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A compact theoretical description of the effects of dissipation on the propagation of light waves through a
multilayer periodic mirror built from resonant absorbing atoms is presented. Depending on the lattice period-
icity, ultranarrow photonic gaps, weak polaritonic gaps, as well as rather atypical gap structures may be
observed. Because of the atom’s absorption line shape Bloch gap modes may acquire quite a cumbersome
structure which is thoroughly studied here or which may even disappear when dissipation becomes sufficiently
strong. The same approach well applies also to resonantly absorbing photonic crystals based on excitonic
resonances.
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I. INTRODUCTION

The propagation of light in complex dielectric media,
namely structures with an index of refraction that has varia-
tions on a length scale that is roughly comparable to the
wavelength of the incident light, is a rich and fascinating
phenomenon. Such complex media strongly scatter light. In
particular, if a complex material is assembled in a periodic
way we obtain a crystal-like structure that under appropriate
conditions may exhibit energy bands, i.e., energy regions in
which light can propagate separated by regions in which
light cannot propagate and hence called photonic band gaps
�1,2�. Artificially engineered photonic band-gap materials are
well known as photonic crystals �3–6�. Most of the earlier
designs based on the familiar diamond like �7� or woodpile
�8� structures are now being replaced with more sophisti-
cated architectures �9,10�. The essential underlying physics
is rather simple, namely constructive interference that gives
rise to Bragg refraction in certain well defined directions or,
in the simplest one-dimensional geometry, to Bragg reflec-
tion. Quite recent investigations, however, have also sought
to discover photonic band-gap structures in natural speci-
mens as well �11,12�. Many have existed naturally for mil-
lennia, yet the sheer physical complexity of these natural
systems often renders an accurate representation of their
structure extremely difficult �13�.

In its simplest version, a photonic crystal is created by
introducing air holes into a solid medium having a high re-
fractive index and semiconductors certainly are most familiar
instances �7�. Certain liquid crystals are also found to exhibit
Bragg reflection as due to a periodicity along a specific di-
rection of the polymer structure �14,15�. With their remark-
able capabilities of localizing and guiding radiation, photonic
crystals can be used to create miniature high reflectance mir-
rors �16�, which only reflect light over the same wavelength
range as the band gap, as well as narrow waveguides �17�,
filters �18�, and microlasers �19�. They have further opened a
whole new chapter in nonlinear optics �20� suggesting a con-
ceptually new architecture for nonlinear optical materials ex-
hibiting alternative schemes for amplification �21�, for non-
classical light generation �22�, enhanced photon-photon

correlations �23,24�, artificial anisotropy and engineered
point-group symmetry �25�. Photonic crystals have finally
spurred the investigation of interesting new phenomena such
as superprism effects �26�, negative refraction �27�, negative
refraction of sound waves �28�, quenching of spontaneous
�29� and stimulated �30� emission, refractive index enhance-
ment �31�, Lamb shift enhancement �32� and efficient control
of phase matching in the generation of entangled photon
pairs �33� just to mention a few. For the most part of these
effects experimental demonstration has already been carried
out or is under way.

One may wonder whether photonic band gaps could be
observed also in spatially periodic structures made of dilute
gases of resonant absorbing atoms. Unlike in a disordered
gas, waves scattered from periodically ordered atoms are
spatially correlated so that the coherence length for interfer-
ence in directions other than the forward one will be large.
When a probe beam propagates normally to a stack of thin
atomic samples placed at a distance comparable to the probe
wavelength and otherwise separated by vacuum, interference
between forward and backward waves can strongly attenuate
the incident field so as to enhance the reflected wave. Strong
reflection is expected to occur over a certain range of fre-
quencies in much the same way as that arising from the band
gap of one-dimensional multilayer dielectric mirrors �34�.

In the periodic dissipative atomic structures that we con-
sider here Bragg reflection and the resulting band-gap
mechanism is described through a macroscopic complex
frequency-dependent dielectric function ����. Because the
real and imaginary parts of the dielectric function are related
by the Kramers-Kronig relations �35�, causality implies that
a medium can never be purely absorptive. A periodically
modulated absorption then entails an inevitable spatial
modulation of dispersion, i.e., of the index contrast required
to open a band gap �34�.

Although weak absorption is in general expected to affect
the band structure �36–39� which one would otherwise ob-
serve in the absence of dissipation, it is not altogether clear
yet what will happen in the opposite limit of substantial ab-
sorption. We anticipate that in periodic stacks made of dilute
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gases of resonant absorbing atoms Bloch gap modes falling
near the strongly absorbing atom’s resonance region may
entirely disappear. A detailed analysis is here carried out for
realistic ultracold atomic gas parameters.

