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Two-dimensional electron transport with anisotropic scattering potentials
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Anisotropic scattering potential has been found at the heterointerface of a two-dimensional electron gas in
low-temperature transport experiments. This scattering potential has various symmetries depending on the
crystalline direction of the interface. The conductivity tensor of a two-dimensional electron gas is theoretically
investigated with a Boltzmann equation. Several models of anisotropic elastic scattering potentials are exam-
ined. Explicit formulas of the conductivity tensor are given to the lowest order of the potential anisotropy. If
isotropic scatterings and anisotropic scatterings coexist, Matthiessen’s rule gives larger mobility than the exact
value. The conductivity is isotropic if the number of the symmetry axes of the scattering probability is more
than 2.@S0163-1829~98!04035-1#
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I. INTRODUCTION

The possible origins of anisotropic conductivity are t
anisotropic effective mass and the anisotropic scattering
tential. Mass anisotropy is a dominant origin of the anis
tropic conductivity, for example, in bulk Si or Ge~Ref. 1! or
in Si metal-oxide-semiconductor structures at the~110!
interface.2,3 Recently, quite a large anisotropy has be
found in the electron conductivity of an AlxGa12xAs/GaAs
heterostructure on a~001! substrate4–6 and also in that of a
double heterostructure with a thin AlAs layer deposited
the well region.7 More recently, intensive research has co
centrated on the anisotropic electron transport on a (31B
GaAs substrate8 and the anisotropic hole transport~with an-
isotropic hole mass! on a (311)A GaAs substrate.9–12 For an
electron on a~001! substrate, for example, the conductivi
in the @ 1̄10# direction is higher than that in the@110# direc-
tion. Since the low-energy effective mass of the conduct
band is isotropic, the anisotropic transport originates fr
the anisotropy of the scattering potential. The effect of i
purity scattering is assumed to be isotropic, and the pho
scattering is negligible in these experiments. Two candida
for the anisotropic potential are~1! interface roughness sca
tering from anisotropic islands and~2! chainlike scattering
potential localized at the steps formed on a vicinal substr
Both of these stem from the microscopic potential of t
anisotropic structure in the two crystalline direction@ 1̄10#
and @110# of a ~001! GaAs substrate. Assuming the anis
tropic islands have some appropriate radial distribution
are located randomly at the interface, the mobility in t

@ 1̄10# direction was shown to be larger.4 In the nearly
straight chainlike potential, the conductivity normal to t
chain is smaller than that parallel to the chain.5 An additional
multiscattering effect has been discussed assuming tha
spacing of these chains is almost periodic and shorter
the electron coherence length.13

Scanning tunneling microscopy~STM! or atomic-force
microscopy have enabled us to inspect the surface struc
in detail. Several experimental observations support the
istence of an anisotropic~nearly elliptical! island that is
longer in the@ 1̄10# direction. The surface diffusion consta
PRB 580163-1829/98/58~11!/7151~11!/$15.00
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of the adatoms is found to have an anisotropy in vario
directions, causing the shape of the island to be highly
isotropic. A stable two-dimensional island can have a vari
of shapes depending on the direction of the crystal surfa
An STM study of the GaAs (111)B surface has shown th
existence of a triangular superstructure.14 Both a tetrahedral
structure15 and a pyramid structure16 have been realized on
(111)B or ~001! GaAs surface. Recently, wire-shaped stru
ture of Ge was realized on Si~113! surface.17 It should be
stressed that, although the microscopic shape and siz
these scatterers may not be uniform,the typical direction of
these structures could be macroscopically homogeneou
the surface, so thatthe ensemble averaged scattering pote
tial maintains the symmetry. Therefore, the transport of
two-dimensional electron gas~2DEG! confined at the hetero
interface will be anisotropic as a result of scattering by th
interface structures. It has not yet been established, howe
that the higher symmetric potential structures affect the e
tron transport confined in the heterostructure.

In this paper, we derive a general formula for the cond
tivity tensor of a 2DEG controlled by the anisotropic scatt
ing potential under a zero magnetic field. The effect of we
magnetic field will be reported elsewhere. The calculation
restricted to the semiclassical transport regime. Quan
correction by a weak localization had been discussed in R
18,19. This paper is organized as follows: In Sec. II a co
ductivity tensor is derived by using the Boltzmann equatio
Section III shows the results for an anisotropic scatter
probability with two symmetry axes. Conductivity tenso
for the scattering probability with higher symmetry are d
rived in Sec. IV, and conclusion follows in Sec. V. The a
pendices provide detailed derivations of the formulas in
main text.

II. CONDUCTIVITY TENSOR

We start from a standard linearized Boltzmann equat
for 2DEG under a uniform electric fieldEW ,

2eEW •
]«k

\]kW

] f 0

]«k
5(

kW8
~gkW2gkW8!Q̃~kW ,kW8!, ~2.1!
7151 © 1998 The American Physical Society
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7152 PRB 58YASUHIRO TOKURA
where f 05@exp(b(«k2m)11#21 is the equilibrium distribu-
tion function at a temperature 1/(kBb) and with the chemica
potentialm, and«k5\2k2/(2m* ) is the energy of an elec
tron with a wave numberkW . Here the effective massm* is
assumed to be isotropic. The functiongkW5 f kW2 f 0 is the
change in the distribution functionf kW by the electric field to
a linear order, which is sustained by the elastic scatte
with a probabilityQ̃(kW ,kW8) from a statekW to a statekW8. The
scattering potential is assumed to have at least one symm
axis and one of these axes is chosen for thex direction. Since
we assume elastic scattering and take the change in the
tribution function to the linear order ofEW , the electron ve-
locity vk5(1/\)u]«/]kW u is invariant and only its angleu
relative to thex axis is a variable. By defining

gkW[S 2
] f 0

]« DevklW ~u!•EW , ~2.2!

