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Size and shape effects on two-electron spectra and the spin transition in ellipsoidal quantum dots in magnetic
fields are studied. Calculated results show that the level crossing of two electrons in quantum dots is dramati-
cally influenced by the shape and size which can strongly change single-electron levels and Coulomb interac-
tion energies. The spin transition is quite different between prolate and oblate quantum dots. The spectra are
almost independent of the total spin as the vertical confinement is much weaker than the lateral one. The
quantum behaviors of ellipsoidal quantum dots show some relations with those of vertically coupled quantum
dots, and they are well explored.
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I. INTRODUCTION

The progress in manufacturing nanostructures has given
possibilities to wide experiments in low-dimensional physics
and novel device applications. It is shown both theoretically
and experimentally that nanostructures with reduced dimen-
sions, relative to the bulk materials, have many interesting
features, such as the quantum Hall effect and Coulomb
blockade effect. Quantum dots �QD’s� are one kind of nano-
structures in which electrons are confined in all three direc-
tions, giving rise to a discrete spectrum of energy levels
similar to that of atoms.1,2

Advances in semiconductor technology have made it pos-
sible to manufacture QD’s at heterointerfaces in which the
extension in the lateral plane is larger than that in the vertical
direction, and thus the extension in the vertical direction
could be effectively considered as zero in some cases. Much
attention has been paid to theoretically investigate two-
dimensional �2D� QD’s in their energy levels and optical
properties.3–6 However, it has already been verified in experi-
ments that the vertical confinement may become important in
both self-organized and gate-defined quantum dots7–10 since
the shape of QD’s as well as the size is one of critical pa-
rameters in determining their electronic and optical proper-
ties. Furthermore, recently it is possible to fabricate 3D col-
loidal QD’s �Refs. 11–13�, which exhibit many novel
features, some of which are highly desirable in a variety of
applications: i.e., linearly polarized emission,14,15 improved
optical gain performance,16 and quite different exciton relax-
ation dynamics.17

Besides the experimental progress, many theoretical in-
vestigations have been done considering extensions in three
directions to reveal the differences between 3D QD’s and 2D
ones. Energy levels of a single electron confined in ellipsoi-
dal QD’s and the far-infrared absorbtion spectrum have been
calculated in the ellipsoidal coordinate.18,19 It has been found
that energy levels split with respect to those of spherical
QD’s as a result of the decrease in symmetry. Hole states in
the valence band have been investigated by using k · p
theory,20,21 and the calculated optical transition polarization
qualitatively agrees with the experimental measurements.14,15

Other than single-particle states, the ground states of two
electrons in ellipsoidal QD’s have been calculated by using a

variational approach.22 Moreover, recent studies of two elec-
trons in vertically coupled QD’s for application as quantum
gates show that vertical confinement is significant for the
spin transition of the ground state.23,24 Thus, the shape and
size effects of the spectra of two electrons in ellipsoidal QD’s
and related properties are not only very important for them-
selves, but are also related to vertically coupled QD’s. It
however has not been systematically investigated. In this pa-
per, we have calculated the energy levels of two-electron
ellipsoidal QD’s and paid much attention to the shape and
size effects on Coulomb interaction energies and the spin
transition.

In Sec. II, the computational method is presented for two
electrons in ellipsoidal QD’s. In Sec. III, shape and size ef-
fects on the energy levels and the spin transition of the
ground state are shown and discussed, followed by a sum-
mary in Sec. IV.

II. HAMILTONIAN AND FORMULAS

For most QD’s, a parabolic potential is a very good ap-
proximation to describe the confinement of electrons. Hence,
the Hamiltonian of two electrons in ellipsoidal quantum dots
with magnetic field along the z axis is

H = H1 + H2 +
2

r12
, �1�

where Hi �i=1,2� is the single-electron Hamiltonian and
2/r12 is the Coulomb interaction:

Hi = − �i
2 +

�xy
2

4
�i

2 +
�z

2

4
zi

2 +
�B

2

16
�i

2 +
�B

2
Lzi

. �2�

Here the effective Rydberg Ry* and the effective Bohr radius
a* are taken to be the energy and length units, respectively.
The magnetic field �B is measured in the unit ��c /Ry* with
the cyclotron frequency �c. After taking a coordinate trans-
formation in the xy plane, R= ��1+�2� /2 ,r= ��1−�2�, the
Hamiltonian can be separated into three terms—center of
mass HR and relative motion Hr in the xy plane and the rest
H�:

PHYSICAL REVIEW B 72, 075326 �2005�

1098-0121/2005/72�7�/075326�7�/$23.00 ©2005 The American Physical Society075326-1

http://dx.doi.org/10.1103/PhysRevB.72.075326


HR = −
1

2
�R

2 +
�2

2
R2 +

�B

2
LZR, �3�

Hr = − 2�r
2 +

�2

8
r2 +

�B

2
Lzr, �4�

H� = −
�2

�z1
2 −

�2

�z2
2 +

�z
2

4
�z1

2 + z2
2� +

2
�r2 + �z1 − z2�2

, �5�

where �=��xy
2 +�B

2 /4. LZR and Lzr are the Z and z angular
momentum operators in center-of-mass and relative-motion
systems, respectively. The energy eigenvalues of HR are
given by ER�N ,M�=��2N+1+ �M��+ ��B /2�M with radial
and azimuthal quantum numbers N=0,1 ,2 , . . . and M
=0, ±1, ±2, . . .. The eigenfunctions of the HR are given by

�N,M
R �R� = ��N,M�R�M�LN

�M����eiM	e−�R2/2, �6�

where LN
�M���� is the generalized Laguerre polynomials �

=�R2 and ��N ,M�=���M�+1�/2�N! /�
�N+ �M��!. The plane
polar coordinate R= �R ,	� is used.

The eigenvalues of the Hr are also of a similar kind of
form and given by Er�n ,m�=��2n+1+ �m��+ ��B /2�m with
the corresponding radial and azimuthal quantum numbers n
=0,1 ,2 , . . . and m=0, ±1, ±2, . . .. The eigenfunctions of Hr
are given by

�n,m
r �r� = ��n,m�r�m�Ln

�m����eim�e−�r2/8, �7�

where �=�r2 /4 and ��n ,m�= �� /4���m�+1�/2�n! /�
�n+ �m��!.
The plane polar coordinate r= �r ,�� is also used.

The eigenfunctions of H� excluding the Coulomb interac-
tion are given by

�n1,n2,A�z1,z2� = ��n1,n2�e−�z�z1
2+z2

2�/4�n1
��1�n2

��2�

+ �− 1�An2
��1�n1

��2�� , �8�

where n��� is the Hermite polynomials, �i=��z /2zi �i
=1,2�, ��n1 ,n2�=��z /��2+2�n1,n2

�2n1+n2+1n1!n2!
, and A
=0,1 for symmetry and antisymmetry in the z axis, respec-
tively. The eigenvalues of H� excluding the electron-electron
interaction are given by Ez�n1 ,n2 ,A�=�z�n1+n2+1� with the
corresponding quantum numbers n1 ,n2=0 ,1 ,2 , . . . �n1�n2
for A=0 and n1�n2 for A=1�.

The two-electron wave function excluding the Coulomb
interaction is �=�N,M

R �R��n,m
r �r��n1,n2,A�z1 ,z2�. Since the

Pauli exclusion principle requires the total wave function to
be antisymmetric, we have spin singlet �s=0� state for even
m with A=0 or odd m with A=1 or triplet �s=1� state for
even m with A=1 or odd m with A=0. The total energy
eigenvalues excluding the Coulomb interaction are given by

E0�n,m,N,M,n1,n2,s� = ER�N,M� + Er�n,m� + Ez�n1,n2,A� .

�9�

When the electron-electron interaction is included, we
should calculate the energy eigenvalues of Hr+H�. The
eigenfunctions of Hr+H� could be expanded as follows:

�n,m,s�r,z1,z2� = �
i,j,k,j�k

Cijk
nm�i,m

r �r�� j,k,A�z1,z2� , �10�

where n is the order of magnitude of eigenvalues with both
fixed azimuthal quantum number m and spin s. The coeffi-
cient Cijk

nm and corresponding eigenvalues ��n ,m ,s� are cal-
culated through diagonalization in which the matrix elements
can be calculated analytically:

��i1,m
r � j1,k1,A�Hr + H���i2,m

r � j2,k2,A	

= V�i1,i2,m, j1,k1, j2,k2,A� + �i1i2,j1j2,k1k2
�0�i1,m, j1,k1� ,

�11�

where �0�i1 ,m , j1 ,k1�=��2i1+ �m�+1�+�z�j1+k1+1�
+ ��B /2�m and the Coulomb interaction term
V�i1 , i2 ,m , j1 ,k1 , j2 ,k2 ,A� can be analytically obtained �see
the Appendix�. Then the energy eigenvalues of H are given
by

E�n,m,N,M,s� = ER�N,M� + ��n,m,s� . �12�

The Coulomb energy EC of states with n=0 can be defined as

EC�0,m,N,M,s� = E�0,m,N,M,s� − E0�0,m,N,M,n1,n2,s� ,

�13�

where n1=n2=0 for A=0 and n1=0 ,n2=1 for A=1.

III. RESULTS AND DISCUSSION

Before the calculated results are shown and discussed, it
is useful to specify the labeling of the quantum levels of two
electrons in ellipsoidal QD’s. As illustrated in Eq. �12�, the
energy levels E�n ,m ,N ,M ,s� can be labeled by five sym-
bols. In Sec. III A, we give the energy levels in ellipsoidal
QD’s without the magnetic field. In Sec. III B, we investigate
the spin transition of the ground state in magnetic field.

A. Shape and size effects on energy levels

First, we have performed numerical diagonalization for
energy levels of two electrons in spherical QD’s and com-
pared the results with those in our previous works.25 It is
verified that the energy levels are in good agreement with
previous exact ones with an accuracy of ground-state energy
better than 0.03%. Then we have calculated two-electron en-
ergy levels for an ellipsoidal and a spherical QD and com-
pared them as shown in Table I. It is easily seen that the level
orders greatly change as the size and shape of QD’s are var-
ied.

In order to clearly reveal the size effect in two-electron
ellipsoidal QD’s, we have calculated two-electron energy
levels with �z /�xy =4.0 and �xy varying from 0.1 to 1000. For
the sake of clearness, the calculated results are normalized by
�xy and plotted as a function of �xy

−1/2 in Fig. 1. It is also
easily found that both of the level order and the energy dif-
ference dramatically change as �xy

−1/2 varies.
For a better understanding of size effect, it is interesting to

study the Coulomb interaction. The analytical form of the
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Coulomb energy EC defined by Eq. �13� with A=0 is given
by using perturbation theory:

EC�0,m,N,M,s�

= 
�0,m
r �0,0,0� 2

�r2 + �z1 − z2�2��0,m
r �0,0,0�

=
���m� + 1�����

��m� +
3

2
� F1

2
, �m� + 1; �m� +

3

2
;1 − �� ,

�14�

where F� 1
2 , �m�+1; �m�+ 3

2 ;1−�� is a hypergeometric func-
tion and �=�z /� with �=�xy for no magnetic field. The de-
duction refers to the Appendix. In Fig. 2, we give the EC
obtained from Eq. �14� as a function of �xy

−1/2 with �=4.0 and
compare them with the numerically calculated EC defined in
Eq. �13�. The perturbation results are in good agreement with
the numerical results if �xy

−1/2�1 since EC /�xy is small and
EC could be effectively considered as a perturbation. If
�xy

−1/2�1, Coulomb energies are comparable with or even
greater than �xy and the perturbation theory becomes ineffec-
tive. As a result, both the level order and the energy differ-
ence are strongly influenced by Coulomb energies if �xy

−1/2

�1 as illustrated in Fig. 1.
In Figs. 3�a� and 3�b�, we give the two-electron energy

levels of prolate and oblate QD’s, respectively, as a function
of �z

−1/2 with �xy =1.0. In Fig. 3�a�, the shape of QD’s varies
from the sphere to the prolate ellipsoid and the splitting of
degeneracy in energy levels could be found due to the de-
crease in symmetry. As �z

−1/2 becomes greater than �xy
−1/2,

miniband energy structures appear and their edges depend on
the quantum numbers m, N, and M. It is seen that the energy
difference between states a and c notated in Table I becomes
larger in prolate QD’s and approaches to �xy. As �z

