PHYSICAL REVIEW B VOLUME 58, NUMBER 11 15 SEPTEMBER 1998-I

Two-dimensional electron transport with anisotropic scattering potentials
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Anisotropic scattering potential has been found at the heterointerface of a two-dimensional electron gas in
low-temperature transport experiments. This scattering potential has various symmetries depending on the
crystalline direction of the interface. The conductivity tensor of a two-dimensional electron gas is theoretically
investigated with a Boltzmann equation. Several models of anisotropic elastic scattering potentials are exam-
ined. Explicit formulas of the conductivity tensor are given to the lowest order of the potential anisotropy. If
isotropic scatterings and anisotropic scatterings coexist, Matthiessen’s rule gives larger mobility than the exact
value. The conductivity is isotropic if the number of the symmetry axes of the scattering probability is more
than 2.[S0163-1828)04035-]

[. INTRODUCTION of the adatoms is found to have an anisotropy in various
directions, causing the shape of the island to be highly an-
The possible origins of anisotropic conductivity are theisotropic. A stable two-dimensional island can have a variety
anisotropic effective mass and the anisotropic scattering pdf shapes depending on the direction of the crystal surface.
tential. Mass anisotropy is a dominant origin of the aniso-An STM study of the GaAs (118 surface has shown the
tropic conductivity, for example, in bulk Si or GRef. 1) or ~ €Xistence of a triangular superstructift@oth a tetrahedral
in Si metal-oxide-semiconductor structures at tilQ  Structuré®and a pyramid structutehave been realized on a
interface?® Recently, quite a large anisotropy has been(111)B or (001 GaAs surface. Recently, wire-shaped struc-
found in the electron conductivity of an Aba,_,As/GaAs ture of Ge was realized on $113) surface'’ It should be
heterostructure on é01) substratd™ and also in that of a Stressed that, although the microscopic shape and size of
double heterostructure with a thin AIAs layer deposited intN€Se scatterers may not be unifortime typical direction of
the well region’ More recently, intensive research has con-these structures could be macroscopically homogeneous on
centrated on the anisotropic electron transport on a @11) the surfaceso thatthe ensemble averaged scattering poten-

GaAs substrafeand the anisotropic hole transpaviith an- tial maintains the symmetryTherefore, the transport of a
isotropic hole magson a (3117 GaAs substratd:'2 For an two-dimensional electron gd2DEG) confined at the hetero-

electron on a001) substrate, for example, the conductivity interface will be anisotropic as a result of scattering by these
in the[TlO] direction is higher than that in tHel10] direc- interface structures. It has not yet been established, however,

tion. Since the low-energy effective mass of the conductio that the higher symmetric potential structures affect the elec-
bana is isotropic, the ag?gotro ic transport originates fror:11ron transport confined in the heterostructure.
pic, P P 9 In this paper, we derive a general formula for the conduc-

thuerifnésc(;t{t(;% Ozsth;sssqut;%“?ogbpeoitsec?ttr'gl'i;rh:ngfiﬁcet O:]c')rr?c;tivity tensor of a 2DEG controlled by the anisotropic scatter-
purty 9 pic, P g potential under a zero magnetic field. The effect of weak

scattering. is neg!igible in .these e?(periments. Two Candidatel%agnetic field will be reported elsewhere. The calculation is
for the anisotropic potential ard) interface roughness scat- restricted to the semiclassical transport regime. Quantum

:)eorézgtigflrgcgnlzse(grgf 'lﬁelssl?gp?ss fgrrlfé dcgilglbiii;?gﬁgggat correction_ by a wee}k Iocaliz_ation had been discussed in Refs.
Both of these stem from the microscopic potential of the 8’1.9'. This paper 1 Qrganlzed as follows: In Sec. |l a con-
i . ) . o ductivity tensor is derived by using the Boltzmann equation.
anisotropic structure in the two crystalline directiphl0]  gection 11l shows the results for an anisotropic scattering
and[110] of a (001) GaAs substrate. Assuming the aniso- propability with two symmetry axes. Conductivity tensors
tropic islands have some appropriate radial distribution angy, the scattering probability with higher symmetry are de-
are located randomly at the interface, the mobility in therjed in Sec. IV, and conclusion follows in Sec. V. The ap-
[110] direction was shown to be largérin the nearly pendices provide detailed derivations of the formulas in the
straight chainlike potential, the conductivity normal to the main text.
chain is smaller than that parallel to the chaitn additional
multiscattering effect has been discussed assuming that the
spacing of these chains is almost periodic and shorter than
the electron coherence lengfth. We start from a standard linearized Boltzmann equation

Scanning tunneling microscop§&TM) or atomic-force  ¢or 2DEG under a uniform electric fielf
microscopy have enabled us to inspect the surface structure ’

in detail. Several experimental observations support the ex- .
istence of an anisotropi¢nearly elliptica) island that is = 08 lg = o

of an anisotropienearly  elliptica) islar B K IO (gi-ge)QKKD, (21
longer in the[ 110] direction. The surface diffusion constant hok 9k

