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Two methods of realizing aperiodic stochastic resondA&R) by adding noise and tuning system param-

eters in a bistable system, after a scale transformation, can be compared in a real parameter space. In this space,
the resonance point of ASR via adding noise denotes the extremum of a line segment, whereas the method of
tuning system parameters presents the extrema of a parameter plane. We demonstrate that, in terms of the
system performance, the method of tuning system parameters takes the precedence of the approach of adding
noise for an adjustable bistable system. Besides, adding noise can be viewed as a specific case of tuning system
parameters. Further research shows that the optimal system found by tuning system parameters may be sub-
threshold or suprathreshold, and the conventional ASR effects might not occur in some suprathreshold optimal
systems.
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[. INTRODUCTION adjusting system parameters. It seems the usual dynamical
. . resonance by adjusting the inherent frequency of the system
The concept of stochastic resonan&R) was originally 14 the frequency of an external periodic force. Thus, one
put forward in two seminal papers by Benzi and collabora-aqra| generalization is to research the cooperative effect in
tors [1,2], in which the response of a nonlinear system 10 &g adjustable system subject to a given mixture of the exter-
weak periodic input signal is amplified by adding an optimalna| time-dependent force and the nojg6]. The system pa-
level of additive noisg3,4]. Such a nonlinear system has a rameter is then considered as an important tunable element
continuum power spectrum owing to the input stochasticfor the study of SR and ASIR32—4J. It was demonstrated
force, i.e., noisg1]. This counterintuitive phenomenon has that there are optimal threshold values in the detection of
then attracted much attention in the past two decades, amibisy signals with neuronlike threshold crossing detectors in
recently on the transmission of actual information-carryingthe context of SH32]. In a review papef33], the fact that
signals via aperiodic stochastic resonanésR) [4-14). SR can be fulfilled by adjusting system parameters was em-
Since the introduction of SR, the main body of literature phasized in the signal processing field. Adaptively selecting
devoted to the investigation of SR-type phenomenon by théhe parameters of SR devices was investigated for the short
method of adding nois¢l—31], what we call the conven- record detectiorf34] and as the low power detection algo-
tional SR in this paper. However, recent studies suggestedthm [35]. This approach was also introduced as the natural

that the strategy of conventional SR seems to be sub-optim&@ackground for the design stage of nonlinear measuring de-
in terms of information flow, and only provides a positive ViceS [36]. Recently, schemes of how to choose an optimal
function role of noise for subthreshold signals stochastic resonator were developed in the presence of some

[13-15,26—28 This leads to a series of discussions, espe{'oﬂ'ﬁaus‘qiai‘ nc_)tiﬁe[537,3£*]. Moreover:, SR t(r:]an bte (;on-
cially on the incorporation of conventional SR into the neu-- 2. cc SO as 10 €lher SUppress or enhance the output power
ronal information processingL5,26—31. at the signal frequency by sinusoidally modulating the bar-

. rier height between the two wells of bistable syst¢B8840.
Benzi[1] has s.uggested that the gbove SR phenomenoﬂdditiogally, the SR-type phenomena via tun%/ngqsystgm pa-
was the cooperation of the stochastic system and the NPyl neters were researched in the multi-frequency signal pro-
signal. According to this view of Refl1], adding noise is cessing[41] and the binary signal transmissif42].
tuning the stochastic system parameter in essence. There Is Thus, two problems arise: this is, what is the relationship
another method to tune the stochastic system, this is, directlgetweer; two approaches of adding'noise and tuning the sys-

tem parameters, and can “ASR” realized by tuning system
parameters refer to the concept of conventional ASR via add-

