PHYSICAL REVIEW E 78, 061701 (2008)

Polarization dependence of optically driven polydomain elastomer mechanics
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We model how polarized and unpolarized light can cause mechanical response in polydomain nematic and
related photoelastomers. The reduction of order by heating and the consequential large strains that are known

from nematic elastomers can alternatively be caused by light-induced bending of rodlike dye molecules which
then equally reduce the order of their nematic hosts. While there is no mechanical response to heating of
polydomain elastomers, mechanical response to light is possible by the selective absorption of light according
to how domains are aligned with respect to the polarization direction or with respect to the propagation
direction in the case of unpolarized light. We find large contractions or elongations, depending on the nature of
polarization. The responses are nonmonotonic with light intensity.
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I. INTRODUCTION

Mechanical response can be optically induced in mon-
odomain liquid-crystalline networks with molecular rods that
undergo a frans-cis isomerization on absorbing an appropri-
ate photon. Response is huge in nematic elastomers [1-4]
where, as in all rubbers, elastic moduli are small. Smaller,
but still very useful responses in nematic glasses exist [5-9]
where moduli are large. We concentrate on photomechanical
response in elastomers, which can be understood by first
considering their conventional, thermally induced contrac-
tions when they are nematic monodomains. The contractions
can be huge [10,11], up to a factor of 4 or more: heating
reduces the orientational order and hence the shape aniso-
tropy of the distribution of the polymer chains making up the
elastomeric network. Macroscopic strain then follows the
network chains’ shape change. In Sec. II C we sketch the
derivation of such shape change. Schematically, Fig. 1(a)
shows this shape change in response to order change.

Light can also reduce the order parameter in nematics
when dye molecules (chromophores, for example, containing
azo-benzene) are present. Chromophores are often rodlike in
their ground (trans) state. Photon excitation yields a bent cis
state, see Fig. 2(a), and nematic order is reduced, analo-
gously to the thermal case, as the dye is converted. In a
nematic network, a mechanical strain then follows [1]. In the
dark, the order parameter recovers its original value as bent
molecules decay back to their straight trans conformation
and hence the strain is reversed. Another route to recovery is
the stimulation, by light of another color, of the cis to trans
transition which offers even greater speed and control.

We shall also consider another important mechanism for
photomechanical distortion, that of director rotation rather
than order change. It is known when nematic elastomers are
extended perpendicular to their initial director that the direc-
tor is induced to rotate [12]. Since the (on average) long
direction of the chains (along the director) is rotated, then the
network naturally extends in this direction, see Fig. 1(b).
Indeed the stresses associated with strains imposed perpen-
dicular to a director which then rotates are known [13] to be
much lower than the stresses arising when there is no rota-
tion or when the elastomer is in the isotropic phase. Here our
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theory suggests an inverse effect that under illumination the
nematic free energy can, at least at low light intensity, be
kept lower by rotating the director rather than reducing the
magnitude of the nematic order. There is then an associated
strain where the network’s shape follows that of the rotating
distribution of anisotropic chains. We shall predict complex
photomechanical response and find that director rotation ini-
tially dominates over the reduction of orientational order as
the cause of mechanical strain.

The photoresponse of polydomain systems appears to
prove that light actuation is in fact an optical effect rather
than simply light delivering heat in another way: Ikeda and
Yu er al. [5,6] induced a glassy polydomain network to con-
tract along the polarization direction of the incident light.
Harvey and Terentjev [14] fixed the length of a polydomain
nematic elastomer and instead followed the build up of stress
depending on the direction the polarization of light with re-
spect to the clamping direction. No thermal actuation of
polydomain systems is possible since no unique direction
exists. If one assumes that optical effects are simply due to
heat being preferentially delivered to domains aligned with
the polarization, then difficulties also arise: Any unique di-
rection associated with incident polarized light is also lost if
one assumes that heat, released on the back decay from the
cis excited to trans ground state in regions aligned with the
polarization direction, is then transferred quickly to other
regions. The assumption of short times is reasonable: Hon et
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FIG. 1. An initially unit, cubical nematic elastomer (a) contracts
on loss of order. The prolate spheroid characterizing the distribution
of chains becomes spherical; (b) contracts along the original direc-
tor, and elongates along the new, upon rotation by 90° of the direc-
tor and thus of shape distribution.
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(a)

FIG. 2. (a) frans and cis (bent) forms of a dye rod with a central
azo unit. Parallel ordering of the remaining rods is hindered by the
bent species. (b) A polydomain elastomer illuminated by light po-
larized along the E direction (c) a test rod, direction #, in a region
with director currently along 7

al. [15] obtained D~1.5X 10~7 m?/s for the heat diffusion
coefficient of a side-chain nematic elastomer, while Broer-
man et al. [16] obtained D=~ 1.1 X 10~ m?/s for an isotro-
pic, silicone-based elastomer. Assuming director correlation
over [=1 wm we estimate the characteristic time for heat to
diffuse to another region to be ~1*/D=10 us, much shorter
than observed mechanical response times.

The polarization specificity of the contractions of these
polydomain samples offers much richer behavior than that of
monodomains. In fact the polarization-specific response of
the Ikeda networks was photocurling and could be directed
along any axis desired, useful for complicated actuation.
Sometimes photocontraction manifests itself as photocurling
of a cantilever or sheet—when light attenuation is appre-
ciable through the thickness of the sample, it gives rise to
strains greater near the front face than those near the rear.
However, here we only consider samples thin enough com-
pared with both the absorption and depolarization lengths,
such that both the contraction is uniform and the light re-
mains polarized. Our examination of uniform contraction
mechanisms will be important to subsequent studies of curl-
ing polydomain cantilevers. Curling has in fact been studied
theoretically in monodomain [17,18] and in polydomain [18]
elastomers. Our analysis differs somewhat from that of Ref.
[18].

Suggested applications of elastomer photoelasticity in-
clude microactuation and nanoactuation by curling cantile-
vers [17], microfluidic valves, and pumps by optically writ-
ing localized topographical structures in elastomer films
[17,19], and artificial muscles [20]. Our predictions of elon-
gation along the propagation direction for unpolarized light
falling on polydomain elastomers may be of particular im-
portance for the writing of localized structures by light
beams on elastomeric films.

We limit our modeling to the photoresponse of polydo-
main elastomers, rather than glasses. It is probable that only
the former have directors sufficiently mobile in the solid
state to rotate in response to light or imposed strains. Initial
modeling [21], of weakly crosslinked polydomain nematic
elastomers illuminated with polarized light, yielded a sharp
initial contraction as directors rotated away from the optical
electric field, eased by a global strain that was a compromise
between domains with rotation differing according to their
initial orientation with respect to this electric field. Accord-
ingly negative optical anisotropy must be induced in the net-
work. We shall explore elsewhere the ramifications for NMR
which gives much more detail of the induced molecular dis-
tributions. We additionally predicted that the uniform photo-
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strain is nonmonotonic with the intensity of the incident
light. At high light intensity domains suffer the same trans to
cis conversion and hence suffer the same reduction in order,
irrespective of their initial orientation. With all domains
equivalent, this situation is equivalent to just heating a poly-
domain elastomer. Because there is no longer a favored di-
rection, the sample recovers its original shape even though
the constituent domains have individually changed their
nematic order. We shall see this nonmonotonicity prediction
retained for unpolarized light incident on a polydomain elas-
tomer. As well as dealing here with several polarization and
polydomain types, we also extend our modeling to strongly
crosslinked elastomers which offer certain qualitative dis-
tinctions from our earlier analysis.