IIl. CONDUCTIVITY TENSOR
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where fo=[exp(B(ex—um)+1]" 1 is the equilibrium distribu-
tion function at a temperature kg3) and with the chemical
potential u, ande,=#2k?/(2m*) is the energy of an elec-
tron with a wave numbek. Here the effective mas®* is
assumed to be isotropic. The functigg="fg—f, is the
change in the distribution functiofy by the electric field to

a linear order, which is sustained by the elastic scattering

with a probabilityQ(k,k’) from a statek to a statek’. The
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j= 5> evygk 2.6
L=k
_« dek afo)fzwde  @N(0)]E
=57, iR vilvk®N(0)]E,
(2.7

where the factor 2 comes from the spin degeneracy. Then,

scattering potential is assumed to have at least one symmetiie conductivity tensor is

axis and one of these axes is chosen fordld@rection. Since

we assume elastic scattering and take the change in the dis-

tribution function to the linear order df, the electron ve-

locity vy=(1/4)|de/dkK| is invariant and only its angle
relative to thex axis is a variable. By defining

=) ep x(0).E 2.2
9=\ — 55 | &k (6)-E, (2.2

eznsf € ( af0>
o= de—| — —
m* E€F e
fzw ()\X(a)cose Ay(6)cos @
X

0 A(O)sin @ Ny (0)sin 6

) , (2.9

where the electron density iss=m*eg/(7#%?) with the
Fermi energye= u at zero temperature and the matrix in

whereX(G) is the relaxation time vector to be solved, the Eq. (2.9 is (1/I<)IZ®X(0). Henceforth, considerations are

Boltzmann equatiofEq. (2.1)] reduces to

2
cos0= | a0 - @1000), (23

27
sin 6= . do[Ay(0)—Ny()]Q(0,¢), (2.4

where ¢ is an angle between theaxis andk’. The scatter-
ing probability Q(#6,#), which is obtained by integrating
Q(k,k’) by |k'|, is defined from Fermi's golden rule,
namely,

2 2 m*

Q(0,¢)= [K6]U] ), (2.5

(2m)? 43
whereU is the scattering potential and the k@ denotes
the plane wave Wi(x,y)=e "/L=exd —i(xkcosd
+yksin §)J/L with the system siz&2. If it is necessary, the

limited to zero temperature at which only the sttat the
Fermi circle (=kg) is relevant, i.e.,—dfq/de= (e —eg).
The extension to finite temperatures is straightforward since
the effect comes only in a weighted integration by
[—(9fg)/(de)]eleg, if the change in the screening factor on
the scattering potential is negligible.

Now the scattering probabilit¥Q(6,¢) is examined in

detail. Since this term is a function &-k’ in general, it is

rewritten in terms ofg=|k—k’|=2kg sin(6—¢|/2) and the

angleys betweerk—k’ and thex axis. The periodicity can be
easily seenQ(q,#)=Q(q, ¥+ 27). Using microreversibil-

ity Q(6,¢)=Q(¢,0), itis found that

Q(q,#)=Q(q,¢—m)=Q(q,y+ ). (2.9
Since one symmetry axis in thedirection was chosen, the
scattering probability between statesndk’ is the same as

the probability between statds and k' where k,=k, and
ky=—k, . Therefore,

ensemble average of the potential distribution is used. Now,

the problem is reduced to the integral equations for two in-

Q(a,#)=Q(a,— ), (2.10

depend_ent functions_X and )_\y. Tradifcionally, th_e transport  5nq from Egs(2.9 and (2.10,
properties of the anisotropic scattering potential are investi-

gated by using anisotropic scattering timed) where the
right hand side of Eq(2.1) is replaced withg,/r(6) and

then solving7r(#) by the iteration method or the variational
method. This treatment is equivalent to ours by replacin

Ax(6) with 7(#)cos® and N (6) with 7(6)sin 6. However,

our method is advantageous in that the formulas are sep

rated in the main two directionsx(and y) and become

simple as can be seen in the following. Our method is similar

to that of Samoilovich and co-worket$2! which expands

a-

Q(a,¥)=Q(a,m—¢)=Q(q,—7—¢). (21D

Hence, it is only necessary to know the functiQiq, ¢) at
e[0,7/2] for a giveng. Using these properties, by putting
0,6)—(—6,—¢) in Eq. (2.3, it is found that\,(— 0)

«(0), and in Eq.(2.4), Ny(— 0)=—\(6). Similarly, by

setting @,¢)— (7— 0,7— ¢), it is found that\,(7— 0) =

A (0) and Ay (7— 0) =Ny (6).

We solve the integral equatiof&gs.(2.3) and(2.4)] by

the distribution function in spherical harmonics and applies it UM’ exgagsior}. IlIJSi”Q the above symmetrigsand,
to the bulk transport with an anisotropic mass. There exists 8¢ €XPanded as Tollows.
rigourous method of dealing with the anisotropic scattering w

problem if the scattering probability is expressed by the sum

of products of factors depending dnand ofk’, such as

=.pi(K)gi(k’).?? However, such a method is only applicable

in restricted cases.
The current density is given by

A (6)= g‘o A(2n+1)cod(2n+1)60],  (2.12

Ny (6)= nzo Ny(2n+1)sif(2n+1)6],  (2.13
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with the inversion

)\X(n)=% :Wdaxx( 6)cogng), 2.14
1 (2w
xy(n):;fo don,(6)sin(ng), 2.15

for n>0. Terms such as [dO\,(6)sin(ng) or
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where the symmetric matriK* is given by

Ny _(_1)|7n

I,n_T[(1+ 5I,n)‘]|l—n|,n+|—1_‘]n+|—1,\I—n|]v

(2.21

where

2
Jn,m:fo d{Qn(aylcognf)—cosmy)], (2.22

Jdon (0)cosho) are absent due to the symmetry. Hence,

using Eq.(2.8), the conductivity tensor is diagonal, i.e.,

e’n

S
(),

(2.19

Oxx—

2
S

e
=\y(1),

Oyy=

(2.17

from which\,(1) and\ (1) can be interpreted to the relax-
ation times in thex andy directions, respectively.