These unusual photonic crystals may actually be created
�40� either by trapping ultracold atoms in the periodic ac
Stark shift potential wells of an optical lattice �41,42� or by
periodically modulating absorption through electromagneti-
cally induced transparency �43� in a standing wave pump
configuration �44,45�. Notice that in this case control over
the gap structure may be achieved directly through the exter-
nal laser beam which creates the periodic optical potential
whose lattice constant is then set with rather high precision.
The second scheme, in particular, requires no spatial redis-
tribution of the atoms �44,45�. This scheme, when compared,
e.g., with band-gap control mechanisms �46� that are based
on fast changes of free carriers density, becomes quite ame-
nable to implement a new mechanism for ultrafast all-optical
switching.

The photonic band structures associated with these two
realistic index modulations can clearly be investigated nu-
merically �47�. Yet we will deal here with an atomic structure
which is a limiting form of what could be realized in prac-
tice, namely an array of thin atomic parallel-sided layers
separated by vacuum. This will enable one to present ana-
lytical results for the propagation of electromagnetic waves
through the atomic array. The main advantages of such an
approach are the physical insight into the nature and signifi-
cance of the photonic band gap and the ease in computing its
structure. Further, such a model is particularly suited to study
photonic crystals built from semiconductor structures that
exhibit sharp resonantly absorbing transition lines, such as
some exciton transitions �48� in cuprite �Cu2O� or in copper
cloride �CuCl�.

Our results crucially depend on the optical properties of
the single atomic sheet from which the periodic stack is built
and these are briefly illustrated in Sec. II. In particular, the
transfer matrix associated with the primitive cell of our pe-
riodic structure, whose eigenvalues are needed to determine
the nature of the Bloch waves, are derived in Sec. III. The
one-dimensional Bragg stack of these atomic sheets is con-
sidered in Sec. IV, where the nature of the Bloch waves can
be assessed through a straightforward analytic condition. The
specific structure of band-gap modes that originate from us-
ing realistic atomic parameters is thoroughly examined in
this section. We discuss separately in Sec. V the possibility
of band-gap tuning by modifying the laser beam configura-
tion that creates the lattice periodicity while in Sec. VI we
examine the case of gaps forming near the atom’s resonance
region where absorption most affects the nature of the Bloch
gap modes. The main conclusions of the work are summa-
rized in Sec. VII.

II. THE ATOMIC PERIODIC STRUCTURE

Our simplified structure takes the form of an infinite one-
dimensional array of thin atomic slabs with given periodicity
a. In typical experimental configurations a is set by the pe-
riodicity of the standing wave �40,45�, and it is just half the

wavelength of the two counter-propagating laser beams cre-
ating the optical potential. For the sake of simplicity, we will
focus here on normal incidence, though the treatment could
be extended to oblique incidence as well. Each slab has a
thickness d sufficiently smaller than a. The effective optical
thickness of the layers of atoms trapped by the optical po-
tential is of the order of a tenth of the periodicity or less
�40,45�. The optical properties of the single slab are specified
by the complex dielectric function

���� = n2��� = �b + 3�N �e

�o − � − i��e

, �1�

which describes a characteristic Lorenztian absorption profile
�35� exhibited by a probe of frequency � impinging on a
sample of two-level atoms of resonant transition frequency
�o. Here �b�1 is the sample background dielectric function

while N is the scaled atomic average density �–o
3N /V where

�– =�o /2�=c /�o is the reduced resonant wavelength. For
magnetically trapped 87Rb atoms, e.g., the probe typically
couples hyperfine components of the ground S1/2 state with
components of the excited P3/2 state �49�. Characteristic ex-
cited level linewidth and resonant wavelength values are
�e /2��6 MHz and �o=780.792 nm �D2 line� yielding N
�5.7�10−3 for a typical density N /V�3�1012 cm−3 of ru-
bidium at micro-kelvin temperatures.

It is here worth stressing that the dielectric function �1�
also describes the 2P yellow exciton �line� resonant absorp-
tion in Cu2O upon substituting �50� the decay rate �e /2�
with the 2P exciton linewidth �2P /2��242.12 GHz, �o
→576.8361 nm, and 3�N→ �D�2 / ��o��2PV��0.02, where
�D�2 is proportional to the 2P exciton oscillator strength.
Similarly, the dielectric function �1� may also describe the
Z3-exciton resonant absorption �line� in CuCl when replacing
�51� �e /2� with the Z3 exciton linewidth �x /2�=12.1 GHz,
�o→386.9352 nm, and 3�N→�b�	LT /��x�6.32�102.
Here �b→5.59 and �	LT=5.65 meV are respectively the
background dielectric constant and the exciton longitudinal-
transverse splitting �48�. Unlike for cuprite, which exhibits a
fairly weak oscillator strength making its optical response
rather similar to that of an atomic system, copper chloride
has a large oscillator strength along with a narrow linewidth
leading to a well developed polaritonic effect �52� which
makes the response non-atom-like in nature.