The nonmonotonicity of the response with intensity could
even lead to a reversal of the sign of cantilever curvature.
When the incident light intensity is high enough that the
photostrain at the upper surface vanishes, but where there is
contraction lower down, then the beam will curve away from
rather than towards the light.

II. NONLINEAR MODEL OF POLYDOMAIN ELASTOMER
PHOTORESPONSE

The situation we first model is shown in Fig. 2. Plane
polarized light propagating in the k direction is incident nor-
mally on a thin polydomain liquid crystal elastomer (LCE).
A region with current director 71 is shown; we neither discuss
the origin of domains, nor require their length scale (typi-
cally microns), in what follows. We model an elastomer with
initially random directions for domains. At each point the
extent of photoreactions depend on the angle between the
local director and the electric field. The strain, however, we
will take to be global, as we discuss below. Clearly mechani-
cal effects globally can only have the polarization direction £
as the unique direction. Having set up our model with the
example of polarized light, we will later consider incident
unpolarized light, where the unique mechanical axis will in-
stead become k. Finally we consider the photomechanical
response of cholesteric elastomers to unpolarized light
propagating along the helix axis.

A. Intensity and angular dependence of isomer concentrations

The rodlike character of molecules is responsible for the
orientational order of the nematic state. To examine the sta-
bility of the nematic state, we therefore first determine how
their number changes as a result of irradiation. Consider a
total number density n, of nematogenic rods, of which a
number density n,, are photoresponsive nematogens (giving a
fraction A=n,/n,). In the domain shown in Fig. 2(b) a pho-
torod is described by a unit vector i along its long axis. In
the simple case of chromophores also with i as the direction
of their active bonds, the probability of photon absorption by
a rod depends on the intensity along its axis (E-)>. The rate
per unit volume of photoinduced trans-cis reactions is hence
T((E-%)*n,(1), where T is a constant and #,(¢) is the current
number density of frans nematogens at time ¢. The local
thermodynamic average (---) is taken over photorods in the
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region with 7. The thermal back reaction rate is n.(f)/T
=[n,—n/1)]/ 7, where n(t) is the number density of photor-
ods converted to the cis state (thus n,+n.=n,). The cis state’s
mean lifetime is 7, which depends on temperature in the
thermal case and on light intensity when recovery is optically
stimulated. We assume that the cis rods have no orientational
order and are randomized when they reenter the trans popu-
lation on decay. In the steady state the forward and backward
rates match and the fractional cis population n, is

n,  TR(E-0P) 0
p 1+TH(E-@))
We have assumed first order dynamics, that is, the forward
and backward reactions depend linearly on n, and n,., respec-
tively, and also that the rates I' and 1/7 are unaffected by
mechanical strain, nematic order, etc. We must now calculate
the average ((E-1)%), which can be written as Tr[{EE)g(iti1); ]
where (X); indicates an average over the orientations of the
electric field while (X); indicates an average over the orien-
tations of the photorods. Assuming the electric field is lin-
early polarized along the z direction gives (EE)=E?zz. The
traceless order parameter tensor for the (uniaxial) photorods

is
3 1 3 1
S[jz Eull/ij_i(slj A=S Enlnj_a(su N (2)

where S is the scalar uniaxial order parameter and 7 is the
director. Using Eq. (2) for (uu;); we obtain

n

(E- )= §E2<1 +22-5-2). 3)

In general, photorods which lie on a cone at a fixed angle
with respect to the principal director 1_2 will be differently

aligned with the electric field (unless E and é are parallel),
thus such rods are differentially depleted and we should ex-
pect illumination to induce biaxiality. However, we assume
that the angular diffusion rate of rods is rapid, thus each

photorod explores all angles around the director fl between
excitation events. We thus ignore biaxiality. With this simpli-
fication Eq. (3) can be expressed as

(E-uw?= %1[1 +28P,(cos 6)], (4)

where P,(cos 6) is the second Legendre polynomial, the in-

tensity /=E? and 6 is the angle between the director r_Az of the
domain and the z direction. Inserting this result into Eq. (1)
and normalizing to the total number of all nematogens, one
obtains the fractional number of cis molecules

[1+S3cos’>0-1)]
3L.+1[1+SBcos’> 0-1)]

#(S.1,6)=A (5)

A characteristic light intensity has arisen from the balance of
the forward (I']) and reverse (1/7) isomerization rates, that is

1,=1/T'7[21]. We reduce light intensities by /., thus I=1/1,.

Measurement of n./n, in isotropic polymers [22] suggests 1

can be as large as 15, while time scales for attaining photo-
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equilibrium range from minutes to seconds, depending upon
chemistry and stimulation of back reactions. This quantity
also determines the dynamics of nonlinear light absorption
and has been observed in experiments [23] to take much
higher values than those of Eisenbach.

Since they are bent, we take the cis species to lack any
nematicity. Indeed they dilute the ordering power of the re-
maining both nonphoto and photo (trans) rods. The full dif-
ficulty of the problem can now be seen: in expression (5) for
¢, the order parameter S itself depends on ¢ since this dilu-
tion will enter the free energy, the minimization of which
determines S. The free energy is not simply the standard
nematic contribution familiar from conventional liquid crys-
tals, but also the nematic rubber elastic free energy, and both
contributors depend on the (changing) angle of the local di-
rector. It is thus instructive to see how ¢ changes with both
intensity and angle of domain. The cis concentration in the
low illumination limit I<1, is ¢— 3IA[1+2SP,(cos 6)].
Note that even domains at right angles to the polarization,
with f=/2 and thus P,(cos )=—1/2, have some cis con-
centration induced if § <1 because not all rods in the domain
are perpendicular to E if the order is not perfect. At very high

intensity 7>1, all photorods are bent, ¢— A, and all do-
mains are bleached, irrespective of angle. Thus eventually,
perpendicular domains are also bleached, except in the un-
physical case of those with perfect underlying order S=1. It
is the eventual bleaching of all regions that causes the poly-
domain system to lose overall mechanical response when
light is intense: if all domains have the same ¢, their me-
chanical fate must be the same. The lack of a preferred di-
rection implies zero strain for a polydomain system, just as
one obtains no strain on heating such a system to another
state of order.

