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Two methods of realizing aperiodic stochastic resonance(ASR) by adding noise and tuning system param-
eters in a bistable system, after a scale transformation, can be compared in a real parameter space. In this space,
the resonance point of ASR via adding noise denotes the extremum of a line segment, whereas the method of
tuning system parameters presents the extrema of a parameter plane. We demonstrate that, in terms of the
system performance, the method of tuning system parameters takes the precedence of the approach of adding
noise for an adjustable bistable system. Besides, adding noise can be viewed as a specific case of tuning system
parameters. Further research shows that the optimal system found by tuning system parameters may be sub-
threshold or suprathreshold, and the conventional ASR effects might not occur in some suprathreshold optimal
systems.
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I. INTRODUCTION

The concept of stochastic resonance(SR) was originally
put forward in two seminal papers by Benzi and collabora-
tors [1,2], in which the response of a nonlinear system to a
weak periodic input signal is amplified by adding an optimal
level of additive noise[3,4]. Such a nonlinear system has a
continuum power spectrum owing to the input stochastic
force, i.e., noise[1]. This counterintuitive phenomenon has
then attracted much attention in the past two decades, and
recently on the transmission of actual information-carrying
signals via aperiodic stochastic resonance(ASR) [4–14].
Since the introduction of SR, the main body of literature
devoted to the investigation of SR-type phenomenon by the
method of adding noise[1–31], what we call the conven-
tional SR in this paper. However, recent studies suggested
that the strategy of conventional SR seems to be sub-optimal
in terms of information flow, and only provides a positive
function role of noise for subthreshold signals
[13–15,26–28]. This leads to a series of discussions, espe-
cially on the incorporation of conventional SR into the neu-
ronal information processing[15,26–31].

Benzi [1] has suggested that the above SR phenomenon
was the cooperation of the stochastic system and the input
signal. According to this view of Ref.[1], adding noise is
tuning the stochastic system parameter in essence. There is
another method to tune the stochastic system, this is, directly

adjusting system parameters. It seems the usual dynamical
resonance by adjusting the inherent frequency of the system
to the frequency of an external periodic force. Thus, one
natural generalization is to research the cooperative effect in
an adjustable system subject to a given mixture of the exter-
nal time-dependent force and the noise[25]. The system pa-
rameter is then considered as an important tunable element
for the study of SR and ASR[32–42]. It was demonstrated
that there are optimal threshold values in the detection of
noisy signals with neuronlike threshold crossing detectors in
the context of SR[32]. In a review paper[33], the fact that
SR can be fulfilled by adjusting system parameters was em-
phasized in the signal processing field. Adaptively selecting
the parameters of SR devices was investigated for the short
record detection[34] and as the low power detection algo-
rithm [35]. This approach was also introduced as the natural
background for the design stage of nonlinear measuring de-
vices [36]. Recently, schemes of how to choose an optimal
stochastic resonator were developed in the presence of some
non-Gaussian noises[37,38]. Moreover, SR can be con-
trolled so as to either suppress or enhance the output power
at the signal frequency by sinusoidally modulating the bar-
rier height between the two wells of bistable systems[39,40].
Additionally, the SR-type phenomena via tuning system pa-
rameters were researched in the multi-frequency signal pro-
cessing[41] and the binary signal transmission[42].

Thus, two problems arise: this is, what is the relationship
between two approaches of adding noise and tuning the sys-
tem parameters, and can “ASR” realized by tuning system
parameters refer to the concept of conventional ASR via add-
ing noise?