wherelW (u) is the relaxation time vector to be solved, th
Boltzmann equation@Eq. ~2.1!# reduces to

cosu5E
0

2p

df@lx~u!2lx~f!#Q~u,f!, ~2.3!

sin u5E
0

2p

df@ly~u!2ly~f!#Q~u,f!, ~2.4!

wheref is an angle between thex axis andkW8. The scatter-
ing probability Q(u,f), which is obtained by integrating
Q̃(kW ,kW8) by ukW8u, is defined from Fermi’s golden rule
namely,

Q~u,f![
L2

~2p!2

2pm*

\3
z^uuUuf& z2, ~2.5!

whereU is the scattering potential and the bra^uu denotes
the plane wave Cu

†(x,y)5e2 ikW•rW/L5exp@2i(xkcosu
1yksinu)#/L with the system sizeL2. If it is necessary, the
ensemble average of the potential distribution is used. N
the problem is reduced to the integral equations for two
dependent functionslx and ly . Traditionally, the transpor
properties of the anisotropic scattering potential are inve
gated by using anisotropic scattering timet(u) where the
right hand side of Eq.~2.1! is replaced withgk /t(u) and
then solvingt(u) by the iteration method or the variation
method. This treatment is equivalent to ours by replac
lx(u) with t(u)cosu and ly(u) with t(u)sinu. However,
our method is advantageous in that the formulas are s
rated in the main two directions (x and y) and become
simple as can be seen in the following. Our method is sim
to that of Samoilovich and co-workers,20,21 which expands
the distribution function in spherical harmonics and applie
to the bulk transport with an anisotropic mass. There exis
rigourous method of dealing with the anisotropic scatter
problem if the scattering probability is expressed by the s
of products of factors depending onkW and of kW8, such as
( i pi(kW )qi(kW8).22 However, such a method is only applicab
in restricted cases.

The current density is given by
g
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jW5
2

L2(
kW

evW kgkW ~2.6!

5
e2

2p2E0

`

dkkS 2
] f 0

]« D E
0

2p

duvk@vW k^ lW ~u!#EW ,

~2.7!

where the factor 2 comes from the spin degeneracy. Th
the conductivity tensor is

s5
e2ns

m*
E d«

«

«F
S 2

] f 0

]« D
3E

0

2p

duS lx~u!cosu ly~u!cosu

lx~u!sin u ly~u!sin u D , ~2.8!

where the electron density isns5m* «F /(p\2) with the
Fermi energy«F5m at zero temperature and the matrix
Eq. ~2.8! is (1/k)kW ^ lW (u). Henceforth, considerations ar
limited to zero temperature at which only the statekW at the
Fermi circle (5kF) is relevant, i.e.,2] f 0 /]«5d(«2«F).
The extension to finite temperatures is straightforward si
the effect comes only in a weighted integration
@2(] f 0)/(]«)#«/«F , if the change in the screening factor o
the scattering potential is negligible.

Now the scattering probabilityQ(u,f) is examined in
detail. Since this term is a function ofkW2kW8 in general, it is
rewritten in terms ofq[ukW2kW8u52kF sin(uu2fu/2) and the
anglec betweenkW2kW8 and thex axis. The periodicity can be
easily seen,Q(q,c)5Q(q,c12p). Using microreversibil-
ity Q(u,f)5Q(f,u), it is found that

Q~q,c!5Q~q,c2p!5Q~q,c1p!. ~2.9!

Since one symmetry axis in thex direction was chosen, the
scattering probability between stateskW andkW8 is the same as

the probability between statesk̃W and k̃W8 where kx5 k̃x and
ky52 k̃y . Therefore,

Q~q,c!5Q~q,2c!, ~2.10!

and from Eqs.~2.9! and ~2.10!,

Q~q,c!5Q~q,p2c!5Q~q,2p2c!. ~2.11!

Hence, it is only necessary to know the functionQ(q,c) at
cP@0,p/2# for a givenq. Using these properties, by puttin
(u,f)→(2u,2f) in Eq. ~2.3!, it is found that lx(2u)
5lx(u), and in Eq.~2.4!, ly(2u)52ly(u). Similarly, by
setting (u,f)→(p2u,p2f), it is found thatlx(p2u)5
2lx(u) andly(p2u)5ly(u).

We solve the integral equations@Eqs.~2.3! and ~2.4!# by
Fourier expansion. Using the above symmetries,lx and ly
are expanded as follows:

lx~u!5 (
n50

`

lx~2n11!cos@~2n11!u#, ~2.12!

ly~u!5 (
n50

`

ly~2n11!sin@~2n11!u#, ~2.13!
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with the inversion

lx~n!5
1

pE0

2p

dulx~u!cos~nu!, ~2.14!

ly~n!5
1

pE0

2p

duly~u!sin~nu!, ~2.15!

for n.0. Terms such as *dulx(u)sin(nu) or
*duly(u)cos(nu) are absent due to the symmetry. Hen
using Eq.~2.8!, the conductivity tensor is diagonal, i.e.,

sxx5
e2ns

m*
lx~1!, ~2.16!

syy5
e2ns

m*
ly~1!, ~2.17!

from whichlx(1) andly(1) can be interpreted to the relax
ation times in thex andy directions, respectively.