B. Mean-field theory

A mean-field theory for nematics was first proposed by
Maier and Saupe [24]. The simplest Hamiltonian to describe
uniaxial nematic ordering arises after azimuthal averaging

about 7 [the free angle in Fig. 2(b)]:

1
H=- 52 JiiP>(cos a;) Py(cos a)), ©)
i#j

where «; is the angle of the long axis of the ith nematogen

with respect to the director ﬁ, J;; represents the interaction
potential between the ith and jth rod and the sum is taken
over all pairs of nematogens. Maier and Saupe (MS) as-
sumed that the interacting potential arose from anisotropic
van der Waals forces, but the precise form of J;; is not im-
portant here. We follow the MS approach, but with vital
modifications to deal with populations of rods changing on
illumination by amounts dependent upon the mean order.

To determine the mean-field free energy one adopts a
variational approach based upon the inequality

F < Fy+(H-Hy), (7)

where F is the free energy evaluated using a trial Hamil-
tonian H,, and F is that by using H, and (---), denotes an
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average from H,. For the trial Hamiltonian we assume an
ensemble of noninteracting nematogens placed within an as
yet undetermined field h, giving Hy=—hZ;P,(cos «;) and
Fo=—kgTZ;In[Zy(h/kzT)] with the partition function Z, as-
sociated with the trial Hamiltonian given by

1
Zy= J d(cos a)exp[hPy(cos a)/kgT]. (8)
0

The free energy fys per unit volume of a MS liquid crystal is
thus bounded by

1
F< nn{— kyT In Zy(hkgT) + hS — EJSZ , (9)

where n,, is the number density of nematogens, J is a cou-
pling constant determined from the J; above and S§
=(P;,(cos a)), is the scalar order parameter. We now sketch
the familiar liquid crystal case since there are significant de-
viations from this for photoelastomers. Minimizing the right-

hand side of Eq. (9) with respect to h gives S
=kgTd(In Zy)/ oh=go(h/kgT) and, thus,
h 1
— =g, (5). 10
ks T 8o (5) (10)

See Appendix A for more details about gy(x) and its inverse.
Minimizing Eq. (9) now with respect to S gives h=JS, thus
giving S=(kgT/ J)gal(S), which can be inverted to give the
Maier-Saupe self-consistency equation S=g(JS/kgT) for the
order parameter. The scaling of the coupling constant J with
n, is important; since the initial Hamiltonian H describes
pairwise interactions we should expect it to scale quadrati-
cally with the number density of nematogens n,. In Eq. (9)
we have extracted one factor of n, as a prefactor, thus J is
expected to scale linearly with n,,.

The photoelastomers we model contain several complicat-
ing factors. First, the free energy also has the elastic response
of the elastomer which introduces additional S dependence
and makes the result 2=JS from df/dS=0 no longer valid.
However, relation (10) from df/dh=0 does remain valid.
Secondly, illumination produces a population of cis rods
within each domain, which dilute the nematic ordering ten-
dency of the remaining rods. Now the number density of
nematogens n,, is reduced to n,(1—¢): Eq. (9) becomes

fie=n,kgT(1 = )} g5 ($)S - In Z[g5" ()]

1 J
51 d))kBTS } (11)
where we have replaced h/kgT from Eq. (10) and we recall
from Eq. (5) that ¢ is a function of both S and the angle
between the domain considered and the electric field. By
itself, the nematic free energy above resembles that of a
nematic liquid with its interactions diluted by the presence of
non-nematic, bent rods. There is no entropy of mixing since
in a network the nematic elements are permanently linked
and do not mix freely. Appendix B considers the conse-
quences of this free energy in isolation since the coupling of
order with concentration of cis give highly nontrivial varia-
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tion of order with temperature and polarization of illumina-
tion. The distinction between the global order parameter Q
=(1-¢)S as measured by birefringence and that of the par-
ticipating nematogens S as measured by NMR is also dis-
cussed there.

C. Elastomer deformation free energy

Elastomers are networks of polymeric strands with shapes
that are induced to change by the ordering of pendant or
integral nematogenic rods. Classical Gaussian rubber elastic-
ity generalizes to a nematic rubber-elastic free energy density
[25,26] (see Ref. [27] for a complementary derivation)

det[/]

det[ /] } - (1)

1 1
fa=ZuTN LN+ —p 111[
2 == = = 2

in which u=nkgT is the shear modulus, with n; the number
density of network strands and A\ the deformation gradient
tensor. The bulk modulus of elastomers is typically ~10*wu.
They consequently deform at constant volume, constraining
M to have unit determinant. The remaining tensors [, and [
are the shape and inverse shape tensors defining the Gaussian
distribution of uniaxial nematic polymer chains before and
after illumination. They are characterized by the anisotropy
direction, initially 7, and rotating to 7, and the degree of
order, initially S, and relaxing to a new S since ¢ # 0. Within
the freely jointed rod model we assume the polymer chains
between two cross links consists of a sequence of connected
rods, which can rotate freely about their points of connec-
tion. The trans and photoinert nematogens have a step length
a, while the cis nematogens have b. We further assume that
the orientational distribution of the cis nematogens is isotro-
pic, while the photoinert and frans molecules are uniaxially
aligned. With these assumptions the step-length tensors take
their usual form

ly=19 8+ (1) = I )idor, (13)

1 11
£‘1=—§+(———)ﬁrj, (14)

h [, = L1y

where the various step lengths are given by

L =a(1-Sy), If=a(l+25), (15)
1y =al(1-¢)(1=5)+ ¢(bla)’], (16)
Li=a[(1 - ¢)(1+2S) + p(bla)*]. (17)

Appendix C derives these results.

In a freely jointed model for main-chain elastomers the
order parameter of the nematogens S would be coincident
with that of the chain backbone Sp. If instead the nematogens
are pendant to the polymer backbone these two order param-
eters would in general differ. The pendant rods order and
then indirectly induce order in the backbone. Experimentally
it has been observed by Finkelmann et al. [28] that for pro-
late side-chain nematic elastomers Sp is proportional to S,
thus the scalar order parameters within the step-length ten-
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sors should include a constant of proportionality when de-
scribing side-chain elastomers. For this work we ignore this
distinction.

The shape tensors set the scale for spontaneous deforma-
tions: Heating a monodomain initially with order S, directed
for concreteness along ny=z to the isotropic state (S—0 in
[—ad above), Eq. (12) predicts that the elastomer would
suffer a uniaxial contraction of \ —(lO /1 )”3 [(1-Sp)/(1
+250)]"3~0.56 [26] for the initial order parameter of S,
=0.615 adopted in our illustrations. [One inserts into Eq.
(12) a uniaxial deformation identical to A in Eq. (18) below
for A along with [, and [ given above, the latter with ¢=0
and S=0.]