In this paper, we compare two approaches of realizing
ASR effects via adding noise and tuning system parameters
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in a bistable system, theoretically and numerically. Since the
input is assumed as random binary signals, the system per-
formance is quantified by an information measure of the bit
error rate(BER). Thus, the conventional ASR phenomenon
studied in this Letter is such an effect that, for an initially
adopted system, the BER presents a minimal value at an
optimal nonzero noise intensity. Given a noisy input, as will
be observed, the BER is a nonmonotone function of system
parameters, which is the resonance effect realized by tuning
system parameters. In Sec. II, the approach of adding noise,
after a scale transformation, can be viewed as a specific case
of the method of tuning system parameters. The conventional
ASR can be mapped into an optimal problem of a line seg-
ment, whereas the method of tuning system parameters pro-
vides the optimal solutions of a real parameter plane. In
terms of the system performance, the method of tuning sys-
tem parameters is more applicable than the adding noise ap-
proach. In Sec. III, the optimal systems found by the ap-
proach of tuning system parameters are classified as
subthreshold and suprathreshold. We suggest that the sub-
threshold optimal systems can be viewed as the conventional
aperiodic stochastic resonators. There is a new form of ASR,
i.e., the residual ASR phenomenon, surviving in the slightly
suprathreshold optimal systems[45]. In other suprathreshold
optimal systems, no conventional ASR effects occur. Then,
these suprathreshold optimal systems can be considered as
the results of the nonlinear system optimization. Finally, we
argue that our conclusions of the comparison between the
two methods can be extended to other nonlinear systems
studied in the context of SR or ASR phenomenon.

II. THE RELATIONSHIP BETWEEN THE ASR
BY ADDING NOISE AND THAT VIA
TUNING SYSTEM PARAMETERS

A. Fundamental model and theory

Consider a nonlinear dynamic system whose internal state
xstd evolves according to[6],

ta
dxstd

dt
= xstd −

x3std
Xb

2 + sstd + hstd, s1d

where system parametersta.0 and Xb.0. The input
information-bearing signal issstd, and hstd is an additive
Gaussian white noise with autocorrelationkhstdhs0dl
=2Ddstd and zero-mean. Here,D denotes the noise intensity.
In the absence of input signal, the symmetrical bistable po-
tential is Vsxd=−x2/2+x4/ s4Xb

2d with potential barrier of
DV=Xb

2/4 and the potential minima are just located at ±Xb.
In the presence of an input signal, the potential becomes
Vsxd=−x2/2+x4/ s4Xb

2d−sstdx, and each potential minimum
is raised or lowered relative to the barrier height[6]. In this
paper, the input signal is assumed as the baseband binary
pulse amplitude modulated signals, which transmit digit 0 by
a waveforms0std=−A or digit 1 by a waveforms1std= +A in
a time intervalf0 TBg. Here,A is the signal level andTb is
called bit duration. Since the source digits are encoded ac-
cording to the messages, digits 0 and 1 are often random in a
sequence and the input binary signalsstd consists of the cor-

responding randomly arranged waveformss0std and s1std.
sstd is then an aperiodic information-bearing binary signal.
The input signal-to-noise ration(SNR) per bit defined as
«b/ s4Dd is appropriate for measuring this input noisy binary
signalsstd, where«b=e0

Tbsi
2stddt for i =0,1 [46].

In each bit duration ofTb, the system is driven by a con-
stant signal, i.e.,s0std=−A or s1std= +A, with the additive
noise hstd. On this condition, the corresponding Fokker–
Planck equation to Eq.(1) is given by

ta
] rsx,td

] t
= F ]

] x
V8sx,Ad +

D

ta

]2

] x2Grsx,td, s2d

where V8sxd=−x+x3/ sXb
2d±A and rsx,td obeys the natural

boundary conditions that it vanishes at largex for any t [47].
The steady state solution of Eq.(2) reads[47] as

r(xusistd… = lim
t→`

rsx,td = C expF−
taVsxd

D
G , s3d

where C is the normalization constant andVsxd=−x2/2
+x4/ s4Xb

2d±Ax.
This steady state solution, i.e., Eq.(3), is suitable for de-

scribing the probability density of the system output if the
input signalsstd keeps a constant amplitude ast→`. How-
ever, the information-bearing inputsstd might take different
amplitudes in successive bit durations, otherwisesstd has few
information contents. Hence, the probability density of the
system output is explicitly nonstationary. In the presence of
noise, if the system is modulated by a current input wave-
form sistd for i =0,1, a nonstationary probability density
model of the system output is established as[42]

r(x,tusistd… = N expF−
taGsx,ad

D
G , s4d

where N is the normalization constant,Gsx,ad=−x2/2
+x4/ s4Xb

2d±aAx, a=1−expf−l1tg and l1 is the system re-
sponse speed introduced in Appendix A. Asl1t→ +`,
r(x,tusistd) degenerates into the stationary densitiesr(xusistd)
of Eq. (3).