*Also at the State Key Laboratory of Fluid Power Transmission &ing noise?
Control, Zhejiang University, Hangzhou 310027, P.R. China; elec- In this paper, we compare two approaches of realizing
tronic address: xubohou@cmee.zju.edyBnXu) ASR effects via adding noise and tuning system parameters
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in a bistable system, theoretically and numerically. Since theesponding randomly arranged waveformgt) and s;(t).
input is assumed as random binary signals, the system pesft) is then an aperiodic information-bearing binary signal.
formance is quantified by an information measure of the bitThe input signal-to-noise ratiofSNR) per bit defined as
error rate(BER). Thus, the conventional ASR phenomenong,/(4D) is appropriate for measuring this input noisy binary
studied in this Letter is such an effect that, for an initially signals(t), Wheresb:fgbsf(t)dt for i=0,1[46].

adopted system, the BER presents a minimal value at an |n each bit duration off,, the system is driven by a con-
optimal nonzero noise i.ntensity. Given a noisy i.nput, as Willstant signal, i.e.sy(t)=—A or s,(t)=+A, with the additive
be observed, the BER is a nonmonotone function of systegjse 5(t). On this condition, the corresponding Fokker—
parameters, which is the resonance effect realized by tuning|4ck equation to Eqd) is given by

system parameters. In Sec. Il, the approach of adding noise,

after a scale transformation, can be viewed as a specific case dp(x,t) | 9 D #
of the method of tuning system parameters. The conventional Taor T a_)(v (xA)+ Ty X p(x.0), 2
ASR can be mapped into an optimal problem of a line seg-

ment, whereas the method of tuning system parameters prihere V' (x)=-x+x3/(X?) A and p(x,t) obeys the natural
vides the optimal solutions of a real parameter plane. Irboundary conditions that it vanishes at lasgtr anyt [47].
terms of the system performance, the method of tuning sysfhe steady state solution of E() reads[47] as

tem parameters is more applicable than the adding noise ap-

proach. In Sec. lll, the optimal systems found by the ap- p(X|si(t) = limp(x,t) =C EXp[—M], (3)
proach of tuning system parameters are classified as t—o0 D
subthreshold'and suprathreshold. We suggest that the'su here C is the normalization constant and(x)=—-x2/2
threshold optimal systems can be viewed as the conventlong_ W4 (4X2) + Ax

aperiodic stochastic resonators. There is a new form of ASR, AN L . :

i.e., the residual ASR phenomenon, surviving in the slightly Th|s steady state_ fSOIUt'On’. .e., H@), is suitable for cje-
suprathreshold optimal systerf#5]. In other suprathreshold scribing the probability density of the system output if the

optimal systems, no conventional ASR effects occur. Then',nIOUt signals(t) keeps a constant amplitude &s <. How-

these suprathreshold optimal systems can be considered 8¢e"; the information-bearing inpstt) might take different
the results of the nonlinear system optimization. Finally, we2MPplitudes in successive bit durations, othervel$ghas few
argue that our conclusions of the comparison between th@formation contents. Hence, the probability density of the
two methods can be extended to other nonlinear systenfyStem output is explicitly nonstationary. In the presence of

studied in the context of SR or ASR phenomenon. noise, if the system is modulated by a current input wave-
form s(t) for i=0,1, anonstationary probability density

model of the system output is established 43

7.6(X, @) :|

Il. THE RELATIONSHIP BETWEEN THE ASR
BY ADDING NOISE AND THAT VIA

TUNING SYSTEM PARAMETERS p(x,ts(t)) =N exp[— (4)

D

A. Fundamental model and theor . .
y where N is the normalization constantG(x,a)=-x2/2

Consider a nonlinear dynamic system whose internal stat@x*/(4X2) £ aAx, a=1-exg-\t] and \, is the system re-

X(t) evolves according t6], sponse speed introduced in Appendix A. Ast— +o,
dx(t) x3(t) p(x,t|s(t)) degenerates into the stationary densitied s(t))
T gr - X0~z +st+ ), (1) of Eq.(3).
t Xp In this nonstationary process, erroneous bit symbols are

where system parameters,>0 and X,>0. The input Measured by the bit error ra(BER), and its minimal value
information-bearing signal is(t), and 7(t) is an additive corresponds to the maximum information transfer between
Gaussian white noise with autocorrelatiofw(t) 7(0)) the system input—output. _Flrst, we introduce a decode
=2D4(t) and zero-mean. Her® denotes the noise intensity. scheme from the observation of the system outplil:

In the absence of input signal, the symmetrical bistable pO_SampIex(t) atlthe er|1d tirr_1e O‘; ea_c_h bit duratidﬁ,ha suc-
tential is V(x)=-x2/2+x4/(4X?) with potential barrier of CESSIVé sampled va uestjTy) for j=1,2,..., arethen ob-

AV=X2/4 and the potential minima are just located a,+ @in€d- By comparing(jTy) with the decision threshold

In the presence of an input signal, the potential becomel'€ recovered binary digit reads IxfjT,) > 1, otherwise it is
V(x):—x2/2+x4/(4X§)—s(t)x, and each potential minimum 0. Then, thg probabmty of erroP(Q|1) derjotes that the re-

is raised or lowered relative to the barrier heigli In this ~ covered digit is decoded as O while the input source digit is
paper, the input signal is assumed as the baseband binaty The other converse case is repreg_e_nted as the probablllty
pulse amplitude modulated signals, which transmit digit 0 by°T €rror P(1]0). Thus, the total probabilities of error, i.e., the

a waveformso(t)=—A or digit 1 by a waveforns,(t)=+Ain  BER,Is

a time ir_lterval[_o Tgl. _Here,A is the signa_l level andy is P, = P(1)P(0]1) + P(0)P(1]0), (5)
called bit duration. Since the source digits are encoded ac-

cording to the messages, digits 0 and 1 are often random inwsthere P(1) and P(0) represent the probabilities of digits 1
sequence and the input binary sigsé) consists of the cor- and 0 in a sequence, respectively. We further assume that the
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source input digits occur with equiprobabilities, i.€(1)
=P(0)=0.5, and are statistically independent. Thus, the sys-
tem of Eq.(1) with input binary digits and output binary
readings, can be viewed as an information channel transmit
ting binary data. It has been analyzed as a memoryless sy
metric binary channel in Refd6,42], with the decision _
threshold €=0. A theoretical expression of the BER then %

takes the form as <

Po=5[P0) + P(O]1)]

0 +o0
:3[ | emisiacs | p(x,Tbls()(t))dx]. ®)
o 0

Moreover, a block scheme was designed for transmitting bi-
nary signals via the bistable system of Ef) in Ref. [42],
wherein the input signal is generated by a pseudorandom e
. . . FIG. 1. Th | Xp,A}. Th -
binary signal generator. Next, we will compare the two meth- G e real parameter spae{r,,X,,Al. The conven

ds of addi - d . ith htional ASR via adding noise is mapped onto an optimal problem of
0ds or adding noise an, tunmg System parameters with t fhe line segmenac. The method of tuning parameters searches the
above theory and the simulation scheme at hand. v —

optimal pairs) of system parameters, and X, in the plane ofA,.

b

such as the poirnt. Thus, adding noise forms a line segment
in this parameter spac8 and the resonance point of the
conventional ASR can be mapped into an extremal solution
In this subsection, we interpret two approaches of addingilong this line segment.

noise and tuning system parameters geometrically. Rescale In contrast to the conventional ASR, the other method is

B. Theoretical comparison of ASR effects realized by two
approaches of adding noise and tuning system parameters

the variables as tuning system parameterg and X, for a given noisy input
— JE— (A, T, andD =Dy are fixed. This method is an optimal prob-
t=Tpr, X=\D/Tpy, Xp=VDITpXy, lem in the real parameter plane Af, as illustrated in Fig. 1.
It is demonstrated in Appendix B that, for the selected sys-
A=\DIT A 7,=Tim, 7) tem with the fixed system parameters, the BER will increase