If cooling down from the isotropic to nematic phase there
would instead be an elongation of 1/\,,=1.78. Separate mea-
surements [28] of the order parameter S(7) (optically) and
the spontaneous distortion confirm the freely jointed rod
model  connection  \,,(T)={[(1+2S,)/(1-Su)][(1=-8)/(1
+28)]}3, where this contraction is associated with changes
in order from S, to a finite S. In practice even nearly ideal
nematic elastomers do not suffer the MS jump in order pa-
rameter (and hence in strain) at the transition temperature Ty
because of nonideal additions to Eq. (12), in effect internal
fields. These effects are widely discussed in the literature;
see a summary in [26] and a modern discussion plus experi-
mental NMR analysis [29].

The essential anisotropy that determines \,, also deter-
mines the shape change of a monodomain that would occur
when the director is rotated by 90° with a change in the
order. One proceeds as above, but with an [ having §=5,,
¢=0 and with 7 rotated to being along x rather than remain-
ing along z that one associates with n,. The A now has as its
diagonal elements \,, 1/(N\,\.), N, which is volume pre-
serving and represents an elongation of X\, along x. Simple
minimization over X\, and \, [26] yields \.=(f)/1%)"?
—2.38 for §,=0.61. Note that this elongation is greater than
the elongation (lﬁ)/li)” 3 associated with increasing order
from the isotropic to nematic state—redirecting an already
elongated distribution of polymers has a much greater effect,
see Fig. 1.

We now decide how to adopt a deformation gradient ten-
sor for the illuminated polydomain elastomer: Boundaries
between individual domains are subject to several con-
straints. Mechanical equilibrium requires the stress tensor be
divergence free, in particular in its variation across bound-
aries. Geometric requirements place compatibility con-
straints upon the deformation gradient tensor A, which in the
present case must also preserve volume. Similar constraints
arise when modeling polycrystalline metals. We return to the
question of compatibility in discussing the cholesteric case.
Satisfying both constraints is in general difficult and one
usually adopts one of two limiting forms. In the Sachs limit
all domains suffer the same stress, thus satisfying the me-
chanical requirements but in general failing to meet the com-
patibility requirements. In the Taylor limit all domains suffer
the same deformation, thus meeting the compatibility re-
quirements but not in general obeying mechanical equilib-
rium. For small strain elasticity these two limits form lower
and upper bounds on the true free energy of the system. It is
this second limit of uniform strain that we adopt here, albeit
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in systems with large strains. We take simple, uniaxial (about
E or k—hence the labels), deformation gradients A:

1 0 0 N0 O
Ny 1
0 - 0
A= 1 =[O (18)
=L O _/_ 0 =2
VA 1
0o 0 —=
0 0 A VA

that also conserve volume, det(\)=1. The first is for polar-
ized light, where E is the unique direction, the second for
unpolarized light where k is the unique direction. In effect
we assume that the global strain we must have holds locally
as well. The latter A will be augmented with compatible
strains in the cholesteric case, Sec. III C, where we elaborate
on this requirement.

D. Other additions to the free energy

The wall energy that exists between the domains may
change as a result of elastic distortions. Approximately, the
elastic energy of a domain of characteristic size & is ~ ,ugi,.
The wall energy between the domains has two contributions,
a Frank term owing to the changing director and gradients of
the order parameter, and an elastic term since the deforma-
tion gradient in the wall region is not able to adopt its opti-
mal value. These two contributions are added and optimized
over. The minimum occurs when both contributions are
equal, giving us a length scale &y=VK/u=~10"8m for the
wall thickness where K~ 107'! N is a Frank constant and
u~10° Pa. This length is known as the nematic penetration
depth [26] and arises whenever Frank and rubber elastic ef-
fects compete. The energy per unit area of wall that arises is
vy~ \Ku and the wall energy of a domain is roughly *ygD
The ratio of the energies is y/(uép)=&yv/ ép. A typical do-
main size is £,=1 um [30], thus the wall energy is roughly
100 times smaller than the elastic energy of each domain. We
therefore choose to ignore this contribution to the free en-

ergy.

E. Overall free energy

Inserting \ into fg;, Eq. (12), and adding this energy to
fic from Eq. (11) gives the local free energy fg+/fic. The
polydomain sample initially consists of an isotropic distribu-
tion of domains, each with order parameter S,. Domains are
labeled by 6, their initial director orientation relative to the
electric field. At a given A, a domain initially at 6, will move
to a new value 6 dependent on both 6, and \; thus 6
=6(6y,\). Equally the order parameter in the domain will
change from its initial value S, to a new value S which
depends on 6, and \, thus S=5(6,,\). To calculate the total
free energy f,, of the material we must then sum over all
initial orientations of the domains, thus

/2
SN = f [f1c(6o) + fa(6o)Isin 6,d 6. (19)
0

The total free energy fi is a function of the deformation A,
and a functional of the order parameter S(6,,\) and the di-
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rector orientation 6(6,,\). For each value of 6, we minimize
the integrand in Eq. (19) over # and S, then sum over all
domains, and finally minimize over \. Since each domain
suffers the same compromise A, they are in general at a
shape suboptimal for their current conditions. Such distor-
tions act in effect as powerful external fields. As with all
nematics, a strong enough field can induce supercritical be-
havior. Here they can eliminate jumps in the order parameter
of LCEs as they are heated to isotropy.

We summarize the quantities appearing within the total
free energy density, Eq. (19), their physical meaning and

realistic values. J=J /kgT is the scaled Maier-Saupe interac-
tion parameter which sets the initial value of the order pa-
rameter within each domain. Within bare MS theory the

isotropic-nematic transition occurs for J=4.54. In all the

work presented here we set J=5, which gives Sy=0.61. In
relation to the nematic-isotropic transition temperature 7y,
this choice corresponds to an operating temperature 7|, given
by Ty=(4.54/5)Ty;=0.91Ty;.

=l (n,kgT) is the shear modulus reduced by the natural
energy scale appearing in Eq. (11) for the nematic energy
density. Thus in these units the shear modulus is given by the
ratio of the number density of network strands to the number
density of nematogens, and is thus a measure of the cross-
linking strength. Values for elastomers range from roughly
0.1 to 0.02.

I=1/ 1. is the reduced intensity which corresponds to the
optical intensity, divided by the intensity /. which is a mate-
rial constant of the elastomer film under consideration. Re-

sults from Eisenbach [22] indicate that values up to I~ 15
are easily accessible, and those from Serra and Terentjev [23]
suggest values ~80.

There are two types of nematogens, photoactive and pho-
toinert. The fraction of nematogens which are photoactive is
given by A. We shall take A=1/6 throughout this work, that
is, there are five photoinert nematogens for each photoactive
one. Here we make the additional simplification that the or-
dering of the inert nematogens and that of the trans photor-
ods is the same.