Typical profiles of the real and imaginary parts of the
refractive index n���=
���+ i���� for rubidium atoms are
shown in Fig. 1 as a function of the probe detuning �=�o
−�. Notice that the Lorentzian absorption profile can be here
modified in an artificial way by a suitable scaling ��� of the
damping term in the denominator of Eq. �1�. While �→1
corresponds to the actual linewidth profile, smaller �’s yield
a linewidth narrowing with a concomitant peak absorption
increase �53�. The real and imaginary parts of the dielectric
function ���� are related by the Kramers-Kronig relations
and hence the scaling affects both the resonant absorption
��� and the refractive index �
�.

We will start by constructing in the next section the trans-
fer matrix for the primitive cell of an infinite one-
dimensional array of absorbing thin atomic layers with the
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complex index given in �1�. This will then be used to derive
the Bloch condition that determines the nature of the Bloch
waves propagating through the array.

III. TRANSFER MATRIX

For a linearly polarized monochromatic plane wave of
frequency � and wave vector k propagating in the x direc-
tion, the electric field at an arbitrary point x,

E�x,t� = ẑE�x�e−i�t

= ẑ�E+�x� + E−�x��e−i�t � ẑ�E+eik x + E−e−ik x�e−i�t

�2�

is fully determined by the two complex components E+�x�
and E−�x� describing forward and backward traveling waves.
If we then denote the electric field by the column vector

E�x� → �E+�x�
E−�x�

	 � 
�E+

E− 	

x
, �3�

the field on the left �l� and right �r� hand side x� and x� of a
layer may in general be written as �54,55�


�Er
+

Er
− 	


x�

= M
�El
+

El
− 	


x�

�4�

while the transformation

M =
1

Trl
�TlrTrl − RlrRrl Rrl

− Rlr 1
	 �5�

can be expressed �56� in terms of the reflection and transmis-
sion complex amplitudes for a forward �Rlr ,Tlr� and back-
ward �Rlr ,Tlr� propagating wave. For a layer of thickness d,
whose boundaries separate three media of refractive index
n1, n2, and n3, the reflection and transmission amplitudes for
the forward and backward wave are, respectively,

R13 =
r12 + r23e

2ik dn2

1 + r12r23e
2ik dn2

T13 =
t12t23e

ik dn2

1 + r12r23e
2ik dn2

, �6�

and

R31 = −
r23 + r12e

2ik dn2

1 + r12r23e
2ik dn2

T31 =
t32t21e

ik dn2

1 + r12r23e
2ik dn2

. �7�

The normal incidence Fresnel coefficients r12, t12, r23, and t23
as well as t32 and t21 on the two interfaces of the layer �57�
are evaluated at the incident wave frequency �=ck which is
omitted here. In particular, when n1=n3=1 and one has R31
=R13 Eq. �4� becomes


�E3
+

E3
− 	


x+d

= M
�E1
+

E1
− 	


x

�8�

with

M =
1

4n2
��n2 + 1�2eik dn2 − �n2 − 1�2e−ik dn2 �n2

2 − 1�eik dn2 − �n2
2 − 1�e−ik dn2

�n2
2 − 1�e−ik dn2 − �n2

2 − 1�eik dn2 �n2 + 1�2e−ik dn2 − �n2 − 1�2eik dn2
	 . �9�

The relation �8� holds for a generic absorbing and dispersive
medium and hence M constitutes the most general expres-
sion for the transfer matrix of a homogeneous optical layer
of thickness d and complex refractive index n2���. This will
be used in the following sections.

IV. BLOCH MODES

We proceed to examine the structure of the photonic
Bloch modes by studying the propagation of electromagnetic
waves across an infinite one-dimensional array of thin atomic
layers with optical properties specified by the complex di-
electric function �1� and otherwise separated by vacuum. The
layers spatial arrangement is shown in Fig. 2.

For a linearly polarized wave propagating along the x di-
rection across the array, the electric field En in the free space
region between the barriers labeled by n−1 and n can be
written as in �2� in terms of its amplitude En

± and space-
dependent phase components in the form

En�x,t� = ẑ�En
+�x� + En

−�x��e−i�t

= ẑ�En
+eik x + En

−e−ik x�e−i�t, �10�

where � and k =� /c are, respectively, the frequency and
wavevector of the local propagating modes as determined by
the incident field. The relations between the fields in adjacent
primitive cells can be obtained by application of the bound-
ary conditions at the dielectric interfaces �35,56�. According
to �8� the resulting relation between the electric fields in cells
n and n+1 is conveniently written in matrix notation as


�En+1
+

En+1
− 	


x=na+�d/2�
= M
�En

+

En
− 	


x=na−�d/2�
, �11�

where the electric fields E± are to be evaluated at the values
indicated in the equation and where M is the transfer matrix
�9� with n2���→n��� as given in �1�. The relation between
the electric fields at the borders of the nth cell free space
region, on the other hand, is obtained directly with the help
of �10� and can be cast again in the matrix form
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�En+1
+

