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Marshall’s sign rule and density-matrix renormalization-group acceleration
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In applications of White's density-matrix renormalization-gro@MRG) algorithm, computation time is
dominated by the diagonalization of large sparse Hamiltonians by iterative diagonalization algorithms, whose
convergence can be decisively accelerated by the usage of good start vectors. In this paper | show how, using
the Marshall sign rule, in a wide class of antiferromagnetic models the number of diagonalization iterations can
be reduced below 10, sometimes down to 2, accelerating the DMRG by an order of magnitude. This accel-
eration, applicable during the growth of long chains, complements the acceleration procedure proposed by
White. To illustrate the feasibility of the approach, | show how it performs if applied to the calculation of the
Haldane gap foS=2.[S0163-1828)02037-2

[. INTRODUCTION infinite size algorithm the old information can be used to also
make a good initial guess.

In recent years, the density-matrix renormalization-group What the DMRG essentially does is to find a fixpoint in
algorithm proposed by Whitén 1992, has become together density matrix space, i.e., for large systems, essentially the
with exact diagonalization and quantum Monte Carlo meth-same (incompletg transformation from a basis witMN
ods the algorithm of choice in low-dimensional quantumstates ¥ block states andN spin statesto a new (deci-
models, including magnetic, fermionic and bosonic systemsnated basis withM states is carried oGtA first guess

White has proposed two different DMRG algorithms, thewould be that the target state converges to a fixpoint in Hil-
so-called finite-size and infinite-size algorithm. The infinite-bert space also, implying that simply using the target state
size algorithm precedes the application of the finite-size alfound in the last iteration as the initial state vector should be
gorithm: a chain is grown symmetrically to its final size, @ good guess.
whereas the finite-size algorithm treats the fully-sized system This is not so: the overlap between the initial guess and
splitting it asymmetrically. This increases the precision ofthe result is typically far from 1, an¢v 4| H|v,), the energy
the results. Sometimes, it is however advantageous to stick @xpectation value of the initial guess is much larger than the
the infinite-size algorithm and increase its precision by in-rue target state energy. One finds that for longer chains, the
creasing the number of block statés For example, when absolute values of wave function coefficiefifdabeled suit-
the Hamiltonian is invariant under reflection and parity thusably, see below converge fast to fixed values, while the
a good quantum number, it is of great advantage to retaifigns vary randomly. If one could predict the sign changes,
this quantum number, for easier classification of states anthe old wave function would indeed provide an excellent
for thinning out the Hilbert space by splitting it into more starting point. The randomness in signs has two origins.
sectors invariant under the operations of the HamiltonianFirst, real eigenvectors are only determined up to a global
This gives access to more states and speeds up the algorith&gn, which is attributed unpredictably by the density-matrix

In either case, DMRG precision is dominated by the num-diagonalization algorithm. Second, there are deterministic
ber of block state$!, and time Consumption scales NS. sign changes with chain Iength. We will see how the latter
The most time-consuming part of the algorithm is the detercan be used to fix the global signs of eigenvectors such that
mination of low lying eigenstates of the approximate Hamil-almost all signs of the new wave function are correctly re-
tonians that are construed during the iterative application oproduced in the old wave function, which then can serve as
the decimation process of the DMRG. To do this, iterativean excellent prediction for the new wave function.
diagonalization algorithms such as Lanczbare used. They
can be accelerated if a good initial guess for the targeted

state is available, as the number (@fanczo$ iterations Let us consider, to simplify the description, an isotropic

drops. o L , Heisenberg antiferromagnetic spin chain with integer spin
During the application of the finite size algorithm, a pre-|angihs | et us assume that we have reached a certain block

vious ground state for full-length system under consideratioqength L. such that the total chain under consideration has

as well as théincomplet¢ DMRG basis transformations are length 2 +2. Let us call the block states of the block of

available. White has used this information to make a VemengthL Im!), those of the block of length+1 |my 1)

good guess for the initial state of the diagonalization . Lo 2 Lol

algorithm? basically carrying out basis transformations onith total magnet|zat|on§fn£ and Sy, - If we call o the

the previous ground state. During the application of the infispin state on sitd.+1, and the magnetizatiois?, the

nite size algorithm, previous ground staewere all ob- DMRG decimation procedure yields

tained on shorter chains, such that a basis transformation is

not feasible. What | want to show in this paper is how in the (m{om_;1)#0 .y

Il. PREDICTION MECHANISM
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L their position from one sublattice to the other. Let us now
take the two(say, ground stajevave functions
BABABA BA[BABABA| wolsay, ground stajevave funct
[90)=2 il olormt ML " M), 5