−1/2 in-
creases, the spin-singlet state a is always the lowest state.
Meanwhile, both the energy difference between the triplet
state b and the singlet state a and its ratio to �z dramatically

decrease, with the ratio varying from 71.8% for �z ��z
−1/2�

=1.0 �1.0� to 1.6% for �z ��z
−1/2�=0.1 �3.16�. Energy levels

become almost independent of the total spin as shown in Fig.
3�a�. In addition, the system approaches the quasi-classical
limit as �z

−1/2→�. In Fig. 3�b�, the shape of QD’s varies
from the oblate ellipsoid to the sphere and E−�z is shown as
a function of �z

−1/2. Similar to the prolate ones, splitting of
degeneracy could be found if the shape varies from sphere to
oblate ellipsoid. The states in which two electrons both oc-

TABLE I. Energy levels of two electrons in ellipsoidal QD’s
with two different shapes. For the sake of convenience, the short
notation i.e., a, b, c, etc.—is used in all of the paper to indicate
the quantum numbers �n ,m ;N ,M ;s� and to show the change of the
level order. The energy unit is Ry*.

�xy ��xy
−1/2� 1.0 �1.0� 1.0 �1.0�

�z /�xy 1 4

a : �0, 0 ;0 , 0 ;0� �a� 4.0010 �a� 7.1805

b : �0, 0 ;0 , 0 ;1� �b� 4.7194 �c� 7.7889

c : �0, 1 ;0 , 0 ;1� �c� 4.7194 �e� 8.1805

d : �0, 1 ;0 , 0 ;0� �e� 5.0010 �f� 8.6254

e : �0, 0 ;0 , 1 ;0� �h� 5.0012 �g� 8.7889

f : �0, 2 ;0 , 0 ;0� �d� 5.5872 �h� 8.9541

g : �0, 1 ;0 , 1 ;1� �f� 5.5872 �i� 9.1805

h : �1, 0 ;0 , 0 ;0� �q� 5.5873 �o� 9.5324

i : �0, 0 ;1 , 0 ;0� �g� 5.7194 �j� 9.6254

j : �0, 2 ;0 , 1 ;0� �k� 5.7194 �k� 9.6968

k : �1, 1 ;0 , 0 ;1� �s� 5.7194 �l� 9.7889

l : �0, 1 ;1 , 0 ;1� �p� 5.7195 �m� 9.9541

m : �1, 0 ;0 , 1 ;0� �r� 5.8826 �n� 10.1804

n : �0, 0 ;1 , 1 ;0� �i� 6.0010 �q� 10.8181

o : �0, 3 ;0 , 0 ;1� �m� 6.0012 �b� 11.0008

p : �1, 0 ;0 , 0 ;1� �u� 6.5077 �r� 11.1805

q : �2, 0 ;0 , 0 ;0� �o� 6.5077 �d� 11.7270

FIG. 1. Energy levels of spin-singlet �solid lines� and -triplet
�dashed lines� states normalized by �xy as a function of �xy

−1/2 for
ellipsoidal QD’s with �z /�xy =4.

FIG. 2. Coulomb energies of ellipsoidal QD’s with �z /�xy =4
defined by Eq. �13� and obtained by the exact diagonalization �solid
lines� and the perturbation calculation �dashed lines� as a function
of �xy

−1/2.
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cupy the z-directional ground state become the lowest-energy
states in oblate QD’s. The energy difference between states a
and c becomes smaller in oblate QD’s with respect to that in
a spherical one.

Actually, Eq. �14� clearly shows the shape effect on the
Coulomb energy. Particularly, we could obtain the Coulomb
energy

EC,s = ��
���m� + 1�

��m� +
3

2
� �15�

and

EC,2D = ��

��m� +
1

2
�

���m� + 1�
�16�

for spherical QD’s with �=1 and 2D QD’s with �=�, re-
spectively. The ratio of EC,2D to EC,s is 
 /2 for m=0. In Fig.
4, we give the Coulomb energies of both prolate and oblate
QD’s as a function of �z

−1/2 and compare the perturbation
results with the numerical ones. It can be seen that perturba-

tion theory becomes ineffective in prolate QD’s because of
EC��z in prolate QD’s. The Coulomb energy of the state
with m=0 decreases faster with respect to those of states
with m�0 as �z

−1/2 increases. The difference between Cou-
lomb energies of two states with different m in the prolate
QD’s is much smaller than that in the oblate and spherical
ones.