as the inputA degrades. Thus, we can deduce that the point
Eq. (1) becomes d in the parameter plane @, will provide a lower value of
_dy(7) v () — the BER than the conventional resonance pbiritlere,d is
[ y(7) = 7 A+ ), ®  the projective point of the poirid in the plane ofA, with the
. b same system parametersandX,. Moreover, the method of
where(&(7)£(0))=28(7) andA?/4 is just the input SNR per tuning system parameters finds the optimal (saiof param-
bit £,/ (4D). Usually, in order to investigate the conventional eters 7, and X, in the whole parameter plane 8§, which
ASR via adding noise, the system parametefsX,, the  must be better than the poidt
signal amplitudeA and the bit durationT,, are fixed in an Furthermore, there is another difficult case confronted by
initially adopted system. Thus, increasing the noise intensityhe approach of adding noise, this is the resonance pasmt

D represents decreasing the transformed varialeandA.  With aninputA higher than the initially giver, (see Fig. 1
This indicates that, after this transformation of Ed), the In this case, the initial input noise intensidy, is beyond the

conventional ASR effects realized by adding noise can b@Ptimal one corresponding to the conventional resonance
. . = point e. Therefore, the method of adding noise cannot be
explained as optimizing the system parametgrwith the

utilized to realize any conventional ASR effects. It would be

degraded inpuA. o practical to adjust system parameters to obtain the corre-
Figure 1 shows the real parameter sp&ér,,X,,A},  sponding minimal value of the BER.

wherein the poinia denotes the initial adopted system pa- ~Consequently, in view of the system performance BER,

rametersr, and;b and the corresponding inano. Here, Ve conclude that the methpd of tuning system parameters

2. . C . . always outperforms the adding noise approach. This theoret-

A0/4_8b/(4D_0) andEo is the initial |npl£n0|se intensity. As ical analysis will be manifestly confirmed by the following

D increasesX, andA will decrease, but, keeps invariable. numerical results.

When the amount of noise is added appropriately, a minimal

value of the BER is obtained and the conventional ASR phe- C. Numerical comparison results of ASR effects realized

nomenon occurs. This optimal noise intensity corresponds to by two approaches

the resonance poititin Fig. 1. A large amount of input noise In this subsection, we will numerically demonstrate the

denotes the points at the extension line of the segrabnt conclusion of the comparison between two approaches of
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adding noise and tuning system parameters. We have numegresence of the signal alofi£9]. WhenA= 2Xb/v“2_7 [6,19,
cally integrated the stochastic differential equation of @9.  the system bistability is destroyed and the input signal be-
using an Euler-Maruyama discretization method with a smaltomes suprathreshofd4,19. In this Letter, the parameter
sampling time step\t < 7, [43]. The block scheme for trans- X, is adjustable and the input signal lev&lis fixed. This
mitting binary data by this nonlinear system of Ed) has yields
been designed in Rei42]. With this designed block scheme,
the BER can be automatically recorded in numerical simula- c_ o
tions. b= \27A2, ©

A simulation example of the conventional ASR phenom-p \yhich the system under study is classified as subthreshold
enon is shown in Fig. (A). The initially adopted system is (Xo>X%) and suprathreshole),< X¢).

H — 0.9 - 9
with parametersr,=10""% and X,=10°". Here we takeDo In practice, the adjustable parametegsand X,, are often

=0.285,A=3, andTy=4 s. Then the input SNR per bit is . . : :

15 dB, i.e., the point in Fig. 2A). The conventional ASR res;rlcted n SOTe reg|ons,c ang may_take thg vqlue in the
effect can be realized by adding an appropriate amount g9ion 0f X,>X; or X,<X;. For a given noisy input, the
noise, resulting in the resonance pdintD,=0.84). The cor- methodology of tuning system parameters is as follows:

responding BER is then given as X107 and the input Ch(_)ose the paramet¥y, and then deduce t_he C(_)r_responding
SNR per bit is degraded to 10.3 dB. However, if the initially OPtimal parameterr, such that the BER is minimal. The
given input SNR per bit is 5 dB at the point(D,=2.846 ~ Optimal system, with this optimal pair of parametésand
and beyond the conventional ASR resonance pbifD, 7. May be subthreshold or suprathreshold in respect of the
=0.84), it will be of no use to improve the system perfor- ParameteiX,. It is worthy of note that the optimal systems
mance by adding noise. This case may be often met in Epund by tuning system parameters, shown in Fig. 3, are just
nonstationary noisy environment. Moreover, another diffi-corresponding to the valley bottom of the BER throughout
culty of controlling noise is that the optimal amount of noise the parameter plane o, and 7, in Fig. 2C).
to be added is highly dependent on taepriori statistical There is then an interesting question we can ask; this is,
characteristics of noise. what kind of role does the noise play in these optimal sys-
Figures 2B) and ZC) present the simulation results of the tems? Furthermore, according to the role of noise, we will
method of tuning system parameters at the given input SNRattempt to clarify these optimal systems searched by the
per bit of 10.3 dB and 5 dB, respectively. For comparisonmethod of tuning system parameters.
the pointsb andc of the conventional ASR are also plotted.  Figure 4 shows the performances of these optimal systems
For the given SNR per bit 10.3 dB, the numerical results ofof Fig. 3 as the function of the input noise intensidy
tuning system parameters, shown in FigBR can give a wherein the role of the noise is revealed. We give the main
much-improved BER of 1.02 10°* (i.e., the pointby). Itis  conclusions of our study as follows.
sh_oyvn in Fig. 2C) that, at the_ input SNR per bit of 5 gB, the (i) For the subthreshold optimal systems wi> XS
minimal value of the BER is obtained as 1.6030° by  —1(P:892 Fig. 4 clearly displays their conventional ASR type
optimally adjusting the system parametésee the pointy), ehaviors(i.e., the BER presents a minimal value at a non-
whereas the method of adding noise only provides the BER o o\ e| of nois It indicates that the noise plays the con-
of 1.1xX10™. Thus, for a given noisy signal, we can tune thestructive role in these subthreshold systems. In other words,

system parameters, rather than adding noise to the initiall ;
selected system, to obtain a corresponding minimal value g ey can be looked as the conventional ASR systems. In

the BER. These numerical illustrative comparisons of Fig. erms of this explanation, we can also refer the param(_ater-
demonstrate that the method of tuning parameters is mo ning resonance phenomena to the concept of conventional

applicable for the adjustable bistable system, confirming th&'SR for the subthrgshold optimal systems.
theoretical analysis in this subsection. (it) When X, <X, the optimal systems become supra-
biology systems and neuroscien@. But no living organ- nomenon survives untiKb is smaller than but close to the
ism can control the noise structure of the environmi@®.  dynamical thresholckg. This result is in keeping with the
A rising problem is whether the biology system tunes itselfanalyses of Refg44,48 and X{ can be evaluated a€/1.3
to adapt to the noisy environment or uses the internal noisér this kind of waveform of(t) [44]. This new form of ASR
via SR, or both. Some pioneering studies suggested that S&ffects, termed the residual ASR, was studied in our recent
or ASR may be useful if there was insufficient adaptability inwork [45] in detail. We see that the positive role of the noise
sensory systemd 5,26, and in terms of recent results of the extends to this slightly supratheshold region
suprathreshold SRL3-15,26, the neuronal noise can have a —e<X,<Xg, wheree is a quite small value.
positive beneficial role regardless of stimulus intensity or the (iii) As Xb<Xg—e, the BER, illustrated in Fig. 4, be-
adaptive capability of neurons. Further concrete investigacomes a monotonic function of the noise intensity in these
tions on this question are meaningful. suprathreshold optimal systems, and the positive role of
noise disappears in this dynamical process. Thus, we argue
that, in this “very” suprathreshold range mg<xg—s, these
PHENOMENA IN SUBTHRESHOLD AND suprathreshold optimal systems should be considered as the
SUPRATHRESHOLD REGIONS results of thenonlinear system optimization
In the context of the conventional ASR, the input signal is  Consequently, the optimal systems found by tuning pa-
subthreshold that no deterministic switching can occur in theameters can be classified as subthresholgs X{ and