The scattering probability is also expanded using the s
metry,

Q~q,c!5 (
m50

`

Qm~q!cos~2mc!, ~2.18!

with the inversion

Qm~q!5
1

~11dm,0!p
E

0

2p

dcQ~q,c!cos~2mc!,

~2.19!

wheredm,n50 for mÞn anddn,n51. If the scattering prob-
ability Q(q,c) is periodic inc, the period should bep/s
with an integers because of the microreversibility@Eq. ~2.9!#
which requires the inversion symmetry through a pointq
50. Then, using Eq.~2.19!, one can find thatQm should be
zero if cos(2mp/s)Þ1, or equivalently, ifmÞ ls with non-
negative integerl . In this case, one obtains that the numb
of symmetry axesNQ of the scattering probability is 2s with
considering an additional property, Eq.~2.10!. The isotropic
scattering probability is a special case whens5` and all the
termsQm with m.0 vanish. The symmetry of the scatterin
probability Q should be clearly distinguished from the sym
metry of the scatteringpotential U. If the potential has even
number of symmetry axesNU as found in a pyramid struc
ture on a~001! surface (NU54), the scattering probability
has the same number of symmetry axes and onlyQlNU/2

terms are nonzero. However, care is needed if the pote
has odd number of symmetry axes, as found in a triang
structure on the (111)B surface (NU53). Because of the
microreversibility, the scattering probability hasNQ52NU
symmetry axes and onlyQlNU

terms are nonzero.
By putting all the expansions into the integral equati

@Eq. ~2.3!#, multiplying by cos(lu), and integrating overu
from 0 to 2p( l 51,2, . . . ), oneobtains, after a straightfor
ward calculation,

d l ,15 (
n51

`

lx~2n21!Kl ,n
x , ~2.20!
,

-

r

ial
ar

where the symmetric matrixKx is given by

Kl ,n
x 5

~21! l 2n

2
@~11d l ,n!Ju l 2nu,n1 l 212Jn1 l 21,u l 2nu#,

~2.21!

where

Jn,m5E
0

2p

dzQn~qz!@cos~nz!2cos~mz!#, ~2.22!

and qz52kF sinuz/2u. One finds a similar equation in they
direction,

d l ,15 (
n51

`

ly~2n21!Kl ,n
y , ~2.23!

with

Kl ,n
y 5

~21! l 2n

2
@~11d l ,n!Ju l 2nu,n1 l 211Jn1 l 21,u l 2nu#.

~2.24!

By defining the vectorlx5@lx(1),lx(3), . . .#T and I
5(1,0,0, . . . )T whereT is the transpose, Eq.~2.20! is ex-
pressed byI 5Kxlx . A similar equation is also obtained i
the y direction. If the matricesKx and Ky are not singular,
the scattering times are obtained by the equations

lx~1!5~Kx!1,1
21 , ~2.25!

ly~1!5~Ky!1,1
21 , ~2.26!

whereM1,1 means the (1,1) element of a matrixM .
Here several comments are needed. Even if one of

matrices, for example,Kx, is singular, a physically sound
relaxation time is obtained in they directions, which will be
demonstrated in Sec. III D. The order of matrices and vec
have not been mentioned. To undertake some nume
evaluation of this problem, we have to truncate the infin
expansion ofQ to some orderNt . This approximation gives
fairly good results if the expansion ofQ converges abso
lutely, which is so in most cases except for that found in S
III D. If the scattering potential is isotropic, allQm values
with m.0 are zero, and, the matricesKx and Ky are the
same and are diagonal with the elementsKl ,l5J0,2l 21 . The
matrix inversion is trivial and the inverse of the scatteri
time, which is also isotropic, is given by

l~1!215J0,15E
0

2p

dzQ0~qz!~12cosz!, ~2.27!

which is a standard definition of the transport relaxation ti
in an isotropic system.

The scattering probabilities of the two main types of sc
tering at low temperatures are summarized here for later
For screened Coulomb scattering, which is isotropic in g
eral, the scattering probability is given by23

QCoulomb~q!5
\pnI

2m*
S qs

qk~q! D
2

e22qzd, ~2.28!

whereqs5m* e2/2p\2k* is the screening constant with th
effective dielectric constantk* , zd is the distance of the
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7154 PRB 58YASUHIRO TOKURA
ionized impurities and the conducting layer, andnI is the
impurity areal density in the layerz5zd . The polarization
factor k(q) is assumed to be isotropic and is 11qs /q by
neglecting the form factor of the wave function.23

The scattering probability between the two-dimensio

stateskW and kW8 due to a fluctuation in the interface heigh

d(rW ) at a positionr5(x,y), is given by the first Born
approximation,23–25

Q̃rough~kW ,kW8!5
2p

\ K U YDk2k8

k~ ukW2kW8u!
U2L d~«k2«k8!,

~2.29!

where the local change in the potential caused by the shi

the interface is given byYD(rW ) using a relative displace

mentD(rW )5d(rW )2^d(rW )&. DqW is the Fourier transform o

D(rW ), and the averagê•••& is obtained for an appropriat
roughness distribution. The interface correlation functionG
and its Fourier transformF ~Ref. 26! are introduced by

G~aW !5
1

D2
^D~rW !D~rW 1aW !&, ~2.30!

F~qW !5
1

D2L2
^uDqW u2&, ~2.31!

whereD is the root mean square ofD(rW ) and L is a scale
characterizing the fluctuation in the lateral direction. T
scattering probability is therefore

Qrough~u,f!5
m*

2p\2S DLY

k~q! D 2

F~qW !. ~2.32!

For a 2DEG confined to a single heterostructure,Y

5(e2/k* )( 1
2 ns1ndepl) wherendepl is the fixed-charge con

centration in the depletion layer.23

III. TWO SYMMETRY AXES

In this section, we restrict the scattering probability to t
least symmetry, i.e., the case of two symmetry axes (NQ
52 or s51).

A. Small anisotropy

For a small anisotropy, the expansion@Eq. ~2.18!# of the
scattering probability is truncated asQ(q,c)5Q0(q)
1Q1(q)cos 2c. The matricesKx/y are given by
l

of

Kx/y51
J0,17

1

2
J1,0 2

1

2
J1,2 0

2
1

2
J1,2 J0,3 2

1

2
J1,4

2
1

2
J1,4 J0,5 2

1

2
J1,6

2
1

2
J1,6 J0,7 �

0 � �

2 ,

~3.1!

where the upper and lower signs are forKx andKy, respec-
tively. Evaluating the inverse of the matrix, it is found tha

1

lx/y~1!
5J0,17

1

2
J1,02G3~1!, ~3.2!

where the factorG3(1) is isotropic and is defined in a form
of continued fraction as follows:

Gm~s!5

S 1

2
Js,m2sD 2

J0,m2Gm12s~s!
. ~3.3!