B. Shape and size effects on the spin transition

The spin transition of the ground state under magnetic
field is one of the most interesting phenomena in QD’s,26,27

and it has been theoretically investigated for potential appli-
cations in quantum information in which the spin is used as
a qubit.23,24 Here we have investigated the spin transition and
the corresponding shape and size effects in ellipsoidal QD’s
whose geometric configuration is close to that of the realistic
QD’s.

We have performed numerical calculations on spectra of
two electrons in QD’s in magnetic field. The energy levels
normalized by �xy are shown as a function of �B in Figs. 5�a�
and 5�b� for a spherical QD and a prolate QD, respectively.
We note that there is a crossing between triplet states b and
c− in the prolate QD, unlike the spherical one. There are spin
transitions of the ground states in both spherical and prolate
QD’s; however, the spin transition in the prolate QD needs a
stronger magnetic field.

In order to better understand the spin transition of ground
states, we use Eq. �14� to obtain the energy difference �E
between the lowest triplet state Et and the lowest singlet one
Es in a strong magnetic field. Generally, we can obtain the
�E between the two lowest states �0,−2k−1,0 ,0 ,1� and
�0,−2l ,0 ,0 ,0� as follows:

�E = �E0 + �EC, �17�

with

�E0 = �xy�2k − 2l + 1���1 + �B

2
�2

−
�B

2
� �18�

and

FIG. 3. Energy levels of spin-
singlet �solid lines� and -triplet
�dashed lines� states with �xy

=1.0 as a function of �z
−1/2 in �a�

prolate QD’s and �b� oblate QD’s
where �z is subtracted in the total
energy to clearly show the differ-
ences between the lower-energy
levels.

FIG. 4. Coulomb energies of ellipsoidal QD’s with �xy =1.0 de-
fined by Eq. �13� and obtained by the exact diagonalization �solid
lines� and the perturbation calculation �dashed lines� as a function
of �z

−1/2.
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�EC = ��0�xy� ��2k + 2�

�2k +
5

2
�F1

2
,2k + 2;2k +

5

2
;1 − ��

−
��2l + 1�

�2l +
3

2
�F1

2
,2l + 1;2l +

3

2
;1 − ��� , �19�

where �EC is the Coulomb energy difference between the
corresponding two states, �=�0 /�1+ ��B /2�2, with �0

=�z /�xy and �B=�B /�xy, and k , l=0,1 ,2 , . . .. As �B in-
creases, k− l is 0 for the singlet to the triplet transition and −1
for the triplet to the singlet transition. When k− l=0, �E0 is
positive and �EC is negative, while it is reverse for k− l
=−1. Just because of the opposite signs between �E0 and
�EC, �E could be zero. It means that both the magnetic field
and the Coulomb interaction induce the spin transition in
QD’s. �E of Eq. �17� is not only influenced by the size ��xy�,
but also by the shape ��0�.

We plot the �E as a function of �B for various �0 in Figs.
6�a� and 6�b� with �xy =2.0 and 0.5, respectively. It shows
that the perturbation theory gives the qualitative picture of
the spin transition and is more effective for larger �xy. How-
ever, numerical calculation is necessary to obtain an accurate
spin phase diagram. It is obvious that the spin transition oc-
curs at a larger magnetic field in the prolate QD’s since the
absolute value of �EC in the prolate QD’s is much less than
that of the oblate ones, which can be seen in Fig. 4. There-
fore, it can be concluded that magnetic field could more eas-
ily induce the spin transition in weakly confined oblate QD’s.
This is consistent with results of Ref. 24, in which the spin
transition of vertically coupled QD’s could be influenced by
the in-plane magnetic field which changes effective shape of
QD’s.

IV. SUMMARY

In conclusion, a computational method is introduced for
two-electron spectra in ellipsoidal QD’s, in which matrix el-
ements can be analytically obtained. The perturbation formu-
las are also analytically given. The calculated results of
spherical QD’s obtained by the method are in good agree-
ment with exact ones. Two-electron spectra and Coulomb

interaction energies in both prolate and oblate QD’s are com-
pared. There are obvious size and shape effects on the energy
levels and their orders. The effects are attributed to the com-
petition between confinement and interaction energies. The
spin transition induced by a magnetic field is strongly influ-
enced by the size and shape, and it occurs at a larger mag-
netic field in prolate QD’s, which is consistent with Ref. 24.
It is important to point out that the two-electron levels are
almost independent of the total spin as the value of �z

−1/2 is

FIG. 5. Energy levels of spin-
singlet �solid lines� and -triplet
�dashed lines� states normalized
by �xy as a function of �B in �a� a
spherical QD with �xy =�z=0.5
and �b� a prolate QD with �xy

=0.5, �z=0.4. c−, e−, f−, and
d− �c+, e+, f+, and d+� represent
the corresponding states with
negative �positive� azimuthal
quantum numbers.