The scattering probability is also expanded using the sym

metry,

Q(q,9)= mE:o Qum(a)cog 2my), (2.18

with the inversion

1 27
Qm(a)= —(1+5m,o)77'fo dyQ(q,¢)cog2my),
(2.19

where dy, ,=0 for m#n and 6, ,= 1. If the scattering prob-
ability Q(q,) is periodic in ¢, the period should ber/s
with an integeis because of the microreversibilifzg. (2.9)]
which requires the inversion symmetry through a paint
=0. Then, using Eq(2.19, one can find tha®, should be
zero if cos(2nm/s)#1, or equivalently, ifm#1s with non-

andq,= 2k sin/2|. One finds a similar equation in the
direction,

Si1= n; Ay(2n—D)KY,, (2.23

with

, (D"

KI,n 2

(146 ) Ij—npns1i—1F Inti—1)i—n)-
(2.29

By defining the vectorh,=[\(1),\(3),...]" and I
=(1,0,0...)" whereT is the transpose, Eq2.20 is ex-
pressed byt =K*\,. A similar equation is also obtained in
the y direction. If the matricek* andKY are not singular,
the scattering times are obtained by the equations

(2.29
(2.26

ML) =(KN11,

N(1)=(K¥);1,

whereM; ; means the (1,1) element of a matik.

Here several comments are needed. Even if one of the
matrices, for exampleK*, is singular, a physically sound
relaxation time is obtained in thedirections, which will be
demonstrated in Sec. Il D. The order of matrices and vectors
have not been mentioned. To undertake some numerical
evaluation of this problem, we have to truncate the infinite
expansion ofQ to some ordeN;. This approximation gives

negative integel. In this case, one obtains that the numberfamy good results if the expansion @ converges abso-

of symmetry axed of the scattering probability is2with
considering an additional property, E@.10. The isotropic
scattering probability is a special case wisene and all the

lutely, which is so in most cases except for that found in Sec.
Il D. If the scattering potential is isotropic, ald,, values
with m>0 are zero, and, the matricés* and KY are the

termsQ,, with m>0 vanish. The symmetry of the scattering s3me and are diagonal with the elemeiits=Jo z_1. The

probability Q should be clearly distinguished from the sym- matrix inversion is trivial and the inverse of the scattering
metry of the scatteringotential U. If the potential has even time, which is also isotropic, is given by

number of symmetry axel as found in a pyramid struc-
ture on a(001) surface Ny=4), the scattering probability
has the same number of symmetry axes and (mhyu,z
terms are nonzero. However, care is needed if the potential . = . L L
has odd number of symmetry axes, as found in a triangula‘?’h'Ch is a standard definition of the transport relaxation time

structure on the (11B surface Ny=3). Because of the inan |sotrop|c_ system. .

microreversibility, the scattering probability h&é,=2N _The scattering probabilities of the two main types of scat-

symmetry axes and onl,, terms are nonzero tering at low temperatures are summarized here for later use.
y .

. . . ) . _For screened Coulomb scattering, which is isotropic in gen-
By putting all the expansions into the integral equationg | the scattering probability is given By
[Eq. (2.3)], multiplying by cosl#), and integrating ove® '
from 0 to 2w(1=1,2,...), oneobtains, after a straightfor-
ward calculation,

2
A(l)’l=Jo,1=f0 d{Qo(d,)(1—cosy), (2.27)

Qs
qx(q)

whereqs=m*e?/27h%k* is the screening constant with the
effective dielectric constank*, z4 is the distance of the

ﬁ’TTn|(

2
pon ) e 207, (2.28
m

QCOUlOml{ q) —

©

5,,1:”21 M(2n—1)KY (2.20
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ionized impurities and the conducting layer, andis the 1 1
impurity areal density in the layez=z4. The polarization Jo,1+§~31,o 531,2 0
factor x(q) is assumed to be isotropic and ist15/q by
neglecting the form factor of the wave functiéh. }le Jos EJM
The scattering probability between the two-dimensional 2" ’ 2"
statesk andk’ due to a fluctuation in the interface height, KXy= 1J ] 1J ,
d(p) at a positionp=(x,y), is given by the first Born 2714 03 2718
approximatior>—2° 1
EJl‘G ‘]0,7
~ N 277 YAkfk’ 2 0
QrOUQWk,k'):T W 5(8k_8kr), (31)
“ (2.29 where the upper and lower signs are kot andKY, respec-
tively. Evaluating the inverse of the matrix, it is found that
i : : 1 1
whe're the Iocgl change in theﬁpote'ntlal cause'd by .the shift of — =Jo,11531,o—rs(1), 3.2
the interface is given by A(p) using a relative displace- xiy(1)

mentA(p)=d(p)—(d(p)). Ag is the Fourier transform of
A(p), and the averagé- - -) is obtained for an appropriate
roughness distribution. The interface correlation funct®n
and its Fourier transforrir (Ref. 26 are introduced by

. 1 . N
G(d)= 5(A(FIAG+4), (2.30
- 1 )
F(QFW(MJ ), (2.30)

whereA is the root mean square (Af(ﬁ) and A is a scale

characterizing the fluctuation in the lateral direction. The

scattering probability is therefore

roug — m* (
QM 0, $) -y

(2.32

AAY)ZF .
() (9).