Since Gm(s) is a rapid decreasing function ofm in most
cases, we can have a reasonably approximated valu
G3(1) by truncating the series at some point. If the isotro
term Q0 is much larger thanQ1 , G3(1) can be neglected
in Eq. ~3.2!. In this approximation, Eq.~3.2! is in an explicit
form,

1

lx/y~1!
5E

0

2p

dzQ0~qz!~12cosz!

6
1

2E0

2p

dzQ1~qz!~12cosz!. ~3.4!

If there are several scattering processes, Matthiess
rule is often employed to evaluate the total relaxation ti
from the independently evaluated relaxation times. Tak
and Pearsall27 and Saxena and Mudares28 have shown that
this is not correct when treating alloy disorder scattering
the temperature dependences of each relaxation time d
greatly. However, for low-temperature elastic scatterings,
relaxation time is almost temperature independent. Here,
validity of Matthiessen’s rule is examined when isotrop
and anisotropic scatterings coexist. The inverse of the t
relaxation time is given by@cf. Eq. ~2.27!#,

1

lx/y~1!
5J0,1

I 1J0,1
A 7 1

2 J1,0
A 2

~ 1
2 J1,2

A !2

J0,3
I 1J0,3

A 2G5
I 1A~1!

,

~3.5!

where the suffixesI andA show the contribution from iso-
tropic and anisotropic scattering, respectively. On the ot
hand, the relaxation times for the individual processes ar

1

lx/y
I ~1!

5J0,1
I , ~3.6!
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1

lx/y
A ~1!

5J0,1
A 7

1

2
J1,0

A 2
~ 1

2 J1,2
A !2

J0,3
A 2G5

A~1!
. ~3.7!

The failure of Matthiessen’s rule is evaluated while negle
ing the order ofG5(1), namely,

1

lx/y~1!
2(

i

1

lx/y
i ~1!

5S 1

2
J1,2

A D 2S 1

J0,3
A

2
1

J0,3
I 1J0,3

A D .

~3.8!

SinceJ0,3 is positive in most cases, the value of Eq.~3.8! is
positive and the total relaxation time with Matthiessen’s r
is overestimation. Therefore, care is needed to evaluate
anisotropic transport when other isotropic scattering
present and of the same magnitude. This error is dem
strated explicitly in Sec. III C.

B. Mass anisotropy

A system with a special type of anisotropic mass and w
an isotropic scattering potential can be reduced to a sys
of an anisotropic potential with an isotropic mass.1,20,21,29We
consider the system with ellipsoidal parabolic band struct
as

«k5
\2kx

2

2mx
1

\2ky
2

2my
, ~3.9!

and the scattering potential depends only onq5ukW2kW8u. De-
fining a new wave vector by scaling theky axis,

kW* 5akW[S 1 0

0 Amx /my
D kW , ~3.10!

an isotropic band with an isotropic massmx is obtained
~Herring-Vogt transformation!.1 By noting

]«

\]kW
5a

]«

\]kW*
5avW k* , ~3.11!

andEW * 5aEW and with the definition

gkW5S 2
] f 0

]« DeEW * •lW ~k* !uvk* u, ~3.12!

the Boltzmann equation@Eq. ~2.1!# reduces to

~cosu,sin u!5Amy

mx

L2

~2p!2E d2k8* @l~kW* !2l~kW8* !#

3Q̃~a21kW* ,a21kW8* !, ~3.13!

where the angleu is determined bykW* and thex axis. By
putting, for elastic scattering,

Q̃~a21kW* ,a21kW8* !5
\2~2p!2

L2Amxmy

Q~u,f!d~«k* 2«k8* !,

~3.14!

the same equation is obtained forlW as Eqs.~2.3! and ~2.4!.
The current density is similarly given as for an isotrop
mass@cf. Eqs.~2.6!, ~2.7!#,
-

he
s
n-

h
m

e

jW5
e2

2p2
Amy

mx
E d2k* d~«F2«k* !uvk* u@avW k* ^ lW ~k* !#EW * ,

~3.15!

which reduces to the diagonal conductivities@cf. Eqs.~2.16!,
~2.17!#

sxx5
e2ns

mx
lx~1!, ~3.16!

syy5
e2ns

my
ly~1!, ~3.17!

using the electron density given by ns

5A(my /mx)kF*
2/(2p) with kF* 5A2mx«F/\. In a crude ap-

proximation, the conductivity tensor has been evaluated30 us-
ing an isotropic relaxation timet,

s5
2e2t

~2p!2E d2k f0S 1

mD , ~3.18!

where (1/m) is the inverse mass tensor. This approximati
corresponds to the conductivities withlx/y(1) replaced with
an isotropic relaxation timet in Eqs. ~3.16,3.17!. In this
scaled system,

q25q* 2S mx1my

2mx
1

mx2my

2mx
cos 2c D , ~3.19!

wherec is the angle betweenkW* 2kW8* and thex axis and
q* 52kF* sinu(u2f)/2u. If the isotropic scattering probability
Q(q) does not depend onq, ~short-range scattering!, the
scattering timelx/y(1) is isotropic and, therefore, Eq.~3.18!
is exact. However, if theq dependence of the matrix is no
negligible, the reduced scattering probabilityQ(u,f)
5Q(q* ,c) is anisotropic in general. If the original scatte
ing probabilityQ(q) is a monotonically decreasing functio
of q, as with the ionized impurity scattering@see Eq.~2.28!#,
and in the case ofmy.mx , the reduced probabilityQ(q* ,c)
is a monotonically decreasing function ofc in the region
@0,p/2# for a fixedq* . If one can approximateQ(q* ,c) in
the Fourier expansion up to the second term of Eq.~2.18!,
Q1 ~as well asQ0) is positive. Using the result of Eq.~3.4!,
it is found thatly(1).lx(1). Similarly, if my,mx , then
ly(1),lx(1).2,3,20 If Q(q) is a monotonically increasing
function of q, then the relations forlx/y(1) are opposite.