En+1
− 	


x=�n+1�a−�d/2�
= �eik �a−d� 0

0 e−ik �a−d� 	 ,

·
�En+1
+

En+1
− 	


x=na+�d/2�
� M
�En

+

En
− 	


x=na−�d/2�
, �12�

where

M = �eik �a−d� 0

0 e−ik �a−d� 	M �13�

is the primitive cell transfer matrix, with det M =1.
The relation between the electric-field given in �11� and

�12� are entirely derived from the properties of the electro-
magnetic field but these same fields are independently re-
lated by Bloch’s theorem �58�, which applies generally to all
forms of excitation in a periodic structure. For the present
configuration, Bloch’s theorem takes the form

En+1�x + a� = eikaEn�x� �14�

or


�En+1
+

En+1
− 	


x=�n+1�a−�d/2�
= 
�eika 0

0 eika 	�En
+

En
− 	


x=na−�d/2�
,

�15�

with the same notation for E± as used in Eqs. �11� and �12�.
Combining now Eq. �12� with Eq. �15� yields


�M − �eika 0

0 eika 	��En
+

En
− 	


x=na−�d/2�
= 0. �16�

Note that the one-dimensional Bloch wave vector k, which is
complex in general, determines the spatial development of
the phase of the photonic excitation as it propagates through
the periodic medium. Equation �16� identifies the Bloch ex-
ponent eika as the eigenvalue of the primitive cell transfer
matrix M, and the corresponding determinant equation re-
quires that

e2ika − Tr�M�eika + 1 = 0. �17�

If k is a solution also −k is a solution, and hence

eika + e−ika = Tr�M� � ��� �18�

with

��� = �ein�d/c + e−in�d/c�cos ��a − d�/c

+ i
n2 + 1

2n
�ein�d/c − e−in�d/c�sin ��a − d�/c . �19�

Here the incident wave vector k has been replaced by � /c
while the index frequency dependence is again omitted.

Solutions of Eq. �18� determine the dispersion of the
Bloch modes, i.e., the dependence of the complex Bloch
wave vector k�k�+ ik� on the frequency � of the incident
wave. It can be seen directly from �19� that for a transparent
medium with a real refractive index ��� becomes real. The
frequency region where ������2 correspond to the allowed
bands with k real. The region where ������2 corresponds
instead to the forbidden gaps where k acquires an imaginary
part and, at the same time, its real part is either 0 or ±� /a for
gaps lying, respectively, at the center or at the boundaries of
the first Brillouin zone. Such restriction directly follows from
the fact that for real  one has sin k�a=0 �55� when k��0.
In the limiting case of a uniform atomic medium �d→a�

FIG. 1. �Color online� Real �
� and imaginary ��� parts of the
single layer refractive index in �1� for ultracold 87Rb atoms with a
density N /V=3�1012 cm−3. The probe detuning � is in units of the
excited state decay rate �e. The different curves correspond to dif-
ferent absorption line shape scale factors with �=0.25 �blue�, �
=0.5 �red� and with �=1 �black� corresponding to actual absorption
Lorentzian linewidth profile.

FIG. 2. �Color online� Geometrical arrangement of the one-
dimensional array of atomic layers with periodicity a. Each primi-
tive cell comprises a layer of thickness d=a /20 described by a
complex dielectric function ���� and vacuum while E± describes
the local electric field amplitudes.
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with a real refractive index, ���→cos��na /c� and �18�
yields

k = k� = ± n
�

c
�mod

2�

a
	 . �20�

This recovers the well known photon dispersion, folded back
into the first Brillouin zone

−
�

a
� k� �

�

a
, �21�

or the photon vacuum dispersion when n→1. For an array of
atomic layers �d�a� exhibiting strong absorption ��� is
instead a rather involved complex function and the complex
Bloch vector k associated with a given incident frequency �
can be obtained as a solution of the equation of complex
argument

ka = ± cos−1����
2

� �mod 2�� , �22�

with k� folded back into the first Brillouin zone.
In a nondissipative periodic medium solutions of �22� are

characterized by a real frequency � yielding the band struc-
ture with allowed frequency zones separated by forbidden
gaps. If � falls inside an allowed band the Bloch vector k is
a real solution of �22�, but k acquires instead an imaginary
part when � falls inside the gap. While the former solutions
describe light waves that propagate in the medium, the latter
ones can be interpreted as surface excitations �Tamm states�.
In a bounded medium these are evanescent waves that un-
dergo extinction inside the medium in the direction normal to
the boundary �59� and hence do not represent propagating
modes. The decay is due to strong Bragg reflections, a re-
versible process which does not lead to transfer of energy to
the medium making then reflection within the gap strictly
unity. Such an extinction process only occurs within the band
gap while k�→0 for all other modes.