Ill. THE PARAMETER TUNING RESONANCE
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(A)

BER

BER

FIG. 3. As the system paramet¥y, takes different values, the
corresponding optimal system parametgivith the minimal BER.
Note that these optimal pairs of system parameters are just corre-
sponding to the valley bottom of the BER of Fig(QGQ. Here, A
=3, Tp=4s, At=0.01r,, and D=2.846. The optimal systems are
divided into subthreshold and suprathreshold regions by the line of
Ly (Xg=127A/2~10°8% The dynamical threshold is represented
by the lineL, (XZ=X¢/1.3~10°7™9.

suprathresholdX,<X{. We suggest that both subthreshold
and suprathreshold optimal systems are the appealing nonlin-
ear signal processors in practical applications in the context
of information transmission. According to the role of the
noise, we can refer the subthreshold and some slightly su-
prathreshold optimal systems to the conventional aperiodic
stochastic resonators, and regard other suprathreshold sys-
tems as the results of the nonlinear system optimization. It is
shown that the conventional ASR effect requires a threshold
to be set thus not making the system very robust for engi-
neering application$10]. The suprathreshold systems with
xb<xg—e are more applicable in the view of information
transmission, but at the risk of not employing the positive
role of noise.

BER

e |
EREICIT
FIG. 2. Numerical results of the BER obtained by two methods { 1g72L| = X:=‘°:’f":=‘°:;';:
of adding noise and tuning system parameters. Here3, T,=4 @ - ibjgo:s’:a::g-o:ss
andAt=0.01r,. (A) A simulation example of the conventional ASR - x::=1o°-“:",§.=1o-°~52
effect via adding noise. The system parametgrs10°° and X, e ibjgzﬁ"‘ajg:g:;
=10P°. The initial pointa, the conventional resonance pomand 107 Xs;wo.sj:iw-o.n \ 1
the pointc are corresponding to the input SNR per bit of 15 dB —- xb=1og-:,{=1o;°:7
(Dp=0.285, 10.3 dB(D;=0.84, and 5.0 dB(D,=2.848, respec- 1 0s0
tively; (B) a plot of the BER versus parametersand X,, at the - x';=1o-°~",$a=1o°-“
given input SNR per bit of 10.3 dB. The conventional resonance 107l L ' : ' . . ' ' n L
: . L . 1 2 3 4 5 6 7 8 9 10
point b is also reflected in this surface, and the method of tuning Input SNR per bit
system parameters can provide a much lower BER at the the point
by; (C) a plot of the BER versus parametetsand X, at the given FIG. 4. Numerical results of the BER as a functionDofor the
input SNR per bit of 5.0 dB. Clearly, the poini is better than the different systems shown in Fig. 3. Her&=3, T,=4, and At
point ¢ in terms of the system performance. =0.01r,.
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IV. CONCLUSION Xu et al. [41] deduced its variational form d47]

In conclusion, two methods of realizing ASR phenom- ) =gt
enon, i.e., the conventional way of adding noise and the -
method of tuning system parameters, have been compared " , ,
detailedly. After a scale transformation, the conventional way f . [=P"(y)p(y) + p'(y)P(y)V' (y)Jexdl - Viy) Jdy
of adding noise can be viewed as a specific case of the X o ,
method of tuning system parameters, and the two methods f p2(y)exd - V(y)]dy
can be compared in a parameter space geometrically. It has -
been demonstrated theoretically and numerically that when (A5)
the systems are adjustable, especially as an algorithm in sig-
nal processing, tuning system parameters is more practic@here st. means the stationary value in the variational prob-
than adding noise to the nonlinear systems. Furthermore, them [47]. Since
optimal systems searched by the tuning system parameter
method were discussed and classified as subthreshold and
suprathreshold. According to the role of the noise in the op-
timal system, we can refer the resonance phenomena realized
by the subthreshold and slightly suprathreshold optimal sys- == p(y)p' (y)exd - V(y)]=Z
tems to the concept of the conventional ASR. But, it is suit-
able to consider other suprathreshold optimal systems as the