C. Elliptic roughness potential

The anisotropic low-temperature Hall mobilities found
heterostructures with nominally no misorientation4,7–12 are
interpreted in terms of anisotropic interface roughness s
tering. This anisotropy is examined by postulating a mo
for the epitaxially grown heterointerface, assuming the f
mation of anisotropic islands.

The standard approximation imposed on the interfa
correlation function @Eq. ~2.30!# is Gaussian,
G(aW )5exp@2(a/L)2#,23–26,31–33 or exponential G(aW )
5exp@2uau/L#,26,33 in the isotropic system. Studies on th
anisotropic roughness potential have used an anisotropic
relation length with a Gaussian form7,12,8,13such that
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G~x,y!5expF2S x

Lx
D 2

2S y

Ly
D 2G . ~3.20!

By setting, L5Lx and Ly /Lx51/A11e, the scattering
probability from Eq.~2.32! for this case is

Q~q,c!5P~q!expS 2
e

8~11e!
L2q2cos 2c D , ~3.21!

where

P~q!5
P0

k~q!2
expS 2

21e

8~11e!
L2q2D ,

with P05m* (DLY)2/@2\2A11e#. The eccentricity factor
e shows the anisotropy rate, which is in the range of21
,e,`. The first two terms of the Fourier expansion of t
scattering probability are given by

Q0~q!5P~q!I 0S e

8~11e!
L2q2D , ~3.22!

Q1~q!522 sign~e!P~q!I 1S ueu
8~11e!

L2q2D ,

~3.23!

where sign(e)561 depending on the sign ofe and I n is an
nth order modified Bessel function of the first kind. Assum
ing @ ueu/(11e)#L2kF

2!1 and forqs!kF or qs@kF whereqs

is the screening constant, analytical expressions for the
ductivity can be obtained, which are a sum of terms such
I n$@21e/4(11e)#L2kF

2%. They are listed in Appendix A.
In Fig. 1, the ratio of relaxation timesly /lx is shown as

a function ofe for several values ofl[LkF evaluated from
Eq. ~3.4! numerically. We usedns5431015m22, the effec-
tive mass 0.067 and dielectric constant 12.5 of GaAs. T
reason for the smaller anisotropy for smallerl is quite
simple, namely, that the islands are too small for the e
trons to resolve their shape. For largere, the approximation
of neglectingG3(1) andQ2 ,Q3 , . . . may become question
able. We also show in Fig. 2 the relaxation time when

FIG. 1. Calculated ratio of relaxation timesly /lx as a function
of eccentricity parametere. Several parametersl 5LkF are chosen.
-

n-
s

e

-

e

isotropic Coulomb scattering and the anisotropic ellip
roughness scattering coexist. Using the scattering probab
given in Eq.~2.28! with zd50, and the same parameters
used in Fig. 1, the inverse of exact total relaxation tim
evaluated from Eq.~3.5! and the one evaluated with the Ma
thiessen’s rule using Eq.~3.7! are shown as a function ofe.
The inverse relaxation times are normalized to 1t0

[\pnI /(2m* ) and we have usedP0A11et05500 andl
510. The error of the Matthiessen’s rule increases withe
and the exact relaxation times are smaller than the appr
mated ones.

Although this parametrization (D,Lx ,Ly) explains the
experimental results well, the physical relation between th
parameters and the microscopic structure is not clear.
have modeled in Ref. 4 the roughened heterointerface as
domly distributed elliptical two-dimensional islands wit
monolayer heights@d052.83 Å for GaAs~001!#.

d~rW !5d0(
i

h iQ@Ri
22~x2xi !

22~11e!~y2yi !
2#,

~3.24!

wheree is the eccentricity of the island,h is 11 ~islands! or
21 ~holes!, andQ is a step function.Ri and (xi ,yi) are the
radius and the center of thei th island. First the isotropic
case, e50, is considered. In this model,D2G(a)
5^D(r )D(r 1a)&5d0

2nN^I (a,R)&g , where the overlapping
function I of two circles with radiusR with a separationa is
given by

I ~a,R!5pR2DS a

2RD , ~3.25!

D~x!5
2

p
~cos21x2xA12x2!, ~3.26!

with D(x)50 for 1,x andnN is the areal concentration o
the islands. Here the correlation of the island centers (xi ,yi)

FIG. 2. Calculated anisotropic inverse relaxation times a
function of eccentricity parametere when the isotropic Coulomb
scatterings and anisotropic elliptic roughness scattering are coe
The solid lines are exact result and the dashed lines are evalu
with Matthiessen’s rule.
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is neglected. The amplitude of the roughness isD
5d0AnNp^R2&g andD2/d0

2 corresponds to the surface co
erage, if there is no overlapping of islands. The aver
^•••&g over the island radiusR is undertaken with the radiu
distributiong(R). Although the actual functional ofg(R) is
not known, the following normalized functions are cons
ered for a trial:

ga~R!5
2

ApR0

e2~R/R0!2
, ~3.27!

gb~R!5
2

R0
2

Re2~R/R0!2
, ~3.28!

with a characteristic length scaleR0 . Roughly speaking, the
function ga corresponds to a nonequilibrium surface andgb
corresponds to an equilibrium surface. ApproximatingD(x)
as 12x for 0,x,1 and zero otherwise, the asymptot
form of G(a) for the function ga is found to be
exp@2(a/2R0)2#/a. Quite interestingly, a Gaussian form
exp@2(a/2R0)2# is obtained not fromga for the nonequilib-
rium surface but from the the functiongb for the equilibirum
surface.