In this nonstationary process, erroneous bit symbols are
measured by the bit error rate(BER), and its minimal value
corresponds to the maximum information transfer between
the system input–output. First, we introduce a decode
scheme from the observation of the system outputxstd:
Samplexstd at the end time of each bit durationTb, a suc-
cessive sampled values,xs jTbd for j =1,2, . . ., arethen ob-
tained. By comparingxs jTbd with the decision thresholdl,
the recovered binary digit reads 1 ifxs jTbd. l, otherwise it is
0. Then, the probability of errorPs0u1d denotes that the re-
covered digit is decoded as 0 while the input source digit is
1. The other converse case is represented as the probability
of error Ps1u0d. Thus, the total probabilities of error, i.e., the
BER, is

Pe = Ps1dPs0u1d + Ps0dPs1u0d, s5d

wherePs1d and Ps0d represent the probabilities of digits 1
and 0 in a sequence, respectively. We further assume that the
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source input digits occur with equiprobabilities, i.e.,Ps1d
=Ps0d=0.5, and are statistically independent. Thus, the sys-
tem of Eq. (1) with input binary digits and output binary
readings, can be viewed as an information channel transmit-
ting binary data. It has been analyzed as a memoryless sym-
metric binary channel in Refs.[6,42], with the decision
threshold,=0. A theoretical expression of the BER then
takes the form as

Pe =
1

2
fPs1u0d + Ps0u1dg

=
1

2FE−`

0

r(x,Tbus1std)dx+E
0

+`

r(x,Tbus0std)dxG . s6d

Moreover, a block scheme was designed for transmitting bi-
nary signals via the bistable system of Eq.(1) in Ref. [42],
wherein the input signal is generated by a pseudorandom
binary signal generator. Next, we will compare the two meth-
ods of adding noise and tuning system parameters with the
above theory and the simulation scheme at hand.

B. Theoretical comparison of ASR effects realized by two
approaches of adding noise and tuning system parameters

In this subsection, we interpret two approaches of adding
noise and tuning system parameters geometrically. Rescale
the variables as

t = Tbt, x = ÎD/Tby, Xb = ÎD/TbX̄b,

A = ÎD/TbĀ, ta = Tbt̄a, s7d

Eq. (1) becomes

t̄a
dystd

dt
= ystd −

y3std

X̄b
2

± Ā + jstd, s8d

wherekjstdjs0dl=2dstd and Ā2/4 is just the input SNR per
bit «b/ s4Dd. Usually, in order to investigate the conventional
ASR via adding noise, the system parametersta, Xb, the
signal amplitudeA and the bit durationTb are fixed in an
initially adopted system. Thus, increasing the noise intensity

D represents decreasing the transformed variablesX̄b andĀ.
This indicates that, after this transformation of Eq.(7), the
conventional ASR effects realized by adding noise can be

explained as optimizing the system parameterX̄b with the

degraded inputĀ.

Figure 1 shows the real parameter spaceS: ht̄a,X̄b,Āj,
wherein the pointa denotes the initial adopted system pa-

rameterst̄a and X̄b and the corresponding inputĀ0. Here,

Ā0
2/4=«b/ s4D0d andD0 is the initial input noise intensity. As

D increases,X̄b andĀ will decrease, butt̄a keeps invariable.
When the amount of noise is added appropriately, a minimal
value of the BER is obtained and the conventional ASR phe-
nomenon occurs. This optimal noise intensity corresponds to
the resonance pointb in Fig. 1. A large amount of input noise
denotes the points at the extension line of the segmentab,

such as the pointc. Thus, adding noise forms a line segment
in this parameter spaceS and the resonance point of the
conventional ASR can be mapped into an extremal solution
along this line segment.