In a dissipative periodic medium the situation becomes
rather intricate. The non-vanishing imaginary part of the re-
fractive index n��� causes now absorption and � and k so-
lutions of �22� are, in general, complex. These solutions can
be cast, for instance, either in the form �=��+ i�� with real
k or in the form k=k�+ ik� with real �. Because in a bounded
medium the Bloch waves, excited by the incident field at a
given real frequency �, decays exponentially with the dis-
tance from the sample boundary the latter representation is
more appropriate to describe spatial decay of the Bloch
modes studied here. In an absorbing periodic medium propa-
gation of Bloch waves is damped; this is a dissipative pro-
cess in which energy is transferred to the medium and gen-
erally prevents reflection from being unity. Unlike for the
extinction process, absorption entails that k��0 even for
modes � falling within an allowed band. In turn, within a
forbidden gap k� is no longer restricted to be exactly 0 or
� /a and hence the distinction between allowed band and
forbidden gaps becomes fairly blurred �36,39�. Dissipation,
as a matter of fact, modifies the band-gap structure which
one would observe in the absence of absorption. For large
degrees of dissipation the band gap may even disappear, a

rather important issue which we discuss separately in Sec.
VI.

Figure 3 show the solutions of Eq. �22� for an infinite
stack of atomic layers around the X point of the first Bril-
louin zone �60�. The wave vector components k� and k� are
plotted here against the incident probe beam frequency de-
tuning from the atom’s resonance �o and two separate for-
bidden gaps are seen to open for certain ranges of frequen-
cies below ���0� and above ���0� resonance. Frequencies
�, for which k�a=� and k�a�0, characterize photonic
band-gap modes at the Brillouin zone boundary.

As we may in general express k�=�
̃��� /c in terms of an
effective refractive index 
̃ for the array �61�, an estimate for
the midgap frequencies �g may be obtained from solving the
equation

�g
̃��g� =
�

a
c . �23�

In particular, when the resonant frequency �o falls suffi-
ciently close to the Bragg frequency �62�, the incident and
reflected photon modes generally mix with the resonance
mode as in Fig. 3. Such a mixing causes the two photon
modes to repel with subsequent splitting of the gap while Eq.
�23� exhibits three distinct solutions, two of which are physi-
cal solutions representing the centers of the two split gaps.

The gap region above resonance on the left has sharp
edges and a mode extinction profile which is symmetric
around midgap as for a traditional nondissipative photonic
band-gap �3,4�. In this case, in fact, the gap modes all fall far
from resonance making the atomic periodic structure essen-
tially nondissipative. It is to be noted that k� is negative
within this gap and around its upper edge �second band� as in
this spectral region the corresponding k� is obtained by fold-
ing into the first Brillouin zone solutions for which k�
�−� /a. In general, the correct sign of k� is the one ensuring
that damping occurs in the direction of energy propagation as
determined, for weak absorption �63,64�, by the usual group
velocity vg

−1=�k� /��. This entails that below the lower edge
of the gap �first band� k� should be positive as the group
velocity changes from positive to negative across the gap.
The two distinct k� matchings at the borders of the gap are
clearly shown in the insets of Fig. 3�b�.

Conversely, the other gap on the right lies next to the
resonance region where dissipation is strong instead. Absorp-
tion makes the mode extinction profile no longer symmetric
and much more pronounced. The characteristic sharp spike
observed at resonance, in particular, is due to resonant ab-
sorption. This is clearly shown in Fig. 3�d� where the region
is resolved on a much larger scale. We plot here the Bloch
wavevector for the three different absorption profiles of Fig.
1 to examine the band edge modifications associated with
different absorption profiles. In all three cases k� is positive
inside the gap and remains positive across the lower edge
consistently with the fact that the group velocity is positive
there, while k� flips sign across the upper edge where the
group velocity becomes negative next to the resonance re-
gion where absorption is still small. For the case in which
�→1, however, the group velocity becomes negative but
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unlike the previous case k� remains positive. This occurs in a
region where absorption is, however, large and where the
group velocity loses its physical significance �64�. Merging
of the absorption and extinction regimes takes place around a
typical atomic linewidth ��e� below resonance �Fig. 3�d��
with a concomitant shift of the edge of the gap depending on
the absorption profile �Fig. 3�c��. Figures 3�c� and 3�d� show
the different propagating nature of the Bloch modes within
the resonance region where propagating modes with increas-
ing absorption ������e� combine with band-gap modes with
an appreciable degree of extinction ����e�.