If a finite anisotropy is introduced,G andF also become
anisotropic, whereG is always larger andF always smaller
in the direction parallel to the semimajor axis of the ellip
~the x direction fore.0). This anisotropy ofG can be un-
derstood by noting that the overlap of two ellipses displa
in the x direction is larger than that in they direction.4 In
general, the eccentricity is likely to be smaller for smal
islands because of the cost of surface energy for a fixed
in the nucleus formation energy proportional to its ar
However, here for simplicity the eccentricity of the islandse
is considered to be uniform, independent of the size. In
model,F is easily found by the scale transformation ofF of
the isotropic potential. Using the isotropic correlation fun
tion G(a), one can define anisotropic function,G* (x,y) as
G(x,A11ey). Therefore, after Fourier transformation, on
has F* (qx ,qy)5F(qx ,qy /A11e)/A11e, where F(qW ) is
the Fourier transform ofG(aW ). The example of correlation
functionsF* (qx ,qy) is shown in Fig. 2 in Ref. 4.

D. Chainlike potential

Recently, very active research has been conducted on
physics of surfaces vicinal from a low crystal index becau
their properties are substantially different from those of l
index surfaces. Fractional layer superlattices34,35 created us-
ing lateral growth, and the wirelike incorporation of Si do
ant atoms36 are examples.

We have found an anisotropy of mobilities (m) in a
(111)A vicinal GaAs~001! substrate at 1.5 K between tw
adjacent Hall bridges aligned in the@ 1̄10# and @110# direc-
tions, i.e.,m [1̄10].m [110] .

5 We could not find the anisotrop
of m in (111)B vicinal samples, the mobility values of whic
were between the twom values of the (111)A vicinal
sample. In the (111)B vicinal surface, no reflection high
energy electron diffraction oscillation originating from
regular terrace structure was found37,38 but a fairly ragged
step structure was found using STM.39 On the other hand
e

-

d

r
in
.

is

-

he
e

clear terrace structures and relatively straight steps w
found in the (111)A vicinal surface. See Ref. 5 for details

Since conductivity anisotropy is quite sensitive to st
shapes, an effective scattering potential is proposed at
interface steps to account for the conductivity anisotro
The scattering potential of one step,U(rW), is constructed by
the superposition of potentialV centered at thei th step point
rW i5@xi(u),yi(u)#(u is a parameter!, where thex axis is set
in a tilting direction andy is the other axis at the interface
Therefore, each step extends roughly along they direction.
Assumingxi is the single-valued function ofyi ~neglecting
step overhangs!, the step position is redefined as@ f i(yi),yi #
usingyi as a parameter and the step front functionf i of the
i th step. The chainlike potential is given byU(rW)
5( i*dyiV(rW2rW i).

There exists an approach to the array of chainl
potentials,13 in which the interface correlation functionG is
described as the product of an anisotropic Gaussian func
Eq. ~3.20! and a periodic function with average step distan
W.40 However, in this work no correlation is assumed in t
relative positions of the average step fronts and the effec
electron wave interference scattered by the adjacent ste
neglected. The average step positionx̄i5(1/L)*dyi f i(yi)
distributes randomly with density 1/W whereL is the size of
the system. Here the statistical properties of step front fu
tion f i are assumed to be independent of step suffixi . There-
fore, the total scattering probability, which is the square
the matrix element of the total scattering potential, has
cross term contributed from different steps and is given
multiplying the number of stepsL/W with the scattering
probability of one step.

Here we postulate a simple model forV as vd2D(rW),
where d2D is a two-dimensionald function. The origin of
this potentialv has been discussed in Ref. 5. By requiri
the spatial average of scattering potential to be zero, the
tential U is vd1D@x2 f (y)#2(v/L). The absolute square o
its Fourier transform is

u^kW uUukW1qW &u25
v2

L4E dydYexp$2 iqyy

2 iqx@ f ~y1Y!2 f ~y!#%, ~3.29!

the value of which atq50 is zero because of the term
2(v/L). In particular, when the step is straight,f (y)
50,;y, one finds

Q~q,c!5
pS

8

kF

q
@d~c!1d~c2p!# ~3.30!

where S5(8mv2/p\3kFW). If the effect of screening is
important,Q should be divided byk(q)2, however, in the
following, this factor is omitted for simplicity. The relax
ation time is easily evaluated aslx(1)5(32/3p2)/S by in-
serting Eq.~3.30! into Eq. ~2.3! and integrating overu. By
physical inspection,ly(1)5`.

For finite step raggedness, they integration in Eq.~3.29!
is evaluated by expanding the exponential,
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1

LE dy e2 iqx„f ~y1Y!2 f ~y!…;12
qx

2

2!LE dy@ f ~y1Y!21 f ~y!2

22 f ~y1Y! f ~y!#512qx
2g2

1qx
2g2C~Y!, ~3.31!

whereC(Y)5(1/g2L)*dy f(y1Y) f (y) is the step point au-
tocorrelation function. The parameterg characterizes the am
plitude of the step raggedness, and if 2kFg!1, this expan-
sion to the order ofg2 is good. The step point autocorrelatio
function C(Y) satisfying C(0)51 and C(6`)50 is as-
sumed to have a Gaussian form exp@2(Y/L)2# using a single
parameterL, which characterizes the step-position corre
tion in the y direction. Then the scattering probability
given by

Q~q,c!5
pS

8 FkF

q
„d~c!1d~c2p!…~12g2q2!

1
Lg2

2Ap
kFq2cos2c expS 2

1

4
L2q2sin2c D G .

~3.32!

The first term shows specular reflection at the steps and
second term corresponds to diffuse scattering at the s
because of the step undulations. Brataas and Bauer41 consid-
ered a system with lines of impurities with short-range p
tential. Although the physics is closely related to the curr
problem, the main difference is that they assumed no co
lation in the positions of the impurities (kFL→0). The Fou-
rier expansion ofQ to the first two terms is good since, eve
for g50, lx(1)51/S to this order of approximation~cf.
the exact value (32/3p2)/S). The relaxation times in this
approximation are given by

1

lx~1!
5S„12a~ l !g̃2

…, ~3.33!