FIG. 6. �E obtained by the exact diagonalization �solid lines�
and the perturbation calculation �dashed lines� and normalized by
�xy as a function of �B for �0=0.8, 1.0, and 1.2 with �a� �xy =2.0
and �b� �xy =0.5.
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much larger than that of �xy
−1/2. The reasons are clearly given

by both the exact diagonalization and the perturbation calcu-
lation. What are mentioned above are useful to investigate
and understand the electronic and magnetic properties of
various 3D QD’s. Furthermore, the calculation method can
be applied to vertically coupled QD’s, which may be used as
a quantum gate, and work is in progress.
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APPENDIX

The Coulomb interaction matrix elements V can be ana-
lytically obtained as follows:

V�i1,i2,m, j1,k1, j2,k2,A�

= 
�i1,m
r � j1,k1,A� 2

�r2 + �z1 − z2�2��i2,m
r � j2,k2,A�

= �
l=2�m�

2�i1+i2+�m��

�
n1=0

k1+k2

�
n2=0

k1+k2

Cl,n1,n2

i1,i2,m,j1,k1,j2,k2,A

�Il,n1,n2
�r,z1,z2� , �A1�

with

Il,n1,n2
�r,z1,z2� = �

0

�

dr�
−�

�

dz1�
−�

�

dz2rlz1
n1z2

n2

�
e−�r2

e−�z1
2
e−�z2

2

�r2 + �z1 − z2�2
, �A2�

where �=� /4, �=�z /2, and Cl,n1,n2

i1,i2,m,j1,k1,j2,k2,A is the expan-
sion coefficient. Taking

a =
z1 − z2

�2
, b =

z1 + z2

�2
, �A3�

we substitute Eq. �A3� into Eq. �A2� and then

Il,n1,n2
= �

0

�

dr�
−�

�

da�
−�

�

db
rle−�r2

e−�a2
e−�b2

�r2 + ��2a�2

�
�a + b�n1�b − a�n2

�2n1+n2

= �
i=0

n1

�
j=0

n2

Cn1

i Cn2

j �2−n1−n2�
0

�

dr�
−�

�

da�
−�

�

db

�
rle−�r2

e−�a2
e−�b2

�r2 + ��2a�2
bi+jan1+n2−i−j�− 1�n2−j . �A4�

Integration of b is separated analytically. Now we deal with
the integration on a and r in the following form:

�
0

�

dr�
−�

�

da
rle−�r2

e−�a2

�r2 + ��2a�2
ak, �A5�

in which k is the non-negative integers. Defining p=��a, q
=��r, we substitute them into Eq. �A5�:

�
0

�

dq�
−�

�

dp
qle−q2

e−p2

�p2 + �q2
pk 1

�2��k��l+1
, �A6�

in which �=� /2�=�z /�. Defining q=� cos �, p=� sin �, we
substitute them into Eq. �A6� and then

�
0

�

d��
−
/2


/2

d�
�e−�2

��� sin ��2 + ��� cos ��2

� �� cos ��l�� sin ��k 1
�2��k��l+1

= �
0

�

d��
−
/2


/2

d�
e−�2

��sin ��2 + ��cos ��2

� �cos ��l�sin ��k�l+k 1
�2��k��l+1

= �
−
/2


/2

d��cos ��l�sin ��k 1
��sin ��2 + ��cos ��2

�

�1 + l + k

2
�

2�2��k��l+1
. �A7�

It is easy to find that the integration on � is nonzero if and
only if k is an even integer—i.e., k=2u, where u is an inte-
ger:

�
−
/2


/2

d��cos ��l�sin ��k 1
��sin ��2 + ��cos ��2

=

�1 + l

2
��1

2
+ u�

�1 +
l

2
+ u� F1

2
,
1 + l

2
;1 +

l

2
+ u;1 − �� .

