulae of the Bragg diffraction gave the same results
with the same parameters in terms of propagation angle, interac-
tion length and acoustic power. Using smaller Klein–Cook param-
eter more diffractional orders occur – as it is expected.
Appendix A

In this section we discuss why it is useful to search ~Ei in the
form of (12) and (13).
First, every f Fourier transformable function can be written in
the form

f ðx; y; zÞ ¼
ZZ

~f ðkx; ky; zÞexp½iðkxxþ kyyÞ� dkxdky

4p2

(f can be even a vector function, then ~f is also vector function.) And
without loss of generality the components of ~f can be approximated
according to the following expansion into series:

~f jðkx; ky; zÞ ¼ ½cjðkx; kyÞ þ bjðkx; kyÞ � zþ ajðkx; kyÞ � z2 þ � � ��
� expðikozzÞ:

To search ~Eix, ~Eiy and ~Eiz in this form is effective for as much as
~Ei ¼ ~E� ~Eh, where the kz wave vector component of ~Eh and E can
vary between koz and kez (usually a small variance). Consequently
the same can be said about ~Ei. It follows that the polynomial part
of the components of ~Ei varies slowly, by other words, the first part
can be well approximated by polynomial. If (7) is fulfilled then the
first, the constant part of the polynomial is zero.
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