1

ly~1!
5Sb~ l !g̃2, ~3.34!

where dimensionless parametersg̃5kFg and l 5kFL were
used.a( l ) and b( l ) have analytical forms in two extrem
cases: if l !1, a( l )5 8

3 2(8/Ap)(3p/16)2l , b( l )
5(8/3Ap)(3p/16)2l , and if l @1, a( l )50, b( l )52/l 2.
The definition of functionsa( l ) and b( l ), and numerical
estimations of relaxation times as function ofg̃ and l has
been found in Ref. 5.

IV. HIGHER SYMMETRIES

In this section, the conductivity anisotropy is discuss
for higher symmetric scattering probability (NQ.2 or s
.1).

First Q is expanded to the second order,Qs , assuming
that the anisotropy is small. A formula fors52 is obtained
as

@l~1!x/y#215J0,12G3~2!2G5~2!, ~4.1!
-

he
ps

-
t
e-

d

and fors53

@l~1!x/y#215J0,12G5~3!2G7~3!. ~4.2!

The details of the derivation are given in Appendix B. Sin
Gm(s) defined in Eq.~3.3! is isotropic, the conductivity is
isotropic.

In general, we can prove that the conductivity is isotrop
for a scattering probability withs.1. The details of the
proof are given in Appendix C. Therefore, the conductiv
of a 2DEG with a tetrahedral structure15 or a pyramid
structure16 is isotropic.

V. CONCLUSION

A conductivity tensor was formulated for anisotropic ela
tic scattering potentials in the semiclassical transport reg
using a Boltzmann equation. Explicit formulas of the co
ductivity tensor are given to the lowest order of the poten
anisotropy. If isotropic and anisotropic scatterings coex
Matthiessen’s rule gives larger mobility than the exact val
The results are compared with those for an anisotropic m
The models of anisotropic elastic scattering potentia
namely, elliptic roughness potential and chainlike potent
are examined using the formula. The conductivity is prov
to be isotropic if the number of the symmetry axes of t
scattering probability is more than 2.
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APPENDIX A: ANALYTICAL EXPRESSION
OF CONDUCTIVITY WITH ANISOTROPIC

ROUGHNESS SCATTERING

Explicit analytical expressions for the conductivity dom
nated by anisotropic roughness scattering modeled in
~3.20! are listed assuming@ ueu/(11e)#L2kF

2!1 for two lim-
its of the screening constantsqs .

If qs@kF ,

lx/y
21~1!5

pkF
2

qs
2

e2bP0@„6I 0~b!28I 1~b!12I 2~b!…

7„10I 0~b!215I 1~b!16I 2~b!2I 3~b!…d#

→
6pkF

2

qs
2

P0@12 5
3 b7 5

3 d# for b!1

→3Ap

2

kF
2

qs
2b5/2

P0S 11
5

8b
7

5d

3bD for b@1,

~A1!

where b5(kFL)2@21e/4(11e)#, d5(kFL)2@e/8(11e)#
andP0 is given in the main text below Eq.~3.21!.

Similarly, for qs!kF , we have
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lx/y
21~1!5e2bP0@„2I 0~b!22I 1~b!…7„3I 0~b!24I 1~b!

1I 2~b!…d#

→2pP0@12 3
2 b7 3

2 d# for b!1

→Ap

2

1

b3/2
P0S 11

3

8b
7

3d

2bD for b@1.

~A2!

APPENDIX B: CONDUCTIVITY TENSOR FOR HIGHER
SYMMETRIES

Here, an explicit formula of the conductivity tensor E
~4.1! for the lowest order ofs52 is derived. The extension
of the method to Eq.~4.2! for the lowest order ofs53 or
higher symmetries is straightforward.

First we notice the Woodbury formula,

~A1U•VT!215A212@A21U~E1VTA21U !21VTA21#,
~B1!

whereA is ann3n matrix andU,V aren3p matrices with
integersn.p, andE is a p3p unit matrix. Now,Kx/y with
only nonzeroQ0 and Q2 is the sum ofA and U•VT as
follows:

A51
J0,1 0

1

2
J2,3 0

0 J0,3 0
1

2
J2,5

1

2
J2,3 0 J0,5 0 �

1

2
J2,5 0 J0,7 �

0 � � �

2 , ~B2!

UT5S t 0 0 •••

0 t 0 •••

D , ~B3!

VT5S 0 1 0 •••

1 0 0 •••

D , ~B4!

wheret56 1
2 J2,1. The inverse of matrixA has nonzero ele

ments (A) i , j
21[Bi , j with i 1 j even. Directly applying the for-

mula, we have

~E1VTA21U !215
1

JS 1 2tB2,2

2tB1,1 1 D , ~B5!

whereJ512t2B1,1B2,2. Therefore,

@lx/y~1!#1,1
215B1,11

t2B1,1
2 B2,2

J
~B6!

5
1

B11
212t2B2,2

. ~B7!
SinceB1,151/@J0,12G5(2)# andB2,251/@J0,32G7(2)#,

@lx/y~1!#1,1
215J0,12G5~2!2

~ 1
2 J2,1!

2

J0,32G7~2!
~B8!

5J0,12G3~2!2G5~2!, ~B9!

where the definition ofGm(s) is used.

APPENDIX C: PROOF OF ISOTROPIC CONDUCTIVITY
FOR A SCATTERING PROBABILITY WITH S>1

Here we prove that the conductivity is isotropic for a sc
tering probability whose Fourier termsQm are nonzero only
for m5 ls where l is integer ands.1. We begin with a
rather abstract algebra for a groupG of certain kinds of
matrices. Assume the members ofG are not singular and
divided into two types, sayA and B, and define a function
giving the type of a matrix such that if the matrixM is type
A, @M #5A and the matrixM is type B, @M #5B. The
following properties are required.~1! For two matricesM1
and M2 , the sum:@M11M2#5@M1#1@M2#. If the matrix
M is the sum of typeA and typeB matrices,@M #5A1B,
however, thisM is not a member ofG. ~2!. For matrices
with @MA#5A and@MB#5B, the products have the follow
ing properties,@MAMA#5A, @MBMB#5A, and @MAMB#
5@MBMA#5B. ~3! The unit matrixE is of typeA, hence,
we have@MA

21#5A and @MB
21#5B.