In contrast to the conventional ASR, the other method is
tuning system parametersta andXb for a given noisy input
(A, Tb andD=D0 are fixed). This method is an optimal prob-
lem in the real parameter plane ofĀ0, as illustrated in Fig. 1.
It is demonstrated in Appendix B that, for the selected sys-
tem with the fixed system parameters, the BER will increase
as the inputĀ degrades. Thus, we can deduce that the point
d in the parameter plane ofĀ0 will provide a lower value of
the BER than the conventional resonance pointb. Here,d is
the projective point of the pointb in the plane ofĀ0 with the
same system parameterst̄a andX̄b. Moreover, the method of
tuning system parameters finds the optimal pair(s) of param-
eterst̄a and X̄b in the whole parameter plane ofĀ0, which
must be better than the pointd.

Furthermore, there is another difficult case confronted by
the approach of adding noise, this is the resonance pointe is
with an inputĀ higher than the initially givenĀ0 (see Fig. 1).
In this case, the initial input noise intensityD0 is beyond the
optimal one corresponding to the conventional resonance
point e. Therefore, the method of adding noise cannot be
utilized to realize any conventional ASR effects. It would be
practical to adjust system parameters to obtain the corre-
sponding minimal value of the BER.

Consequently, in view of the system performance BER,
we conclude that the method of tuning system parameters
always outperforms the adding noise approach. This theoret-
ical analysis will be manifestly confirmed by the following
numerical results.

C. Numerical comparison results of ASR effects realized
by two approaches

In this subsection, we will numerically demonstrate the
conclusion of the comparison between two approaches of

FIG. 1. The real parameter spaceS: ht̄a,X̄b,Āj. The conven-
tional ASR via adding noise is mapped onto an optimal problem of
the line segmentac. The method of tuning parameters searches the

optimal pair(s) of system parameterst̄a and X̄b in the plane ofĀ0.
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adding noise and tuning system parameters. We have numeri-
cally integrated the stochastic differential equation of Eq.(1)
using an Euler-Maruyama discretization method with a small
sampling time stepDt!ta [43]. The block scheme for trans-
mitting binary data by this nonlinear system of Eq.(1) has
been designed in Ref.[42]. With this designed block scheme,
the BER can be automatically recorded in numerical simula-
tions.

A simulation example of the conventional ASR phenom-
enon is shown in Fig. 2(A). The initially adopted system is
with parametersta=10−0.9 and Xb=100.9. Here we takeD0
=0.285,A=3, andTb=4 s. Then the input SNR per bit is
15 dB, i.e., the pointa in Fig. 2(A). The conventional ASR
effect can be realized by adding an appropriate amount of
noise, resulting in the resonance pointb sD1=0.84d. The cor-
responding BER is then given as 3.1310−3 and the input
SNR per bit is degraded to 10.3 dB. However, if the initially
given input SNR per bit is 5 dB at the pointc sD2=2.846d
and beyond the conventional ASR resonance pointb sD1
=0.84d, it will be of no use to improve the system perfor-
mance by adding noise. This case may be often met in a
nonstationary noisy environment. Moreover, another diffi-
culty of controlling noise is that the optimal amount of noise
to be added is highly dependent on thea priori statistical
characteristics of noise.

Figures 2(B) and 2(C) present the simulation results of the
method of tuning system parameters at the given input SNRs
per bit of 10.3 dB and 5 dB, respectively. For comparison,
the pointsb andc of the conventional ASR are also plotted.
For the given SNR per bit 10.3 dB, the numerical results of
tuning system parameters, shown in Fig. 2(B), can give a
much-improved BER of 1.02310−4 (i.e., the pointb1). It is
shown in Fig. 2(C) that, at the input SNR per bit of 5 dB, the
minimal value of the BER is obtained as 1.603310−2 by
optimally adjusting the system parameters(see the pointc1),
whereas the method of adding noise only provides the BER
of 1.1310−1. Thus, for a given noisy signal, we can tune the
system parameters, rather than adding noise to the initially
selected system, to obtain a corresponding minimal value of
the BER. These numerical illustrative comparisons of Fig. 2
demonstrate that the method of tuning parameters is more
applicable for the adjustable bistable system, confirming the
theoretical analysis in this subsection.