III. RESULTS

We present results showing the equilibrium deformation

gradient \ as a function of the incident reduced intensity 1
for three separate cases: (i) polarized light upon a polydo-
main elastomer and (ii) unpolarized light on a planar distri-
bution of domain directors, i.e., a two-dimensional equiva-
lent of a polydomain that is perhaps realizable as a
cholesteric elastomer. In each of these three separate cases,
we present results for a strongly cross-linked sample with
m=ng/n,=1/10 and more weakly cross-linked sample with
a=1/50.

A. Incident polarized light

A deformation uniaxial with E is inserted into the elastic
energy. We do not give details of how the energy can first be
minimized with respect to N given the initial and current
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FIG. 3. The global z contraction N\ against reduced intensity of

polarized light I for a strongly cross-linked elastomer with &
=1/10, T=0.91Ty;, Sy=0.61.

director directions and the initial and current order
parameters—see Ref. [26] for examples of how this is done,
and the cholesteric section below.

1. Strong cross linking

Figure 3 shows the photocontraction \(T) as a function of

the reduced light intensity I for a ratio of network strands to
rods m=n,/n,=1/10. The fraction of rods that are photoac-
tive is A=1/6 and the initial order parameter S;=0.615. Fol-
lowing Eisenbach [22] we have taken the ratio of step
lengths appearing in Egs. (16) and (17) to be b/a=5.5/9.
The most prominent feature of the curve is that it is non-

monotonic; initially N decreases rapidly as I increases but

beyond 1=2 the trend reverses and \ begins to increase as 1
increases further. The biggest contraction A=0.86 corre-

sponds to I~2. This should be compared with the thermal
contraction expected when a nematic monodomain with the
same S is heated to isotropy, which gives Ay=0.56 as dis-
cussed previously. Evidently we manage to recover approxi-
mately a third of the monodomain contraction when illumi-
nating the polydomain. In order to explain the behavior of
the N(I) curve it is instructive to plot the functions 6(6,;1)
— 8, (Fig. 4) and S(6;]) (Fig. 5) for various intensities. Fo-
cusing on the two plots for 1=0.15 we see that f— 0,=0 for
all 6, (with equality for 6,=0 and 6,=/2), i.e., all domains
have rotated away from the polarization direction. The nem-
atic part of the free energy is minimized if domains are per-
pendicular to the electric field, this configuration also results
in domains preserving more of their order. Rotation away
from their initial orientations has an associated elastic energy
penalty, which is partially vitiated through mechanical relax-
ation. The resulting A\ reflects these rotations and corresponds
to a compression along the electric field. It is interesting to
note that for a narrow range of angles around #,=7/2 the
order parameter increases, that is S > S,. The overall contrac-
tion A<<1 leads to an expansion 1/VA>1 in the xy plane.
This expansion acts as an aligning field for the domains
around 77/2 increasing their order parameter.

Increasing the intensity to 1=1.05, the situation is largely
unchanged; the domains have rotated further from the polar-
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FIG. 4. The change in domain orientation 6— 6, as a function of
initial orientation 6, for various intensities of polarized light for an
elastomer with z=1/10.

ization direction. Again there is a range of angles close to
/2 over which the order parameter increases. Those do-
mains which remain close to E have suffered a larger reduc-
tion in S. Both effects, large rotations and larger reductions
in order lead to a larger contraction along the electric field
and hence a smaller value of N. Similar comments apply for

1=2.025.

Further increasing the intensity to 1=3 changes things sig-
nificantly. The order parameter is now less than S, for all
domain orientations, even for those directed well away from
E. The optimal mechanical response for those domains per-
pendicular to E is thus a contraction (relative to their state at

1=2.025) along their own director. They would thus want to
expand along the polarization direction. Conversely those
domains close to E suffer a larger change in S and their
optimal mechanical response is a contraction along E. The
overall deformation remains a contraction along E, but we

note the contraction is now smaller than it was for I: =2.025,
i.e., the deformation N\ is a nonmonotonic function of the
incident intensity. Inspection of the plot of #-6, for this
intensity reveals that domains have started to rotate back
towards their initial orientations. Finally increasing the inten-

sity substantially to 1=12, we see the trend of recovery of
initial orientation and return of A to 1 has continued. The
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FIG. 5. The domain order parameter S as a function of initial
orientation 6, for various intensities of polarized light for an elas-
tomer with g=1/10.
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FIG. 6. Equilibrium deformation N as a function of polarized

light of reduced intensity Ifora weakly cross-linked elastomer with
a=1/50.

order parameter has reduced yet further for all domains and
there is still an overall contraction along E. However, rela-

tive to the situation at /=3 the system has expanded along E,
i.e., domains have rotated yet further back towards their ini-
tial orientations.

The nonmonotonicity of the deformation gradient is per-
haps obvious in hindsight. Taking the limit 7>1 in Eq. (5)
we see that ¢ loses its dependence upon angle and tends
towards the constant ¢p— A; at sufficiently high intensity all
trans nematogens will be in their excited cis state. Since ¢ is
constant, the nematic part of the free energy reverts to a
standard Maier-Saupe form with a renormalized J—J(1
—A) and n,—n,(1-A). The nematic energy no longer in-
duces rotations away from E, thus within the elastic free
energy we must have 6= 6,. Further, all domains will have
the same order parameter S=S. Global isotropy and volume
conservation then imply that A=1. In this limit it is not nec-
essary that all domains are isotropic, but simply that they
have the same, reduced order.

2. Weak cross linking

Increasing the number of nematogens per network strand,
i.e., reducing the effective shear modulus in our model, re-
sults in much larger rotations away from the polarization
direction. This weak linkage limit was treated in a prelimi-
nary analysis [21], but without considering the effect of the
cis species on the step length tensors Egs. (16) and (17).
Comparison shows these refinements have little effect on the
mechanics. Figure 6 shows the equilibrium deformation \ as

a function of incident intensity I for a film with ny/n,
=1/50, §,=0.615, J=5, and A=1/6. Once again we see that
the plot is nonmonotonic but in the current case the curve has

kinks at around /=5 and /=11. The maximum contraction is
now larger, approximately A =~0.72, i.e., we recover roughly
two thirds of the thermal contraction of a simple mon-
odomain system. Furthermore at larger intensities the defor-
mation A is very close to unity, i.e., there is almost no me-
chanical response for large intensities. Figures 7 and 8 show
the new orientation € and order parameter S as functions of
the initial orientation for several intensities.
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FIG. 7. Domain orientation 6 as a function of the initial orien-
tation 6, for various intensities of polarized light on an elastomer
with @=1/50.

At 1=0.225 there is very little reduction in the local order
parameters, but rotations of directors away from E are quite
large. One would expect this; since @ is much smaller the
elastic resistance to rotation is now relatively smaller com-
pared with the nematic imperative to rotate. The order pa-
rameter has not yet changed much; once again it has in-
creased for a small range of angles around 6y,=m/2.

By 1=4.65 all domains are close to 7/ 2, 1.e., rotations are
very large for those domains initially close to #,=0. Since all
domains are now close to /2 contraction along E owing to

rotation is essentially complete. Increasing 1 then results in
an increase in N\ as the local order parameters become in-
creasingly depressed.