The above results and discussion all refer to Bloch modes
in a perfect and infinite periodic stack of parallel-sided layers
of atoms. Because of atomic fluctuations the layers width �d�
and periodicity �a� will not remain accurately fixed under
realistic experimental conditions yet, in general, this will not
modify appreciably the band-gap structure �65�. Typical ex-
perimental investigations, on the other hand, focus �3,4,6� on
the transmission and reflection of electromagnetic waves
through samples of finite length. Even with the knowledge of
the photonic band structure as calculated above for an infi-
nite stack, drawing a meaningful comparison with measured
transmission and reflection spectra is still a nontrivial task.
The two gaps may not yield indeed the same transmission
patterns owing to the different extinction per unit length val-
ues they exhibit. As discussed above the number of primitive
cells may be in fact sufficient to contain the evanescent
modes that extinguish within one of the gaps though it may
not for the other.

It is then necessary to consider a finite sample of thickness
L=Na where N is the number of primitive cells or periods
the stack is made of. The transfer matrix approach is ideally
suited for this situation as one may introduce the entire stack
transfer matrix in terms of the primitive cell matrix M in Eq.
�13� simply as MN=MN. Because det M =1, it can be shown
that the following closed expression for MN holds true �56�

MN =
sin Nka

sin ka
M −

sin�N − 1�ka

sin ka
1 , �24�

where 1 is the unity matrix. Such a compact expression en-
ables one to write the reflection �RN� and transmission �TN�
amplitudes for an N periods stack in terms of the complex
Bloch wave vector k and the elements mij of the matrix M,
namely,

RN =
MN�12�

MN�22�
=

m12 sin�kaN�
m22 sin�kaN� − sin�ka�N − 1��

, �25�

TN =
1

MN�22�
=

sin�ka�
m22 sin�kaN� − sin�ka�N − 1��

, �26�

from which, in turn, the reflectivity, transmissivity and ab-
sorption can be readily found by calculating, respectively,
�RN�2, �TN�2 and A=1− �RN�2− �TN�2.

The reflectivity for atomic stacks of different lengths is
plotted in Fig. 4. It is clear upon comparing Fig. 3�a� and
Fig. 4�a� that the two gaps that one expects to appear above
and below resonance may only be observed for the thicker

FIG. 3. �Color online� Real �a� and imaginary �b� Bloch wave
vector scaled components as a function of the probe detuning for an
atomic stack with periodicity a�390.393 nm and layers of thick-
ness d=a /20. All other atomic parameters are as in Fig. 1. A band
gap appears at the edge of the first Brillouin zone k�=� /a and is
not continuous. Away from the gap the dispersion becomes linear.
The steep profile for blue detunings is due to resonance absorption.
Real �c� and imaginary �d� parts of the Bloch vector k in the reso-
nance region for the three different absorption profiles of Fig. 1
with �=0.25 �blue�, �=0.5 �red�, and �=1 �black�. Near resonance
the edge of the gap is slightly modified depending on the absorption
profile.
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sample whose length �L� indeed exceeds typical values of the
extinction �lext� and absorption �labs� length. The latter may
easily be inferred �66� from Fig. 3�b� where right at reso-
nance one has labs�1.5�103a while moving below reso-
nance and outside the absorption bandwidth, when the ex-
tinction process dominates over absorption, one has lext�7

�104a around midgap. Appreciably larger extinctions are
observed instead in the gap above resonance where one has
lext�5�105a, which is just about the length of the longer
stack in Fig. 4�a�. For the shorter sample instead large re-
flection occurs only for the gap below resonance on the right.
Owing to the increasingly smaller values of the extinction as
one recedes away from resonance, reflection becomes
smaller and smaller which results into a rather narrow gap.
At frequencies around midgap, e.g., lext is just about the
shorter sample length. On the other hand, for the range of
frequencies where a gap is expected to appear above reso-
nance in Fig. 3, extinction lengths are always too large for a
strong reflection to build preventing then a well developed
photonic band gap to form. For intermediate values of the
length, not shown here, the broad reflection peak above reso-
nance shifts and sharpens, merging into the well developed
gap shown on the left of Fig. 4 �upper�.

Figure 4 also exhibits characteristic Fabry-Pérot fringes
�56� that form around the gap band-edges where interference
is strongest. The frequency spacing between peaks, which
increases as we move away from the edge, is directly related
to departures of the photon dispersion from linear. Different
spacings correspond indeed to different local slopes of the
dispersion around the band edges, as clearly shown in Fig.
3�a�. Such fringes, which depend on the atomic sample size,
are seen to degrade with absorption. For periodic structures
made of dilute gases of resonant absorbing atoms the fringe
structure is then rather fragile unless weakly absorbing
samples are used �cf. Fig. 4 �lower��.

V. BAND-GAP TUNING

The photonic band-gap structure discussed in the previous
section may however be easily modified. In common experi-
mental configurations this may be achieved mainly by acting
on the interfering laser beams that determine the optical po-
tential periodicity a. For one-dimensional lattices this is most
effectively done �67–69� by misaligning the two beams cre-
ating the potential.