For a 2DEG confined to a single heterostructuig,
=(e?/k*)(3ng+ Ngep) Wherengey is the fixed-charge con-
centration in the depletion layét.

lll. TWO SYMMETRY AXES

In this section, we restrict the scattering probability to the

least symmetry, i.e., the case of two symmetry axus, (
=2 ors=1).

A. Small anisotropy

For a small anisotropy, the expansideq. (2.18] of the
scattering probability is truncated a®(d,y¥)=Q(q)
+Q;(q)cos 2. The matricek*¥ are given by

where the factoi’3(1) is isotropic and is defined in a form
of continued fraction as follows:

1 2
(E‘]s,ms)

JO,m_ 1_‘m+25(s) '

SinceI'(s) is a rapid decreasing function @h in most
cases, we can have a reasonably approximated value of
I'3(1) by truncating the series at some point. If the isotropic
term Qg is much larger thaiQ,, I';(1) can be neglected

in Eqg. (3.2). In this approximation, E¢3.2) is in an explicit
form,

I'(s)= (3.3

1

27
My(D) Jo d{Qo(q,)(1—cosy)

1 r2=
iifo d{Qq(d,)(1—cos{). (3.9

If there are several scattering processes, Matthiessen’s
rule is often employed to evaluate the total relaxation time
from the independently evaluated relaxation times. Takeda
and Pearsdll and Saxena and Mudaféshave shown that
this is not correct when treating alloy disorder scattering if
the temperature dependences of each relaxation time differ
greatly. However, for low-temperature elastic scatterings, the
relaxation time is almost temperature independent. Here, the
validity of Matthiessen’s rule is examined when isotropic
and anisotropic scatterings coexist. The inverse of the total
relaxation time is given bycf. Eq. (2.27)],

(331°
JoatIos—TEAL)
(3.5
where the suffixe$ and A show the contribution from iso-

tropic and anisotropic scattering, respectively. On the other
hand, the relaxation times for the individual processes are

=0y, 35, F 5
)\x/y(l) 0,1 0,17 2vY1,0

1
———=Jo1, (3.6
)\x/y(l)
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1

[ 3
Ay(1) (3.7

A (33197
1,0 .
J55~T5(1)

1
=J§’11§J
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2
»_ © my 2|, % * Tk oY (L*\E*
J:F m— d<k 5(8F—8k*)|vk|[avk®)\(k )]E y
ar X
(3.15

The failure of Matthiessen’s rule is evaluated while neglect-

ing the order ofl'5(1), namely,

1 5 1 _(1JA )2 1 1
Nay(D) T\ 127020 1385 abs+35s)
(3.8
SinceJg 3 is positive in most cases, the value of E8.8) is

positive and the total relaxation time with Matthiessen'’s rule
is overestimation. Therefore, care is needed to evaluate the
anisotropic transport when other isotropic scattering isusing the

which reduces to the diagonal conductivitje& Eqs.(2.16),

(2.17]

2
S

Oyx= - A(1), (3.1
e’ng

oyy= m, Ay(1), 3.19

electron density  given by ng

present and of the same magnitude. This error is demor= V(M,/m)kE?/(27) with kf =2meg/#i. In a crude ap-

strated explicitly in Sec. Ill C.

B. Mass anisotropy

2e’r
A system with a special type of anisotropic mass and with o= f d2kf0(—) ,
an isotropic scattering potential can be reduced to a system

of an anisotropic potential with an isotropic mag8:2?%we

as

21,2 21,2
B B

B 2m,  2m,’ 3.9

€k

and the scattering potential depends onlygen|k—k’|. De-
fining a new wave vector by scaling tlkg axis,

. . (1 0 .
*=ak= k,
* (O \/mX/my)

an isotropic band with an isotropic mass, is obtained
(Herring-Vogt transformation® By noting

(3.10

e _ de ey
ﬁ_ﬁlz_aﬁr?lz* =avy , (3.11
andE* = «E and with the definition
&fo - "Lk *
Jk= —g eE*-)\(k )|Uk|, (313

the Boltzmann equatiofEqg. (2.1)] reduces to

2
(cos,sin )= V%(ZLT;)ZJ dzk'*[k(lz*)—?\(ﬁ’*)]

X’Q(aillz*,aillz'*),

(3.13

where the angle is determined byz* and thex axis. By
putting, for elastic scattering,

~ R R ﬁ2 2
Q(a'k*,a™k'*) = ﬂQ(WﬁW(SK* —&xrx),

L2\mym, 314

the same equation is obtained foras Egs.(2.3) and(2.4).

proximation, the conductivity tensor has been evaluftes-
ing an isotropic relaxation time,

(3.18

(2m)? m

where (1/) is the inverse mass tensor. This approximation

consider the system with ellipsoidal parabolic band Strucwr%orresponds to the conductivities withy,(1) replaced with

an isotropic relaxation timer in Egs. (3.16,3.17. In this
scaled system,

m+m,
2m,

m,—m,
2m,

q’=q* 2( cos 2//) , (3.19
where ¢ is the angle betweek* —k’* and thex axis and
q* =2kgsin|(6— ¢)/2]. If the isotropic scattering probability
Q(q) does not depend oqg, (short-range scatteringthe
scattering time\,,,(1) is isotropic and, therefore, E(B.18

is exact. However, if thg dependence of the matrix is not
negligible, the reduced scattering probabilitQ(8, )
=Q(g*, ) is anisotropic in general. If the original scatter-
ing probabilityQ(q) is a monotonically decreasing function
of g, as with the ionized impurity scatteringee Eq(2.28],
and in the case ah,>m,, the reduced probabilitQ(q*, )

is a monotonically decreasing function ¢f in the region
[0,7/2] for a fixedq*. If one can approximat®(g*,) in
the Fourier expansion up to the second term of @418,
Q; (as well asQy) is positive. Using the result of E@3.4),

it is found that\ (1)>\,(1). Similarly, if my<m,, then
Ay(1)<A(1).23%1f Q(q) is a monotonically increasing
function of g, then the relations fox,, (1) are opposite.