Increasing the intensity to 1=5.175, which is above the

first kink in )\(7), we see interesting behavior in both the
orientation and the order parameter of the domains. Domains
initially close to 6, which had rotated to 6~ 77/2 have now
rotated back towards a cone close to E. Since they are closer
to E, the majority of the photonematogens are in their cis
state and thus domains within this cone have small order
parameters. The domains which remain close to 77/2 manage
to maintain reasonably large order parameters, but they do
reduce, and this reduction combined with the rotations men-
tioned drives the deformation rapidly back towards A=1. The

0.7
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FIG. 8. Domain order parameter S as a function of the initial
orientation 6, for various intensities of polarized light on an elas-
tomer with £=1/50. Recall that the initial order was S,=0.615.
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first kink in Fig. 6 is the point where these back rotations
begin.

As T is increased further the cone widens, more domains
rotate back towards their initial orientations 6~ 6,. Thus at

1=10.05 most domains have reverted to being close to their
initial orientation and have small order parameters. There is
still a narrow band of domains close to 7/2 and the order
parameters of domains within this band remain somewhat
larger. The second kink in Fig. 6 occurs when back rotation
is complete, and beyond this point one has 6~ 6, for all

domains. This is the case by I=12. The order parameter for
domains is now small for all 6, the system is essentially
isotropic, there is no preferred direction, and the elastomer
returns to A=1.

B. Incident unpolarized light

We now consider unpolarized light incident normally
upon a sample, that is we consider light traveling along the
beam direction k£ shown in Fig. 2, the electric field vectors
being uniformly distributed in the plane perpendicular to k.
The average {(E-u)?)=Tt[{EE)uu),] must now be recalcu-

lated, we have <EE>E=E72(§§+)_7)_’)=E7Z(§_)_QC)» while (uu),
=Sr_;r:z+g%l=5, and thus

E2
(E-uw?= S 11 =SPy(cos )], (20)

where cos 0=r_;~)_c, i.e., the angle € is now that between the

director é and the x direction. The fraction of cis nematogens
is therefore

I[1-8P,(cos 0)]
34+1[1=SPy(cos 6)]

&S, 0,1)=A (21)

We once again take the Taylor limit, that is we assume each
domain suffers the same uniaxial deformation. The unique
direction is now the beam direction, thus we adopt the sec-
ond of the deformation gradient tensors in Eq. (18).

The step length tensors [, and [' are given by Egs.
(13)—=(17). Since the deformation gradient is isotropic within
the yz plane domains which make the same polar angle with
respect to the direction k but have different azimuthal angles
within the yz plane are mechanically equivalent.

Our model predicts uniaxial extensions along the beam
direction k, Fig. 2, and corresponding contractions in the
plane of the film. Now the regions with director in the plane
of the sample rotate away from the yz plane causing elonga-
tions along the beam direction in complete analogy with the
effects described above. Such distortions turn out to be large
in our model, i.e., comparable to those suffered by cooling
monodomains. Figure 9 shows the equilibrium deformation

gradient A as a function of I for the strongly cross-linked
case pu=1/10. Figure 10 shows the result for the weakly
cross-linked case f=1/50. In both cases we observe that the
deformation A > 1, thus the film expands agong the direction
of light propagation and contracts by 1/V\ in the yz plane.
The mechanical response for the weakly cross-linked case is
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FIG. 9. The deformation \ along the beam propagation direction

k as a function of the reduced intensity T of unpolarized light on an
elastomer with g=1/10.

somewhat larger—as before, rotations away from the electric
field are bigger, leading to larger mechanical responses. The
form and features of these plots are readily explained by the
discussion in the previous section, in particular, by consider-

ing the 6(6,) and S(6,) relations at each I. This analysis of
unpolarized light may also be relevant in polarized illumina-
tion but where scattering induces depolarization through a
thick sample.

That the response to unpolarized light is larger than that to
polarized light can be justified on purely geometrical

grounds: the }_;0 vectors are uniformly distributed on the unit
sphere. The polar axis is now k rather than E. Being distrib-

uted with weight sin 6,d6,, the majority of the ;_20 and thus
the rods associated with the domains are in the equatorial
region. The dye units are accordingly most susceptible to the
E vectors of the unpolarized light, rather than formerly
where the E vector was uniquely along the polar axis of the
distribution of directors. We now turn to an even more ex-
treme case of directors initially localized to an equatorial
region.

C. Unpolarized light incident on a cholesteric photoelastomer

Consider a planar distribution of directors, all of which
are in the yz plane, Fig. 11 (left). This is essentially the 2D

1.8?L ]
1.6 ]
1.4:
1.2:
105 5 10 le

FIG. 10. The in-plane contraction X\ as a function of the reduced
intensity 1 of unpolarized light on an elastomer with @=1/50.
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FIG. 11. The helical director distribution for a simple cholesteric
(left). Initial directors are in the plane perpendicular to x, the helix
axis. Directors are induced to rotate out of the transverse plane

towards the helix axis, remaining in the ny-x plane. A shear dis-
placement u in the ng direction varies with x (right).

equivalent of a standard polydomain. Practically, such a dis-
tribution could be realized using a cholesteric LCE with the
helix axis parallel to the propagation direction of the incident
unpolarized light. If the sample is thick compared with the
pitch, one can adopt a coarse graining procedure. Variations
over the length of the pitch can be integrated over and one is
left with an effectively planar distribution of directors that
would be uniformly illuminated by unpolarized light. The
unique direction of the sample is then parallel to the propa-
gation direction. Care is needed with this argument if the
incident light is of wavelength at or close to the stop gap of
the cholesteric. Then the component of incident light of the
same circular handedness as that of the LCE is rejected by
Bragg reflection (giving the characteristic colors of a choles-
teric). The other handedness will penetrate and may behave
as envisaged in the coarse-grained picture. The photonics of
cholesterics is very subtle and absorption adds still further
complications [31] that reveal our picture above is a simpli-
fication. Cholesterics often have pitch in the visible part of
the spectrum, that is their pitch is in the range
~400-600 nm. The nematic polydomain films used by
Ikeda [6] were 7-um thick; this would give for an equivalent
cholesteric sample ~ 15 full rotations of the helix through the
sample. For our model thus far to be applicable one must be
careful to make sure that while the sample is thick compared
with the pitch of the cholesteric, it is thin compared with the
absorption length of the film, which can be tuned by reduc-
ing the concentration of dye in the film, or illuminating with
light that is not quite on resonance for the trans— cis isomer-
ization. Since all domains are oriented initially in plane (i.e.,
6y=/2 for all domains) we no longer need to integrate over
the initial orientation of domains.