P(y)#0

f_ - p"(y)p(y)exd - V(y)ldy

+ f p'4(y)exp - V(y)ldy

outcomes of the nonlinear system optimization, without uti- —
lizing the constructive role of the noise. +o0

The conventional ASR has been gaining increasing —f p’ (Y)p(y)V' (y)exd - V(y)]dy
interest as a potential  signal-processing  tool —o

[5-11,13,15,20-25,32—-42Similarly, it is meaningful to re- +o0
search the resonance phenomenon with tuning system pa- :f p'2(y)exd - V(y)]dy
rameters in the signal processing field. Some subjects are o

very promising and currently under study, for example, +o0

studying nonlinear system with input multiplicative noise —J p’ (y)p(y)V' (y)exd — V(y)]dy,
and extending the nonlinear system to Hamiltonian or quasi- -0

Hamiltonian systems. .
y Eqg. (A5) can be rewritten as
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APPENDIX A: SYSTEM RESPONSE SPEED Assumep(y)=dy+d;y+---+dyy", we have
Rescale the variants of E(R) as ([K]=NM]{d} =0, (A7)

t=7r, X=y\VDir, X,= ;b\e"D/Ta, A= K\r’D/Ta.

(A1)
Equation(2) becomes
dply,7) _ 9 ., Fply,7)
VR G (A2)
whereV'(y)=—y+y3/ X2t A. Assume
p(y,7) = p(y)exd ~ V(y)lexd — \7], (A3)

where A >0 and p(y) # 0. Substituting Eq.(A3) into Eq.

(A2), we have

Ap(y)exd - V(y)] = - p"(y)exd - V(y)]
+p' (YW (y)exd-V(y)]. (A4)

Multiplying both side of Eq(A4) by p(y) and integrating it,

where eigenvectorgl}=[d}, '1 ,din] are corresponding to
eigenvalues {A\}=[Ag,\1,...,\y], Where \j<\j; |
=0,1,... n—1. The elements of matricé®] and[K] are

m; = f y™exp - V(y)Idy,

kij = f ijy"I %exd - V(y)1dy, (A8)

wherei, j=0,1,2,...n. It has been demonstrated that the
matrix [M] is positive definite and the matripK] is semi-
positive definite[41]. Then, the minimum eigenvalue, is

zero corresponding to the stationary solution of E&2).

The minimum positive eigenvalug, is called the system
response speed, which dominates the speed tending to the
stationary state. Note the time scale transformation in Eq.
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(A1); the real system response speed js\;/ 7. 9P _ }{ dP(0[1) L9 P(1|0)]
APPENDIX B. THE PROOF THAT THE BER INCREASES aA 2L oA A

AS THE INPUT A DECREASES 0 o0

= 1 dy+ - 1 d
After the transformation of Eq(7), the quasi-stationary 2 f o ayp(y. Lisi()dy f 0 ayp(y. Lisol )y
probability density of Eq(5) can be rewritten as
. <0. (B3)
p(y, s () = C exd— 7G(y)], (B1)

where C is the normalization constant an@(y)=-y?/2 _

+y*1(4X8) + aAy. Since the decision time is the end time of 11iS indicates that the BER increases as the inpute-

T,, the termr of p(y, 7|s(7) is unity in terms of the trans- creases. Moreover, it has been demonstratgd ipthat the

formation of Eq.(7). Thus, we have probabilities of error system response speed becomes slower and slower as the

0 input A reduces, and the coefficieatthen decreases. There-

p(y, 1ls,(7)dy. fore, for given system parameters, we can deduce that the

o BER is a monotonic decreasing function of the ingut

(B2) Thus, the point in Fig. 1 will provide a lower BER than the
conventional resonance pointwvith the same system param-

P(1/0) = fo oy, Uso()dy,  P(O1L) = f

The first partial derivative oP, with respect toA is eterst, and X,
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