C. Elliptic roughness potential

The anisotropic low-temperature Hall mobilities found in
heterostructures with nominally no misorientafién'? are
interpreted in terms of anisotropic interface roughness scat-
tering. This anisotropy is examined by postulating a model
for the epitaxially grown heterointerface, assuming the for-
mation of anisotropic islands.

The standard approximation imposed on the interface
correlation  function [Eq. (2.30] is Gaussian,
G(a)=exd —(a/A)?],22-%631-33  or  exponential G(a)
=exf —|al/A],?* in the isotropic system. Studies on the

The current density is similarly given as for an isotropic anisotropic roughness potential have used an anisotropic cor-

mass[cf. Egs.(2.6), (2.7)],

relation length with a Gaussian fofrt#"®*3such that
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FIG. 1. Calculated ratio of relaxation timag /), as a function FIG. 2. Calculated anisotropic inverse relaxation times as a

of eccentricity parameter. Several parametets= Akg are chosen. function of eccentricity parameter when the isotropic Coulomb
scatterings and anisotropic elliptic roughness scattering are coexist.
x |2 y 2 The solid lines are exact result and the dashed lines are evaluated
G(x,y) :exl{ — (A_) _( ) } (3.20 with Matthiessen’s rule.
X y

A,
By setting, A=A, and A, /A ,=1//1+e, the scattering isotropic Coulomb scattering and the anisotropic elliptic
probability from EE-(2-33 for this case is roughness scattering coexist. Using the scattering probability

given in Eq.(2.28 with z;=0, and the same parameters as
€ used in Fig. 1, the inverse of exact total relaxation time
Q(q,4)= P(q)ex;{ T8+ A?qg’cos Zp), (3.2)  evaluated from Eq(3.5) and the one evaluated with the Mat-
thiessen’s rule using E@3.7) are shown as a function ef

where The inverse relaxation times are normalized toryl/
=fan/(2m*) and we have use®,\1+ e7,=500 andl
P(q)= Po exp( _ 2+e A2 2) =10. The error of the Matthiessen'’s rule increases with
(q)? 8(1l+e) ' and the exact relaxation times are smaller than the approxi-
mated ones.

with Po=m* (AAY)?/[2h2\1+ €]. The eccentricity factor
e shows the anisotropy rate, which is in the range—cf
<e<, The first two terms of the Fourier expansion of the
scattering probability are given by

Although this parametrizationA(,A,,A,) explains the
experimental results well, the physical relation between these
parameters and the microscopic structure is not clear. We
have modeled in Ref. 4 the roughened heterointerface as ran-

c domly distributed elliptical two-dimensional islands with
mAZqZ) , (3.22  monolayer height§d,=2.83 A for GaAs(001)].

Qo(q)=P(a)lo

> santepian.| 1€ Az 2) d(p)=do2, 7O[R?~(x=x)?~(1+e)y-y)?],
=—2 sign P YZ RN ,
3.2
_ _ ) (_ 3 wheree is the eccentricity of the island; is + 1 (islandg or
where signg) = =1 depending on the sign efandl,isan 1 (holeg, and® is a step functionR; and (; ,y;) are the

nth Order mOdIerd BeSSE| funCtiOI’l Of the ﬁrSt k|nd Assum- radius and the center Of theh is'and_ First the isotropic
ing[|e|/(1+€)]A%kE<1 and forqs<kg or gs>ke whereds  case, e=0, is considered. In this modelA2G(a)
is the screening constant, analytical expressions for the CO”E(A(r)A(rJra)):d%nN(I (a,R))q, where the overlapping
ductivity can be obtained, which are a sum of terms such afnction| of two circles with radiusR with a separatior is
In{[2+ €/4(1+€)]JA?kZ}. They are listed in Appendix A.  given by

In Fig. 1, the ratio of relaxation times, /\, is shown as
a function ofe for several values of=A kg evaluated from o a
Eq. (3.4 numerically. We usethy=4X 10*m~2, the effec- I(a,R)=7RD 2R/’ (3.29
tive mass 0.067 and dielectric constant 12.5 of GaAs. The

reason for the smaller anisotropy for smalleris quite 2

simple, namely, that the islands are too small for the elec- D(x)= ;(COS?lX—Xx/l—XZ). (3.29
trons to resolve their shape. For largerthe approximation

of neglectingl'5(1) andQ,,Qs3, ... may become question- with D(x)=0 for 1<x andny is the areal concentration of

able. We also show in Fig. 2 the relaxation time when thethe islands. Here the correlation of the island centgysy()
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is neglected. The amplitude of the roughness As clear terrace structures and relatively straight steps were
=d0\/nN7-r<R2)g and A%/dZ corresponds to the surface cov- found in the (1114 vicinal surface. See Ref. 5 for details.
erage, if there is no overlapping of islands. The average Since conductivity anisotropy is quite sensitive to step
(---)q over the island radiuR is undertaken with the radius shapes, an effective scattering potential is proposed at the
distributiong(R). Although the actual functional af(R) is interface steps to account for the conductivity anisotropy.
not known, the following normalized functions are consid- The scattering potential of one stép(r), is constructed by
ered for a trial: the superposition of potentid centered at théth step point
ri=[x(u),y;(u)](u is a parametgr where thex axis is set
e~ (RIRg)? (3.27) in a tilting direction andy is the other axis at the interface.
V7R, ' ' Therefore, each step extends roughly alongthdirection.
Assumingyx; is the single-valued function of; (neglecting

ga(R):