Many researchers have observed SR or ASR effects in
biology systems and neuroscience[3]. But no living organ-
ism can control the noise structure of the environment[22].
A rising problem is whether the biology system tunes itself
to adapt to the noisy environment or uses the internal noise
via SR, or both. Some pioneering studies suggested that SR
or ASR may be useful if there was insufficient adaptability in
sensory systems[15,26], and in terms of recent results of the
suprathreshold SR[13–15,26], the neuronal noise can have a
positive beneficial role regardless of stimulus intensity or the
adaptive capability of neurons. Further concrete investiga-
tions on this question are meaningful.

III. THE PARAMETER TUNING RESONANCE
PHENOMENA IN SUBTHRESHOLD AND

SUPRATHRESHOLD REGIONS

In the context of the conventional ASR, the input signal is
subthreshold that no deterministic switching can occur in the

presence of the signal alone[19]. WhenAù2Xb/Î27 [6,19],
the system bistability is destroyed and the input signal be-
comes suprathreshold[14,19]. In this Letter, the parameter
Xb is adjustable and the input signal levelA is fixed. This
yields

Xb
c = Î27A/2, s9d

by which the system under study is classified as subthreshold
sXb.Xb

cd and suprathresholdsXbøXb
cd.

In practice, the adjustable parametersta andXb are often
restricted in some regions, andXb may take the value in the
region of Xb.Xb

c or XbøXb
c. For a given noisy input, the

methodology of tuning system parameters is as follows:
Choose the parameterXb, and then deduce the corresponding
optimal parameterta such that the BER is minimal. The
optimal system, with this optimal pair of parametersXb and
ta, may be subthreshold or suprathreshold in respect of the
parameterXb. It is worthy of note that the optimal systems
found by tuning system parameters, shown in Fig. 3, are just
corresponding to the valley bottom of the BER throughout
the parameter plane ofXb andta in Fig. 2(C).

There is then an interesting question we can ask; this is,
what kind of role does the noise play in these optimal sys-
tems? Furthermore, according to the role of noise, we will
attempt to clarify these optimal systems searched by the
method of tuning system parameters.

Figure 4 shows the performances of these optimal systems
of Fig. 3 as the function of the input noise intensityD,
wherein the role of the noise is revealed. We give the main
conclusions of our study as follows.

(i) For the subthreshold optimal systems withXb.Xb
c

<100.892, Fig. 4 clearly displays their conventional ASR type
behaviors(i.e., the BER presents a minimal value at a non-
zero level of noise). It indicates that the noise plays the con-
structive role in these subthreshold systems. In other words,
they can be looked as the conventional ASR systems. In
terms of this explanation, we can also refer the parameter-
tuning resonance phenomena to the concept of conventional
ASR for the subthreshold optimal systems.

(ii ) When XbøXb
c, the optimal systems become supra-

threshold. Figure 4 shows that the conventional ASR phe-
nomenon survives untilXb is smaller than but close to the
dynamical thresholdXb

d. This result is in keeping with the
analyses of Refs.[44,48] andXb

d can be evaluated asXb
c /1.3

for this kind of waveform ofsstd [44]. This new form of ASR
effects, termed the residual ASR, was studied in our recent
work [45] in detail. We see that the positive role of the noise
extends to this slightly supratheshold region asXb

d

−e,Xb,Xb
c, wheree is a quite small value.

(iii ) As Xb,Xb
d−e, the BER, illustrated in Fig. 4, be-

comes a monotonic function of the noise intensity in these
suprathreshold optimal systems, and the positive role of
noise disappears in this dynamical process. Thus, we argue
that, in this “very” suprathreshold range ofXb,Xb

d−e, these
suprathreshold optimal systems should be considered as the
results of thenonlinear system optimization.