An example is shown in Fig. 5 where a slight misalign-
ment �71� is sufficient to modify the photonic band gap of
Fig. 3 into a broader one with a smaller hole and placed on
the opposite side of resonance. Notice that the two gaps
around the hole �Fig. 5�a�� are wider than the ones observed
in Fig. 3�a�. This originates from the resonant enhancement
of the index 
 which, as shown in Fig. 1, undergoes a few
percents increase around resonance improving the index con-
trast responsible for the widening of the gaps. The two por-
tions of the split gap exhibit quite different degrees of ex-
tinction �lext� while different extinctions occur also within the
same gap �Fig. 5�b��. For mid-gap modes above and below
resonance the corresponding lengths lext

L and lext
R vary from

few to several cm’s while only moving toward resonance lext
L

falls below a cm in length. We also show in Figs. 5�c� and
5�d� a blowup of the resonance region displaying a behavior
similar to that observed in Figs. 3�c� and 3�d� which one can
then discuss in the same manner. Notice that parameters may
also be chosen so as to obtain as done in Fig. 6 a traditional
photonic band gap that splits right around resonance.

FIG. 4. Band-gap reflectivity �a� and absorption �b� profiles for
the region shown in Fig. 3 when an array of length L=6.5�104a
�solid� and L=5.25�105a �dotted� is used. For trapped 87Rb �49�
atoms L turns out to be about 2.5 cm for the shortest atomic stack.
Resonance region blowup �c� for the shortest stack and different
absorption profiles with �=1 �solid� and �=0.25 �dashed�.
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Unlike for solid dielectric media �3,4�, the gap widths for
the dilute atomic samples considered here turn out to be
extremely narrow and on the GHz range. This arises from the
fact that most of the gap stretches over incident frequencies
that lie very much off resonance where dispersion is essen-
tially absent, making the refractive index contrast rather

small. The atomic layer thickness is also much smaller than
the length of the elementary cell �d�a� which further con-
tributes to make the scattering strength of the optical lattice
rather small. The strength may clearly depend also on the
sample optical density and it can be shown that ten times as
much wide gaps can be attained at the characteristic higher
densities of Bose-Einstein condensed atomic gases �72�.

VI. DISSIPATION AND BLOCH MODES

The scattering strength increases considerably also near
an absorbing resonance. Yet it is not altogether apparent �39�
how the structure of gaps developing in a strong dissipative
regime would be modified. Such modifications are most con-
spicuous for gaps that develop �73� as in Figs. 7 and 8 within
the atom’s resonance region. Unlike in the examples exam-
ined in the previous two sections, the gap centered at nearly
half �e above resonance is quite weak �Fig. 8 black� while
absorption seems to alter in a drastic way the structure of the
Bloch gap modes �Fig. 7 black�. All modes, in fact, are al-
lowed �k�a��� but damped �k��0� and a gap hardly devel-
ops. The incident energy is in this case mostly absorbed into
the medium making reflection quite small across the reso-
nance region as clearly shown in Fig. 8 �black�. The tiny
reflection would then make the observation of the gap posi-
tion, typically done through reflection rate measurements,
rather unlikely.

These results should be compared with those obtained us-
ing narrower absorption profiles. A well developed gap ap-

FIG. 5. �Color online� Photonic band profiles �a�, �b� and reso-
nance region blowup �c�, �d� for a stack with periodicity a
�390.397 nm. All other parameters are as in Fig. 3. Splitting of the
gap occurs now below resonance.

FIG. 6. Symmetric band-gap splitting obtained from an atomic
stack with periodicity a�390.396 nm. All other parameters are as
in Fig. 3. Both profiles appear to be symmetric with respect to
resonance with two solutions of Eq. �23� falling at �B=�o−�B

� ±260.
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pears for the smallest bandwidth �green�, while propagation
is allowed outside the gap with negligible damping �k�0�.
As the absorption profile ��� broadens �blue� the gap shrinks
and propagation damps around the band edges that one
would observe in the nearly absence of absorption. When the
absorption bandwidth increases further �red� propagation
starts to become no longer forbidden �k�a��� with a con-
comitant shift from the extinction to the absorption regime.

Figure 8, in addition, shows that the gap mechanism re-
mains efficient only for appropriate sample lengths. For fre-
quencies falling around the midgap �blue�, the fraction of
light which is not reflected is almost completely absorbed
�66� over lengths of 400 periods or more while for the actual
profile �black� the absorption length increases to approxi-
mately 900 periods. For trapped 87Rb atoms �49� this would
clearly set the smallest sample size to be not less than
160 �m in one case and nearly 350 �m in the other.

It is also worthwhile noting that in a narrow frequency
range above resonance, yet outside both the atom’s absorp-
tion bandwidth and the forbidden gap region �green�, the
group velocity is positive while remaining k��0. Because
all modes here arise from propagation in the region k�
�−� /a this seems to indicate that damping and propagation
of electromagnetic energy take place in opposite directions.
Such an apparent amplification would however bear essen-
tially no meaning owing to the very large group velocity
dispersion that a light pulse would experience over such a
narrow frequency range.