2 ) step overhangsthe step position is redefined B&K(y;),Vi]
go(R)= —Re (FR", (3.28  usingy; as a parameter and the step front functiprof the
R ith step. The chainlike potential is given by(r)
with a characteristic length scal. Roughly speaking, the =3.1dy,V(r—r;).
function g, corresponds to a nonequilibrium surface apd There exists an approach to the array of chainlike

corresponds to an equilibrium surface. Approximatimgx) potentialst® in which the interface correlation functiod is

as 1-x for 0<x<1 and zero otherwise, the asymptotic described as the product of an anisotropic Gaussian function
form of G(a) for the function g, is found to be Eq.(3.20 and a periodic function with average step distance
exd —(a/l2Ry)?]/a. Quite interestingly, a Gaussian form W.*° However, in this work no correlation is assumed in the
exd —(a/2Ry)?] is obtained not frony, for the nonequilib-  relative positions of the average step fronts and the effect of
rium surface but from the the functiag, for the equilibirum  electron wave interference scattered by the adjacent steps is

surface. _ o neglected. The average step positigy= (1/L) fdy;fi(y;)

If a finite anisotropy is introduceds andF also become gistributes randomly with density W whereL is the size of
anisotropic, wherds is always larger anér always smaller  the system. Here the statistical properties of step front func-
in the direction parallel to the semimajor axis of the ellipsetjgn f, are assumed to be independent of step silffithere-
(the x direction fore>0). This anisotropy of5 can be un-  fore, the total scattering probability, which is the square of
derstood by noting that the overlap of two ellipses displacednhe matrix element of the total scattering potential, has no
in the x direction is larger than that in the direction? I cross term contributed from different steps and is given by

general, the eccentricity is likely to be smaller for smaller myitiplying the number of step&/W with the scattering
islands because of the cost of surface energy for a fixed gaigrobability of one step.

m the nuchleusfformau?n_te?ﬁrgy pron(ttlon?Lhto_ltlsr:jrea. Here we postulate a simple model f&f as v52D(F),
OWEVET, here Tor SImplicily the eccentricily ot € IS.ads  \,hare 520 is a two-dimensionals function. The origin of

is considered to be uniform, independent of the size. In th|§his potentialy has been discussed in Ref. 5. By requiring

tthQeI,:: |s.ea5|lty f?quUby th(ihscale ttransforma'ilt)tnFot)]cf the spatial average of scattering potential to be zero, the po-
i € 'éo ropic poten '3 .f' sing. et IS0 rc;plctggéie ation UNC-ential U is v &9 x—f(y)]—(v/L). The absolute square of
ion G(a), one can define anisotropic functio®; (x,y) as its Fourier transform is

G(x,y1+e€y). Therefore, after Fourier transformation, one

has F*(ay,d,) =F(dx,qy/v1+e€)/V1+e, where F(ﬁ) is ;
the Fourier transform o6(a). The example of correlation |(k|U|K+q)|2= v_f dydYexp{—iq,y
4

functionsF* (qy,qy) is shown in Fig. 2 in Ref. 4. L

D. Chainlike potential —igf(y+Y)—f(y)I}, (3.29

Recently, very active research has been conducted on thge value of which ag=0 is zero because of the term
physics of surfaces vicinal from a low crystal index because_ (/). In particular, when the step is straight(y)

their properties are substantially different from those of low—q vy, one finds
index surfaces. Fractional layer superlattiéés created us-
ing IateraéGgrowth, and the wirelike incorporation of Si dop- S K
ant atoms’ are examples. _T= R S+ 8 tr—
We have found an anisotropy of mobilitie.) in a Q(a.¥) 8 q[ )+ 8(y=m)] (330
(111)A vicinal GaAs(00]) substrate at 1.5 K between two

adjacent Hall bridges aligned in tfi@10] and[110] direc-  where = =(8mv?/w#3kW). If the effect of screening is
tions, i.e.,u1107> M0 -> We could not find the anisotropy important,Q should be divided by«(q)?, however, in the
of u in (111)B vicinal samples, the mobility values of which following, this factor is omitted for simplicity. The relax-
were between the twqu values of the (111} vicinal  ation time is easily evaluated as(1)=(32/37%)/3 by in-
sample. In the (118 vicinal surface, no reflection high- serting Eq.(3.30 into Eq. (2.3 and integrating ovef. By
energy electron diffraction oscillation originating from a physical inspection)(1)= .

regular terrace structure was fodhd® but a fairly ragged For finite step raggedness, tiiéntegration in Eq(3.29
step structure was found using STRIOn the other hand, is evaluated by expanding the exponential,
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q;
2L

1 )
EJ dy e iax(fy+Y)—f(y) 1 — f dy[f(y+Y)2+f(y)2

—2f(y+Y)f(y)]=1—q2g?
+9292C(Y), (3.31)

whereC(Y)=(1/g°L) fdy f(y+Y)f(y) is the step point au-
tocorrelation function. The parametgcharacterizes the am-
plitude of the step raggedness, and K-g<1, this expan-
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and fors=3

[N(D)Y]71=30,-T5(3)—T'#(3).