Figure 11 (right) shows how the director can rotate to-
wards the helix axis, moving in the plane of the original

director and this axis. The plane in which 1_2 rotates itself
rotates with advancing x. There are now more strain possi-
bilities than before. The deformation gradient tensor \;, Eq.
(18), can be augmented by N, and \,, shears associated with
the displacements u in the transverse plane shown in the
figure. Such a shear is advantageous since there is elongation

along the diagonal of the éo-x plane section of the sample
which accommodates the rotating director and its associated
elongation. The possibility of tilted (or conical) cholesteric
elastomer phases with associated shears is explored in the
context of changing order parameter near the thermal
cholesteric-isotropic phase transition [32,33]. The spatially
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varying strain introduced is still compatible: the deformation
gradient element A;; is IR;/ ﬁRj-), where R and R are material
positions in the target and reference states, respectively.
Clearly the second derivative of position must obey
Nl &Rg:&)\ik/ c?R? which is here trivially satisfied since the
variation is in the x direction—we are dealing with Jd\;/dx,
where i=z,y. The balance between z and y displacements
and hence components of shear is best handled by taking

coordinates based on z, that is locally taking éo along z. For

clarity in this context we denote the in-plane direction of éo
by the vector m. A frame-independent method of writing this
deformation is [33]

A== \N)xx + 1/AVNS+ N, mx. (22)

The free energy density (reduced by n,kgT) to be mini-
mized is again that of Eq. (19), but with the uniaxial elonga-
tion A augmented by shear as above, and with ¢ given by Eq.
(21). The equilibrium deformation adopted is given first by
minimizing with respect to both A, and \. Details are simi-
lar to those of Ref. [33] but with the difference that there
So=0 and that care with prefactors in the free energy has to
be taken in comparing with here. As in Ref. [33] the optimal
shear, given A\ and 6 is

r—1
mx = —FE (r—)f)csz)\’ (23)

where r is shorthand for the anisotropy /;//, and analogously
for ry, and where s denotes sin € and c is cos 6. The various
[ factors are given in Egs. (15)—(17). Returning this shear to
the elastic part of the free energy one then minimizes this
part over A and obtains

qu = %[r— (r=1Ds*[r(rg+ 1) = ro(r—=1)s*].  (24)

Returning this N\ to the elastic free energy gives the scaled
energy

[r(ro+1) = ro(r— 1)52]2
r—(r—1)s

el = E'MZ 273,273

1.5 3

(25)

In this free energy we have neglected the effects of Frank
elasticity. Departure from transverseness of the director
means that twist is reduced from its natural value attained
before deformation, and thus a Frank penalty arises. In many
cholesteric elastomer problems Frank energy seems to be
important and experiment will determine whether the current
problem in the weak crosslinking limit should be revisited.

We can place limits on the magnitude of the deformation
achieved. The largest deformation will occur if the domains
rotate such that they are parallel to the x axis, i.e., s=0,c
=1 and that response will be maximized if the rotation oc-
curs without reducing the order parameter, i.e., when one
rotates a still-elongated system. Taking S=S§, for /[, and [, in
Eq. (24) gives a )\f:%ro(r(ﬁ 1), that is,
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Mz[l<1+2so>(2+so)] . 06)
2\ 1=-S5, /\1=8,

For Sy=0.615 this yields \;=2.7, a significant expansion.
Indeed N, is greater than the elongation X\, associated with
the rotation of a monodomain by 90° at constant order pa-
rameter. This apparently paradoxical situation arises because
here the perpendicular contractions are forced to be equal by
our (Taylor) assumption about polydomain response. The
perpendicular strains are not optimal for any of the rotating
domains and hence the elastomer is squeezed out along the
cholesteric helical axis.

We can also predict the high intensity value of A, At
high intensities ¢ from Eq. (21) loses any angular depen-
dence. The elastic energy (25) can be simply minimized over
0 where it appears explicitly since there is no hidden 6 de-
pendence in S from ¢ in r. The result is 6= 6,=7/2. Setting
s=1 in Eq. (24) then shows that \ in the high intensity limit
is \,=[(ro+7r)/(2r)]'. The high intensity response falls in
the interval N\,=1 for r=ry corresponding to temperatures
and fractions A low enough that high intensities have little
effect on order, to \,=[(ry+1)/2]"3, where the intensity is
sufficient to convert all domains to the isotropic state. Thus a
bound on the high intensity value of the deformation gradient

is \,, given by
1(2+58,)\ |3
\, = —( 0) . (27)
2\1-8,

For §7=0.615 this gives A,=1.5.

The response of cholesteric photoelastomers also depends
on whether they are strongly or weakly crosslinked. The de-
formation and director rotation of a strongly linked network
(z=1/10) as a function of incident intensity are shown in
Fig. 12. The variation of domain orientation and order pa-
rameter is the same for all domains since they all start with
polar angle /2 with respect to the propagation direction.
Elongation along the helix axis initially increases, with do-
mains departing briefly and weakly from the yz plane. The
twist energy does not change much and the neglect of Frank
effects is certainly appropriate. On the return of directors to
the yz plane, the elongation thereafter increases more slowly
and monotonically. Going to significantly larger intensities
than is shown in the plot, the deformation asymptotes to-
wards N\,. Through the same interval of intensity, the order
parameter of the domains decreases slowly from the initial
value §=0.61 to S~0.3.

The situation is significantly different if we increase the
number of nematogens per network strand. Figure 13 shows
the elongation, director orientation and order as functions of

1 for @=1/50. Initially elongation is very rapid, associated
with rapid director rotation with only slow reduction in the
order parameter. Very soon there is a jump in elongation to
close to the maximal possible elongation A;, upper dashed
line in the elongation figure, the failure to attain the maxi-
mum being because the order parameter is very slightly re-
duced already. The jump is because of the jump in the direc-
tor (see inset to the middle figure) away from the transverse
plane to being along the helix axis. Twist is eliminated. Be-
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FIG. 12. Upper: The elongation along the helical axis for a
cholesteric elastomer of z=1/10 illuminated with unpolarized light
of intensity 1. Lower: The associated rotation of the director away
from the yz plane.

cause the jump is away from the electric vector, the order
parameter recovers somewhat. At higher intensities around

1 ~ 6.5, because of the reduction in order parameter the di-
rectors rotate back to the transverse plane and there is a
concomitant reduction in the order parameter since the direc-
tors are again close to the electric vector. The elongation is
reduced to close to the high intensity limit \,, lower dashed

line, which is then approached from below at high L.