Consequently, the optimal systems found by tuning pa-
rameters can be classified as subthreshold asXb.Xb

c and
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suprathresholdXbøXb
c. We suggest that both subthreshold

and suprathreshold optimal systems are the appealing nonlin-
ear signal processors in practical applications in the context
of information transmission. According to the role of the
noise, we can refer the subthreshold and some slightly su-
prathreshold optimal systems to the conventional aperiodic
stochastic resonators, and regard other suprathreshold sys-
tems as the results of the nonlinear system optimization. It is
shown that the conventional ASR effect requires a threshold
to be set thus not making the system very robust for engi-
neering applications[10]. The suprathreshold systems with
Xb,Xb

d−e are more applicable in the view of information
transmission, but at the risk of not employing the positive
role of noise.

FIG. 2. Numerical results of the BER obtained by two methods
of adding noise and tuning system parameters. Here,A=3, Tb=4
andDt=0.01ta. (A) A simulation example of the conventional ASR
effect via adding noise. The system parametersta=10−0.9 and Xb

=100.9. The initial pointa, the conventional resonance pointb and
the pointc are corresponding to the input SNR per bit of 15 dB
sD0=0.285d, 10.3 dB sD1=0.84d, and 5.0 dBsD2=2.846d, respec-
tively; (B) a plot of the BER versus parametersta and Xb at the
given input SNR per bit of 10.3 dB. The conventional resonance
point b is also reflected in this surface, and the method of tuning
system parameters can provide a much lower BER at the the point
b1; (C) a plot of the BER versus parametersta andXb at the given
input SNR per bit of 5.0 dB. Clearly, the pointc1 is better than the
point c in terms of the system performance.

FIG. 3. As the system parameterXb takes different values, the
corresponding optimal system parameterta with the minimal BER.
Note that these optimal pairs of system parameters are just corre-
sponding to the valley bottom of the BER of Fig. 2(C). Here,A
=3, Tb=4s, Dt=0.01ta, and D=2.846. The optimal systems are
divided into subthreshold and suprathreshold regions by the line of
L1 sXb

c=Î27A/2<100.892d. The dynamical threshold is represented
by the lineL2 sXb

d=Xb
c /1.3<100.778d.

FIG. 4. Numerical results of the BER as a function ofD for the
different systems shown in Fig. 3. Here,A=3, Tb=4, and Dt
=0.01ta.
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IV. CONCLUSION

In conclusion, two methods of realizing ASR phenom-
enon, i.e., the conventional way of adding noise and the
method of tuning system parameters, have been compared
detailedly. After a scale transformation, the conventional way
of adding noise can be viewed as a specific case of the
method of tuning system parameters, and the two methods
can be compared in a parameter space geometrically. It has
been demonstrated theoretically and numerically that when
the systems are adjustable, especially as an algorithm in sig-
nal processing, tuning system parameters is more practical
than adding noise to the nonlinear systems. Furthermore, the
optimal systems searched by the tuning system parameter
method were discussed and classified as subthreshold and
suprathreshold. According to the role of the noise in the op-
timal system, we can refer the resonance phenomena realized
by the subthreshold and slightly suprathreshold optimal sys-
tems to the concept of the conventional ASR. But, it is suit-
able to consider other suprathreshold optimal systems as the
outcomes of the nonlinear system optimization, without uti-
lizing the constructive role of the noise.

The conventional ASR has been gaining increasing
interest as a potential signal-processing tool
[5–11,13,15,20–25,32–42]. Similarly, it is meaningful to re-
search the resonance phenomenon with tuning system pa-
rameters in the signal processing field. Some subjects are
very promising and currently under study, for example,
studying nonlinear system with input multiplicative noise
and extending the nonlinear system to Hamiltonian or quasi-
Hamiltonian systems.
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APPENDIX A: SYSTEM RESPONSE SPEED

Rescale the variants of Eq.(2) as

t = tta, x = yÎD/ta, Xb = X̄b
ÎD/ta, A = ĀÎD/ta.