The details of the derivation are given in Appendix B. Since
I' (s) defined in Eq.(3.3) is isotropic, the conductivity is
isotropic.

In general, we can prove that the conductivity is isotropic
for a scattering probability withe>1. The details of the
proof are given in Appendix C. Therefore, the conductivity

(4.2

sion to the order ofi2 is good. The step point autocorrelation of a 2DEG with a tetrahedral structdreor a pyramid

function C(Y) satisfying C(0)=1 and C(*x)=0 is as-
sumed to have a Gaussian form exgY/A)?] using a single

parameterA, which characterizes the step-position correla-

tion in they direction. Then the scattering probability is
given by

T

Q(q,l/f)Z?

k
f(é( )+ 8(yp—m)(1—g%q?)

2

Ag
keqcos ex;{
2\/; Fd {/f

1

+ —_—
4

AZQZSinzl/l)

(3.32

structuré® is isotropic.

V. CONCLUSION

A conductivity tensor was formulated for anisotropic elas-
tic scattering potentials in the semiclassical transport regime
using a Boltzmann equation. Explicit formulas of the con-
ductivity tensor are given to the lowest order of the potential
anisotropy. If isotropic and anisotropic scatterings coexist,
Matthiessen'’s rule gives larger mobility than the exact value.
The results are compared with those for an anisotropic mass.
The models of anisotropic elastic scattering potentials,
namely, elliptic roughness potential and chainlike potential,
are examined using the formula. The conductivity is proved

The first term shows specular reflection at the steps and tH@ be isotropic if the number of the symmetry axes of the
second term corresponds to diffuse scattering at the stefg§attering probability is more than 2.

because of the step undulations. Brataas and Bhcensid-

ered a system with lines of impurities with short-range po-
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tential. Although the physics is closely related to the current

problem, the main difference is that they assumed no corre-

lation in the positions of the impuritiekfA —0). The Fou-

rier expansion of) to the first two terms is good since, even

for g=0, A\,(1)=1/% to this order of approximatioficf.
the exact value (32/8%)/3). The relaxation times in this
approximation are given by

=3(1-a(l)g?), (3.33

Ax(1)

L s

(3.39

where dimensionless paramet@rs krg and I =keA were
used.a(l) and B(1) have analytical forms in two extreme
cases: if I<1, a(l)=%—(8Nm)(3w/16)4, pB(l)
=(8/3J7)(3w/16)%, and ifI>1, «a(l)=0, B(l)=2/2
The definition of functionsa(l) and B(1), and numerical
estimations of relaxation times as function @fand| has
been found in Ref. 5.

IV. HIGHER SYMMETRIES

In this section, the conductivity anisotropy is discussed

for higher symmetric scattering probabilityNg>2 or s
>1).

First Q is expanded to the second ord€),, assuming
that the anisotropy is small. A formula fe=2 is obtained
as

[N1)Y]71=30,-T3(2)—T's(2), (4.9)

The author gratefully acknowledges helpful discussions
with S. Hikami, Y. Takagaki, K. Muraki, T. Saku, S. Ando,
and G. E. W. Bauer. The author thanks S. Tarucha and Y.
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APPENDIX A: ANALYTICAL EXPRESSION
OF CONDUCTIVITY WITH ANISOTROPIC
ROUGHNESS SCATTERING

Explicit analytical expressions for the conductivity domi-
nated by anisotropic roughness scattering modeled in Eq.
(3.20 are listed assuminge|/(1+ €)]JA?k2<1 for two lim-
its of the screening constangs.

If gk,

7Tk|2: b
—€ "Po[(61o(b) =81 (b) +2I (b))

S

Noy(1)=

+(10ig(b) — 1513 (b) +615(b) —13(b))d]
6mk?

2
s

3\/; i Pol 1
- 5 21550
2q§b5/2

- Poll—3b¥3d] for b<1

5

+%:% for

b>1,

(A1)

where b= (kpA)[2+ €l4(1+€)], d=(keA)e/8(1+¢€)]
and P, is given in the main text below E¢3.21).

Similarly, for gs<<kg, we have
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My(1)=e"PPo[(214(b) = 211(b))F (3 (b) — 4l 1(b)
+1,(b))d]

—>277P0[1 3pb¥3d] for b<1
3 _ 3d or bl
2b3/2 Pol 1t gpT2p for b1

(A2)

APPENDIX B: CONDUCTIVITY TENSOR FOR HIGHER
SYMMETRIES

Here, an explicit formula of the conductivity tensor Eq.

(4.1) for the lowest order o6=2 is derived. The extension
of the method to Eq(4.2) for the lowest order o6=3 or
higher symmetries is straightforward.

First we notice the Woodbury formula,

(A+U- V) 1=A"1-[ATTUE+VTA IU) " IVTA Y],
(B1)

whereA is annXn matrix andU,V arenX p matrices with
integersn>p, andE is apXx p unit matrix. Now,K*"Y with
only nonzeroQ, and Q, is the sum ofA and U-V' as
follows:

1
Joi 0 5l 0
1
0 Jos O Sl
A=| 1 (B2
Jys 0 Jos O (B2)
2 )
1
532,5 0 Jo7
0
gr=(t 0 0 B3
ot o -..) (B3)
N B4
- 1 0 O .'1 ( )

wheret= * %Jz 1. The inverse of matriXA has nonzero ele-
ments @), 11 B; ; with i + ] even. Directly applying the for-
mula, we have

(E+VTA~1U)~ 1—1 L B (BS)
El-tB, 1
whereE =1—-12B; B, ,. Therefore,
t?B% B,
NV 1=Bya+ —Z— (B6)
= ! (B7)
BIll_tZBZ,Z.
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SinceBq 1=1[J91—I's(2)] andB, ;= 1[Jg 53— I'7(2)],
. _ (33212
[NY(1)]11=301—T5(2) - JoTA(2) (B8)
=Jo1—I'3(2)-T's5(2), (B9)

where the definition of (s) is used.