The above comparison of different absorption widths
sheds light into the nature of the Bloch modes that develop
within the strongly absorptive atom’s resonance region. Due
to the resonant nature of absorption, in fact, a polariton dis-
persion �52� rather than a purely photon dispersion is rel-
evant here. For the narrower profile �green� a gap is fully
developed whose width is simply determined by the separa-
tion between the upper polariton branch evaluated at the
edge �k=� /a� of the first Brillouin zone and the resonant
frequency �o. The resulting gap �green� in Fig. 7 arises then
from a typical polaritonic effect and hence resembles much
more to a polariton-stop band �52� rather than to a photonic
band gap. When the linewidth or oscillator strength ratio
given by � / �3�N� increases, polaritonic effects are washed
out. For the largest linewidth �black�, in fact, the Bloch dis-
persion around resonance nearly flattens down to that of a
photon with a tiny absorption dip �Fig. 7�.

To support the above interpretation we report in Fig. 9 the
modes structure around the X point for an infinite stack of
CuCl layers. Cupper cloride is a prototype example of semi-
conductor having an allowed interband transition, pro-
nounced exciton resonances �48� with a fully developed
Z3-exciton polaritonic stop band. The mode dispersion in
Fig. 9 is obtained by using a complex dielectric function �51�
similar to that used in �1� and where the relevant parameters
are given in Sec. II. The oscillator strength is now four or-

FIG. 7. �Color online� Scaled Bloch wave vector components
for a stack of atomic layers of rubidium. The periodicity is a
�391.490 nm with layers of thickness d=a /20, while the different
absorption profiles correspond to �=0.025 �green�, �=0.25 �blue�,
�=0.5 �red�, and �=1 �black�. The gap only survives for narrow
absorption bandwidths. FIG. 8. �Color online� Gap reflectivity and absorption profiles

for the region shown in Fig. 7 when an array of length L=8.2
�103a is used.
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ders of magnitude larger than the one used for cold Rb atoms
in Fig. 7 leading to a very small ratio � / �3�N� which gives
rise to a well developed polaritonic stop band even for a
unity value of �.

Again, note that unlike in the cases examined in the pre-
vious sections the stack’s Bragg frequency �B falls far from
resonance �62�. The profile shown in Fig. 7 lies in fact within
the second �photonic� band above �B and hence the charac-
teristic split-gap structure observed in Fig. 3, caused by the
fact that �B and �o are sufficiently close to one another, does
not occur here.

VII. CONCLUDING REMARKS

We have employed a straightforward approach to study
the propagation of electromagnetic waves through a one-
dimensional model of a periodic lattice of ultracold resonant
absorbing atoms. The model provides a simplified yet sound
physical picture of the photonic band structure in such lat-
tices. The explicit formulation laid down in Sec. IV specially
lends itself to assess effects of dissipation on the nature of
Bloch waves in these lattices and the straightforward analytic
condition �18�, in particular, is here used to assess the effect
of dissipation on the structure of Bloch gap modes.

Depending on the position of the atomic lattice Bragg’s
frequency with respect to the atom’s resonance, both photo-
nic and polaritonic gaps or rather singular gap structures may
appear. While a photonic gap originates from multiple pho-
ton scattering by spatially correlated scatterers, polaritonic
gaps arise instead from the photon coupling with elementary
excitations such as atomic, excitonic or optical phonon reso-
nances in the medium. In realistic periodic stacks of ultra-
cold resonant absorbing atoms �41,45� these diverse gap
structures could easily be accessed by controlling the geo-
metrical configuration of the external optical potential which
confines the cloud of ultracold atoms �69,70�.

In general, absorption is seen to affect the structure of a
gap which one would instead observe for an ideally nondis-
sipative periodic lattice. In the limit of weak dissipation our
results recover earlier theoretical work on weakly dissipative
one-dimensional periodic structures �36�, where weak ab-
sorption was introduced through a perturbative expansion in
the imaginary part of a generic dielectric function ����. In
the appropriate limit of infinitesimal atomic sheets, on the
other hand, some of our results recover those for one-
dimensional band gaps originating from an array of
�-function potentials as studied in �41�. Our treatment is
however general, is not restricted to small absorption and is
based on a more realistic arrangement of alternating thin par-
allel sided layers, and hence also amenable to photonic crys-
tals built from absorbing dielectric or semiconducting mate-
rials.

Bloch gap modes do not generally survive in the presence
of strong dissipation and to illustrate this point further we
have thoroughly examined realistic periodic atomic stacks
whose band gaps develop either entirely or only in part
within the absorbing region of the atom’s Lorentzian absorp-
tion line shape.
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