sA1d

Equation(2) becomes

] rsy,td
] t

=
]

] y
fV8sydrsy,tdg +

]2rsy,td
] y2 , sA2d

whereV8syd=−y+y3/ X̄b
2± Ā. Assume

rsy,td = psydexpf− Vsydgexpf− ltg, sA3d

where l.0 and psydÞ0. Substituting Eq.(A3) into Eq.
(A2), we have

lpsydexpf− Vsydg = − p9sydexpf− Vsydg

+ p8sydV8sydexpf− Vsydg. sA4d

Multiplying both side of Eq.(A4) by psyd and integrating it,

Xu et al. [41] deduced its variational form as[47]

l = st.psydÞ0

3

E
−`

+`

f− p9sydpsyd + p8sydpsydV8sydgexpf− Vsydgdy

E
−`

+`

p2sydexpf− Vsydgdy

,

sA5d

where st. means the stationary value in the variational prob-
lem [47]. Since

E
−`

+`

− p9sydpsydexpf− Vsydgdy

= − psydp8sydexpf− Vsydg−`
+`

+E
−`

+`

p82sydexpf− Vsydgdy

−E
−`

+`

p8sydpsydV8sydexpf− Vsydgdy

=E
−`

+`

p82sydexpf− Vsydgdy

−E
−`

+`

p8sydpsydV8sydexpf− Vsydgdy,

Eq. (A5) can be rewritten as

l = st.psydÞ0

E
−`

+`

p82sydexpf− Vsydgdy

E
−`

+`

p2sydexpf− Vsydgdy

. sA6d

Assumepsyd=d0+d1y+¯ +dny
n, we have

sfKg − lfMgdhdj = 0, sA7d

where eigenvectorshdij=fd0
i ,d1

i , . . . ,dn
i g are corresponding to

eigenvalues hlj=fl0,l1, . . . ,lng, where li øli+1, i
=0,1, . . . ,n−1. The elements of matricesfMg and fKg are

mij =E
−`

+`

yi+jexpf− Vsydgdy,

kij =E
−`

+`

i jy i+j−2expf− Vsydgdy, sA8d

where i, j =0,1,2, . . . ,n. It has been demonstrated that the
matrix fMg is positive definite and the matrixfKg is semi-
positive definite[41]. Then, the minimum eigenvaluel0 is
zero corresponding to the stationary solution of Eq.(A2).
The minimum positive eigenvaluel1 is called the system
response speed, which dominates the speed tending to the
stationary state. Note the time scale transformation in Eq.
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(A1); the real system response speed isl̄1=l1/ta.

APPENDIX B. THE PROOF THAT THE BER INCREASES

AS THE INPUT Ā DECREASES

After the transformation of Eq.(7), the quasi-stationary
probability density of Eq.(5) can be rewritten as

r„y,tusistd… = C expf− t̄aGsydg, sB1d

where C is the normalization constant andGsyd=−y2/2

+y4/ s4X̄2
bd±aĀy. Since the decision time is the end time of

Tb, the termt of r(y,t usistd) is unity in terms of the trans-
formation of Eq.(7). Thus, we have probabilities of error

Ps1u0d =E
0

+`

r„y,1us0std…dy, Ps0u1d =E
−`

0

r„y,1us1std…dy.

sB2d

The first partial derivative ofPe with respect toĀ is

] Pe

] Ā
=

1

2F ] Ps0u1d

] Ā
+

] Ps1u0d

] Ā
G

=
1

2FE−`

0

ayr(y,1us1std)dy+E
0

+`

− ayr(y,1us0std)dyG
ø 0. sB3d

This indicates that the BER increases as the inputĀ de-
creases. Moreover, it has been demonstrated in[41] that the
system response speed becomes slower and slower as the

input Ā reduces, and the coefficienta then decreases. There-
fore, for given system parameters, we can deduce that the

BER is a monotonic decreasing function of the inputĀ.
Thus, the pointd in Fig. 1 will provide a lower BER than the
conventional resonance pointb with the same system param-
eterst̄a and X̄b.
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