Now, the problem that we want to postulate involves t
type of the inverse of the matrixMA1MB , if the inverse
exists. We use the Woodbury formula, (MA1MB)21

5MA
212MA

21(E1MBMA
21)21MBMA

21 . By setting C
5MBMA

21 , @C#5B and @(E1C)21#5@E2C1C22C3

1C42•••#5@E1C21C41•••# 1 @2C2C32•••# 5 A
1B. Finally, using @MA

21#5A and @MA
21(11C)21C#5A

1B, we have@(MA1MB)21#5A1B. Therefore, the in-
verse of a matrix of typeA1B is of typeA1B.

Let us apply the above formulas to a system with a sc
tering probability with four symmetry axes, where on
terms such asJn,m with an evenn exist. The general form of
the matrixKx/y is

1
J0,1 6

1

2
J2,1

1

2
J2,3 6

1

2
J4,3

1

2
J4,5 . . .

6
1

2
J2,1 J0,3 6

1

2
J4,1

1

2
J2,5 6

1

2
J6,3 . . .

1

2
J2,3 6

1

2
J4,1 J0,5 6

1

2
J6,1

1

2
J2,7 . . .

6
1

2
J4,3

1

2
J2,5 6

1

2
J6,1 J0,7 6

1

2
J8,1 . . .

1

2
J4,5 6

1

2
J6,3

1

2
J2,7 6

1

2
J8,1 J0,9 . . .

A A A A A A

2 ,

~C1!

which can be expressed as the sum ofMA1MB . TypeA of
matrix MA is whereMA has a zero matrix elementMAi, j
with i 1 j odd. And typeB of matrix MB is whereMB has a
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zero matrix elementMBi, j with i 1 j even. The key point of
this proof is that only the nonzero matrix elements ofMB
change sign depending on the directionx or y. Since the
products of these matrices have property 2~above! and as-
suming the existence of the inverse, we have@(Kx/y)21#
5A1B. Therefore, the relaxation time given by (Kx/y)1,1 is
th
v

rs
y

a

s

. B

t 1

.
a

isotropic, since it is free from the element of matrix typeB,
whose sign depends on the directionsx andy.

A similar argument can be applied to a system with
scattering probability with six symmetry axes, where on
terms such asJ3n,m with integern exist. The general form of
matrix Kx/y is
¨

J0,1 0 7
1

2
J3,2 2

1

2
J3,4 0 6

1

2
J6,5 •••

0 J0,37
1

2
J3,0 0 0 2

1

2
J3,66

1

2
J6,3 0 •••

7
1

2
J3,2 0 J0,5 6

1

2
J6,1 0 2

1

2
J3,8 •••

2
1

2
J3,4 0 6

1

2
J6,1 J0,7 0 7

1

2
J9,2 •••

0 2
1

2
J3,66

1

2
J6,3 0 0 J0,97

1
2 J9,0 0 •••

6
1

2
J6,5 0 2

1

2
J3,8 7

1

2
J9,2 0 J0,11 •••

A A A A A A

©

, ~C2!
e

2

which can be expressed as the sum ofMA1MB whereMA
has a nonzero matrix elementMAi, j with j 5 i 13n with an
integern, andMB has a nonzero matrix elementMBi, j with
i 1 j 53n11 and with a sign that changes depending on
direction x or y. Since the products of these matrices ha
property 2 and assuming the existence of the inve
@(Kx/y)21#5A1B. Hence the relaxation time given b
(Kx/y)1,1, is again isotropic.

Now, we prove that for a scattering probability with
nonzeroQls( l 50,1,2, . . . , ands.1) the conductivity is iso-
tropic. We defineMA andMB by the first and second term
of Eqs. ~2.21! and ~2.24!, respectively. Since the (i , j ) ele-
ment of the matrix productMAMA85(kMAi,kMAk, j8 is non-
e
e
e,

zero only for i 2k5 ls and k2 j 5 l 8s and hencei 2 j 5( l
1 l 8)s, the product is typeA. The (i , j ) element of the ma-
trix product MBMB85(kMB( i ,k)MB(k, j )8 is nonzero only for
i 1k215 ls and k1 j 215 l 8s. Therefore, the product is
type A sincei 2 j 5( l 2 l 8)s. In the same way, the (i , j ) ele-
ment of the productMAMB5(kMAi,kMBk, j8 is nonzero only
for i 2k5 ls andk1 j 215 l 8s and hence the product is typ
B since i 1 j 215( l 1 l 8)s, which also holds forMBMA .
Now, property 2 is fulfilled. Unit matrixE belongs to type
A. Therefore, the matrix (Kx/y)21 belongs to typeA1B.
Since the (1,1) element of a typeB matrix is zero for a
scattering probability with a number of symmetry axess
larger than 2, the conductivity is isotropic.
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nol. A 11, 1802~1993!.
37K. Ohta, T. Kojima, and T. Nakagawa, J. Cryst. Growth95, 71

~1989!.
38P. R. Pukite, G. S. Petrich, S. Batra, and P. I. Cohen, J. Cr

Growth 95, 269 ~1989!.
39M. D. Pashley, K. W. Haberern, and J. M. Gaines, Appl. Ph

Lett. 58, 406 ~1991!.
40G. E. W. Bauer and H. Sakaki, Phys. Rev. B44, 5562~1991!.
41A. Brataas and G. E. W. Bauer, Europhys. Lett.26, 117 ~1994!;

Phys. Rev. B49, 14 684~1994!.