IV. SUMMARY AND CONCLUSIONS

We have modeled the response of nematic polydomain
photoelastomers to polarized and unpolarized light. Polarized
light lead to contraction along the polarization direction, a
very useful control of mechanics that has been seen in ex-
periments on both nematic glasses and elastomers. We draw
a distinction between weakly crosslinked elastomers which
display large director rotations and hence qualitatively differ-
ing regions of mechanical response, and strongly linked sys-
tems where rotations are inhibited by the network and where
responses, while still large, are not so big as in the weak
case. We predict that larger responses are achieved for the
same elastomer if they are irradiated with unpolarized light.
Now the uniaxial axis is one of elongation and is along the
propagation direction. This configuration is of perhaps the
greatest applicability. It has been proposed [17,19] that local-
ized structures can be optically written into films of photo-
elastomer on rigid substrates. In particular, it would be useful
to have raised bumps or dips in the surface topography
which would depend on an incident spot of light but not on
the underlying director if it were in-plane. Polydomain sys-
tems that we have described offer this opportunity.
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FIG. 13. Upper: Elongation N\ for a cholesteric elastomer with
a=1/50 illuminated by light of reduced intensity 1. Middle: Direc-
tor angle 6. Lower: Order parameter S. The insets show the rapid
variation and jumps at low intensities.

Finally we examined the potentially largest response,
namely, from a 2D system of domains as realized in choles-
teric photoelastomers. The response predicted for cholester-
ics is complex. It is possible that the neglect of Frank effects
and avoiding the Taylor approximation might modify these
subtleties.
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APPENDIX A: UNIVERSAL FUNCTION

The function go(x)=d1In Z(x)/dx given below Eq. (9) is
explicitly
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the latter being for x> 0. It can be further simplified by re-
writing the final term as F(x), defined by

. (Al

iZexp(3x/2) V3x/2
2 Nmo erfi\3x/2)

Flx) = (A2)

where erfi(y) is the imaginary error function [34]. Thus,

o) == 7 = 1+ F).

2 2x (A3)

One can extend this result for x<<0 using analytic continua-
tion on the function F(x) for imaginary arguments. Many
routines exist for numerically calculating the imaginary error
function quickly and accurately. For x — —oo the function g,
tends towards —0.5 while for x — < it tends towards 1. It has
the sigmoid shape required to yield a first order phase tran-
sition applying self-consistency graphically.

The inverse function ggl(S) can easily be achieved nu-
merically and gives us the mean field h=kzTg;'(S) as a func-
tion of the order parameter S. Finally it is trivial to show that
the partition function Zy(h/kgT) can be written as a function
of § and is given by

 explgg(9)]
ZolS) = 1+g5'(S)(1+25)°

(A4)

thus all terms in the Maier-Saupe free energy involving the
mean field # within the nematic free energy can be rewritten
as explicit functions of the order parameter S.

APPENDIX B: VARIATION OF NEMATIC ORDER WITH
TEMPERATURE AND ILLUMINATION

The equilibrium order parameter S obtained by minimiz-
ing this free energy is plotted as a function of kzT/J in Fig.

14 for several interesting cases. First, the plot for 1=0 simply
gives the standard Maier-Saupe result, whereby there is a
first-order phase transition from a low-temperature nematic
phase (S>0) to a high-temperature isotropic phase (S=0).
The transition occurs at kgTy,;/J=0.22, and at this point the
value of the order parameter in the nematic phase is S
=0.43. Also shown are plots for a relatively high intensity

1=10, both for a domain with director along E (6#=0) and
perpendicular to E (#=7/2). In both these latter cases we
have taken the fraction of nematogens that are photoactive
A=1/6. It is interesting to note that for both of these plots
the apparent nematic-isotropic transition temperature 7; has
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FIG. 14. The equilibrium order parameter S as a function of
kgT/J within the standard Maier-Saupe model, and within our
modified version for domains illuminated with polarized light of
intensity 1=10 aligned both parallel and perpendicular to the elec-
tric field E.

reduced. Furthermore Ty; is lower for domains oriented with
the field rather than perpendicular to it. Finally we note that
for sufficiently small values of kzT/J illumination of do-
mains perpendicular to E results in an increase in the order
parameter relative to the standard Maier-Saupe result. The
order parameter S is an average over the frans and photoinert
nematogens only. For a domain with director perpendicular
to the field, nematogens perpendicular to the director and
along the field serve to lower S. Illumination preferentially
removes these nematogens, thus increasing S. One can also
define a bulk order parameter Q=(1-¢)S which takes into
account the reduced number of nematogens contributing, and
within our model this parameter is always smaller than the
canonical Maier-Saupe result. The bulk order parameter Q is
the value measured by birefringence. By contrast NMR mea-
sures the order S of the nematic species. It is interesting to
note that the transformation Q=(1-¢)S renders Eq. (11)
back into the usual MS form.

APPENDIX C: THE DEPLETED FREELY JOINTED ROD
MODEL

The freely jointed rod model gives a simple connection
between the step-length tensor and the order parameter ten-
sor §. For the initial tensor [, we assume that the polymer
chain between cross-links consists of rods of length a con-
nected to each other by flexible joints, i.e., there is no cou-
pling between the orientation of one rod and its neighbors.
The span vector is given by 80=2ﬁlqi, where g; is a vector
of magnitude a pointing along the direction of the ith rod.
The step-length tensor [, is given by

_ 3(RoRy)
L= :

= Na (1)

Inserting the above form for R, into Eq. (C1), we obtain
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3a>N{4d
= 2NED _5iag), (€2)
=" 5+28

where we have used Eq. (2) to replace the average (aa).

Assuming § is uniaxial about a director no with scalar order
parameter S, and using Eq. (2), gives

35
l() = a(l - S0)|: _s non() + 5:| (C3)
0

The current step-length tensor [ has a slightly more com-
plicated form than the original value [, since when rods
bend, not only do they cause a change in the local order
parameter, but they also change their step length. We assume
the fraction of nematogens in the cis state is ¢, thus the
fraction of frans or simply photoinert rods is (1—¢). As
above, we model the polymer chain between two cross-links
as a random walk, however the chain now consists of two
different monomers, the trans-photoinert rods described by a
vector ¢ and the cis rods described by a vector b. The span
vector of the chain is now given by R= 2(1 2 a; +Z b
where N is the number of monomers between the Cross- hnks
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The cis molecules are assumed to be isotropically disposed,
thus (b;b;)= (b*13) 36, ;> while the trans-photoinert rods are
un1ax1a11y ordered, thus (g,a;)= (a®/ 3)8;(8+2S). Evaluating
the average (RR)=(1- ¢)N(a2/3)(§+2S)+¢N(b2/3 5. Ex-
tracting a factor of Na [the arc length for the unirradiated
polymer that was extracted in defining [, in Eq. (C1)], the
current step-length tensor is then given by

L=al(1- ¢)}{(1-9)3+3Sii} + (bla)*s],  (C4)

where we have substituted for § from Eq. (2) assuming a
uniaxial form. The forms of the various step lengths / given
in the text can be read off either from Eq. (C3) or from Egq.
(C4). Finally in calculations we require the inverse of the
current step-length tensor, that is, [1. Inverting Eq. (C4) then
gives
1 1
= 2
T dl(1-¢)(1-8)+ ¢(bla)’]
-35(1-¢)
(1+28)(1 - @)+ P(bla

Only if ¢=0 does Eq. (C5) become a standard [~'.
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