�A8�

*Electronic address: zjl-dmp@mail.tsinghua.edu.cn
1 L. P. Kouwenhoven, T. H. Oosterkamp, M. W. S. Danoesastro, M.

Eto, D. G. Austing, T. Honda, and S. Tarucha, Science 278,
1788 �1997�.

2 T. H. Oosterkamp, T. Fujisawa, W. G. van der Wiel, K. Ishibashi,
R. V. Hijman, S. Tarucha, and L. P. Kouwenhoven, Nature
�London� 395, 873 �1998�.

3 N. F. Johnson, J. Phys.: Condens. Matter 7, 965 �1995�.

D. XU AND J.-L. ZHU PHYSICAL REVIEW B 72, 075326 �2005�

075326-6



4 D. G. Austing, S. Sasaki, S. Tarucha, S. M. Reimann, M. Koski-
nen, and M. Manninen, Phys. Rev. B 60, 11514 �1999�.

5 L. L. Sun, F. C. Ma and S. S. Li, J. Appl. Phys. 94, 5844 �2003�.
6 P. S. Drouvelis, P. Schmelcher, and F. K. Diakonos, Phys. Rev. B

69, 155312 �2004�.
7 X. Z. Liao, J. Zou, X. F. Duan, D. J. H. Cockayne, R. Leon, and

C. Lobo, Phys. Rev. B 58, R4235 �1998�.
8 X. Z. Liao, J. Zou, D. J. H. Cockayne, R. Leon, and C. Lobo,

Phys. Rev. Lett. 82, 5148 �1999�.
9 M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z.

R. Wasilewski, O. Stern, and A. Forchel, Science 291, 451
�2001�.

10 B. Meurer, D. Heitmann, and K. Ploog, Phys. Rev. B 48, 11488
�1993�.

11 X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A.
Kadavanich, and A. P. Alivisatos, Nature �London� 404, 59
�2000�.

12 M. Shim and P. Guyot-Sionnest, Nature �London� 407, 981
�2000�.

13 S. H. Kan, T. Mokari, E. Rothenberg, and U. Banin, Nat. Mater.
2, 155 �2003�.

14 J. T. Hu, L. S. Li, W. D. Yang, L. Manna, L. W. Wang, and A. P.
Alivisatos, Science 292, 2060 �2001�.

15 X. Chen, A. Nazzal, D. Goorskey, M. Xiao, Z. A. Peng, and X. G.

Peng, Phys. Rev. B 64, 245304 �2001�.
16 H. Htoon, J. A. Hollingworth, A. V. Malko, R. Dickerson, and V.

I. Klimov, Appl. Phys. Lett. 82, 4776 �2003�.
17 M. B. Mohamed, C. Burda, and M. A. El-Sayed, Nano Lett. 1,

589 �2001�.
18 G. Cantele, D. Ninno, and G. Iadonisi, J. Phys.: Condens. Matter

12, 9019 �2000�.
19 G. Cantele, G. Piacente, D. Ninno, and G. Iadonisi, Phys. Rev. B

66, 113308 �2002�.
20 X. Z. Li and J. B. Xia, Phys. Rev. B 66, 115316 �2002�.
21 L. C. Lew Yan Voon, R. Melnik, B. Lassen, and M. Willatzen,

Nano Lett. 4, 289 �2004�.
22 G. Cantele, D. Ninno, and G. Iadonisi, Phys. Rev. B 64, 125325

�2001�.
23 G. Burkard, G. Seelig, and D. Loss, Phys. Rev. B 62, 2581

�2000�.
24 D. Bellucci, M. Rontani, F. Troiani, G. Goldoni, and E. Molinari,

Phys. Rev. B 69, 201308�R� �2004�.
25 J. L. Zhu, Z. Q. Li, J. Z. Yu, K. Ohno, and Y. Kawazoe, Phys.

Rev. B 55, 15819 �1997�.
26 J. L. Zhu, Z. Zhu, Y. Kawazoe, and T. Yao, Phys. Rev. B 58,

13755 �1998�.
27 M. Dineykhan and R. G. Nazmitdinov, Phys. Rev. B 55, 13707

�1997�.

TWO-ELECTRON SPECTRA AND THE SPIN… PHYSICAL REVIEW B 72, 075326 �2005�

075326-7