APPENDIX C: PROOF OF ISOTROPIC CONDUCTIVITY
FOR A SCATTERING PROBABILITY WITH S>1

Here we prove that the conductivity is isotropic for a scat-
tering probability whose Fourier terng@,, are nonzero only
for m=Is wherel is integer ands>1. We begin with a
rather abstract algebra for a gro@ of certain kinds of
matrices. Assume the members @f are not singular and
divided into two types, sayA andB, and define a function
giving the type of a matrix such that if the mati is type
A, [M]=A and the matrixM is typeB, [M]=B. The
following properties are requiredl) For two matricesM
andM,, the sum;{M;+M,]=[M]+[M,]. If the matrix
M is the sum of typeA and typeB matrices[M]=A+B,
however, thisM is not a member of5. (2). For matrices
with [M 4]=A and[Mg]=B, the products have the follow-
ing properties,[MaMA]=A, [MgMg]=A, and [MsMg]
=[MgM4]=B. (3) The unit matrixE is of type A, hence,
we have[M,1]1=A and[M;']=B.

Now, the problem that we want to postulate involves the
type of the inverse of the matril o+ Mg, if the inverse
exists. We use the Woodbury formulaMg+Mg) t
=M =M Y E+MgM, ) "*MgM,t. By setting C
=MgM,!, [C]=B and[(E+C) }]=[E—-C+C?-C?®
+C*—...]=[E+C?+C*+... ]+ [-C-C3—...] = A
+B. Finally, using[M,']=A and[M,*(1+C) 'C]=A
+B, we have[(M,+Mg) *]=A+B. Therefore, the in-
verse of a matrix of typé+B is of type A+ B.

Let us apply the above formulas to a system with a scat-
tering probability with four symmetry axes, where only
terms such ag, ,, with an evem exist. The general form of
the matrixkK is

1 1 1 1
Joa 5921 3J23 T3daz 5Jas
1 1 1
*5321 Jos 5341 525 *5J63
1 1 1 1
532,3 lL§J4,1 Jos iEJel 532,7 ,
1 1 1 1
iEJA,S 232,5 —§J6,l Joz iEJS,l
1 1 1
534,5 *5J63 532,7 *-Jg1 Joo

" (c

which can be expressed as the sunivbf+Mg. TypeA of
matrix M, is whereM, has a zero matrix elemem 4; ;
with i +j odd. And typeB of matrix Mg is whereMg has a
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zero matrix elemenkg; ; with i+ even. The key point of isotropic, since it is free from the element of matrix type
this proof is that only the nonzero matrix elementshdg  whose sign depends on the directionandy.

change sign depending on the directioror y. Since the A similar argument can be applied to a system with a
products of these matrices have propertyaBove and as- scattering probability with six symmetry axes, where only
suming the existence of the inverse, we hay&¥)~']  terms such ads, , with integern exist. The general form of
=A+B. Therefore, the relaxation time given bi(¥);,is  matrix KXV is

Jo 0 11‘332 1\]34 0 iEJes
27> 2 2
0 Jos+5J30 0 0 - E.J3 GiEJ63 0
: : 2720727
1 1 1
I5\]32 0 Jos iEJ61 0 E‘]38
_%J34 0 i%\]ﬁl \]0'7 0 1%\]92 ... ’ (CZ)
1 1
0 ——J3et=dgs O 0 JooF 390 0
272027 ' :
1 1 1
ii\]es 0 §J3,8 1539,2 0 Jo11
|
which can be expressed as the sumvbf+ Mg whereM,  zero only fori—k=Is and k—j=I's and hence —j=(l

has a nonzero matrix elemekt,;; with j=i+3n with an  +1")s, the product is typé\. The (,]) element of the ma-
integern, andMg has a nonzero matrix elemettg; ; with  trix product MgMg=3M B(i,k)Mé(k'j) is nonzero only for
i+j=3n+1 and with a sign that changes depending on theé +k—1=Is and k+j—1=I's. Therefore, the product is
directionx or y. Since the products of these matrices havetype A sincei —j=(I—1")s. In the same way, thd (j) ele-
property 2 and assuming the existence of the inversement of the producM ,Mg=3Mg; (Mg, ; is nonzero only
[(K*Y)~1]=A+B. Hence the relaxation time given by fori—k=Is andk+j—1=I's and hence the product is type
(KX’V)M, is again isotropic. B sincei+j—1=(I+1")s, which also holds forMgM,4.

Now, we prove that for a scattering probability with a Now, property 2 is fulfilled. Unit matrixe belongs to type
nonzeroQs(1=0,1,2 ..., ands>1) the conductivity isiso- ~A. Therefore, the matrix K*¥)~* belongs to typeA+ B.
tropic. We defineM , andMg by the first and second terms Since the (1,1) element of a tyd® matrix is zero for a
of Egs.(2.21) and (2.24), respectively. Since the j) ele- scattering probability with a number of symmetry axes 2
ment of the matrix produck A\M =3 M5 (M j; is non-  larger than 2, the conductivity is isotropic.
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