IABABABA BABABABAB

L+1 |¢L+l>:2 ¢ml_+lo'0fm'|_+l|m:_+10'|0'rmrL+l>- (6)
FIG. 1. DMRG chains for different block lengths andL +1 . .
with sublattice structure. Sublattices are labeled such that centrzg we makg an the assumption _that _the DMRG is close
spins remain on the same sublattice. Blocks are represented by re§00Ugh to its fix point that we may identify both systems, the
angles. Note the shift in sublattice position of block spins duringWave function coefficients will béalmos) identicalbut for
system growth. the sign as sublattice positions of spins have changed. This

is confirmed by numerical evidence, and motivates calling
with states equivalent; while physically distinct, they mdlké
mos) the same contribution tgphysically also distingt
& +F=g (2 Wwave functions as also supported by the arguments of Ref. 5.
m T T It remains to determine the sign. If we consider two equiva-
Lent states [m_) and |m_,,), the matrix element
(m_a|m_ 1) is nonzero only ifS;=0. Expanding/m,) in

as a necessary condition. Both the states of the block witl

lengthL and the block with length.+1 are nowordered . . . . .
X . - the Ising basis, the signs of the wave function coefficients

and numbered in the respective magnetization sectors ac- ) ) 2B

cording to their importance, i.e., the associated eigenvalueVill be, up to a global sign, be given by-(1)!%1n, where

of the density matrix when they were formedssume now [S’In is the sum over the magnetization on sublat@ef

that the respective magnetization sectors for the blocks ding staten. If we identify now|m,) in |, ) with [m ;) in

length L and L+1 have equal numbers of states. This is|#L+1), one sees that the added sfsitting on sublatticé)

normally the case as soon as chains exceed certain, rath@akes no sign contribution, while the spins of thélock

small lengths; if not, typically one or two states of extremelyhave changed sublattice, such that the sign will be

small weight are redistributed. One can easily modify the(—l)[szlﬁ_ The relative sign change will be

proposed procedure to take this into account, which for rea-

sons of clarity | will not discuss; all results shown below (- 1)[STn-[7 = (— 1)IFI3+ IS0 = (— 1)Sm, = (— 1) 5.

were obtained by switching off the prediction mechanism in 7)

these rare circumstances. Otherwise the condition could b_?

ensured by adding or dropping a state which has very little he last expressi_on I i_ndependent of the underlying Ising
weight, at minor loss of precision. states and leads immediately to rg8.

Fundamental rule.lf this assumption holds, the global Ml?jority. rulhe. Retracing thﬁ al:l))?vekargument, itt)s p;ntr:ll d
sign of the eigenvector of the density matrix givifg, ;) weakness is the assumption that block states can be identifie

is chosen such that for different lengths. Calculating the overlap between pre-
dicted wave functions and calculated wave functions, it is
found to have increased to typically well above 0.9, but this
does not lead yet to a large increase in performance of itera-
tive diagonalizations. Thus, rule8) seems to catch an im-
portant point, but is also oversimplifying. Block identifica-
tion implied that the added spin had zero magnetization,
which is physically not true; there will be other magnetiza-
tions contributing, in particular in excited states. RU8
inay therefore not apply.

To go beyond, magnetizatiorg,#0 have to be consid-
ered also. It seems there is no strict rule to do this—also
because the overlaps between states may be so small that the
sign is up to numerical arbitrariness—but we have found the
following procedure to work extremely well.
|gMy= c,(—1)%ies ~S*S|ny, (4) The expression

n

(_1)Sf“L+1<m|_(T|m|_+1>>0 (©))

for the case wheren, =m, , ;, meaning that the states have
equal label numbefl will call them “equivalent”).

How can this rule be motivated? Let us consider Mar-
shall's sign rulé® In its original form it states that for a
bipartite connectedi.e., that only sites on different sublat-
ticesA andB interact and that each site can be linked to eac
other site by a chain of bonggsotropic antiferromagnet the
lowest energy statgsM) in a sector with total magnetization
M can be written in the Ising basis

’ i S
such that,>0. The|n) are the Ising basis states, the sum in (M4 1,m) 4 1) =sign(—1)>(m{ o|mg 1)
the ex!oonent effectively .yields the tqtal magnetization of x(m (—a)|m! ), (8)
sublatticeB. Marshall's sign rule applies to the two most
interesting states for the DMRG, the ground and first excitedvhere|m;) and|m, . 1), and|m{) and|m/,,) are equiva-
states. Let us compare the two chains arising in the DMRdent states respectively, is evaluated. If it is negative, the sign
procedure shown in Fig. 1, for block length and block is considered “wrong.” One finds, that almost all states
lengthL + 1. If we assign the same sublattice positions to thdm, , 1) have all signs i) ,,,m/ ;) right, and that some
center spins, the positions of the spins in thédlock shift  states(typically less than 10 out of several hundydthve
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almost all signs wrong. The wrong signs of the “almost cor- S=2 ground state
rect” stategm, . ,) are typically thoserfy_ , 1,m, , ;), where 5.0
|m/ ;) is an “almost wrong” state. By globally flipping the
sign of the few “almost wrong” states, nearly all signs can
be made right; the majority character of the rule makes it
extremely stable against numerical imprecisions. The fact
that only few flips are necessary justifies the assumptions
made for Eq.3): As we will show, the majority rule added
to Eq. (3) ensures that the old wave function has an almost |
perfect overlap with the desired new wave function.

One of several ways to see how this rule goes beyond Eq.
(3) is to imagine that we are adding two sites to a block,

0.0 " E

log of relative guess error
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assuming tham, and m_,, can be identified, with spin | & " 1 \‘-
— o on the first and spir on the second site. There is no \ SL
shift in sublattice positions, one of the new spins makes a 150 . ‘
sign contribution 61)35. Therefore, 00 200.0 ohain length 4000 600.0
Sign[(—1)S<Zf<m|_(—0)0|m|_+2>]=1, 9 FIG. 2. Decadic logarithm of the relative guess err@,

for identified states. InsertinEmLH|m|’_+1><mﬁ+1|, we find — Eguesd/ Efinal fOr the ground state of 8=2 chain vs length.
verged once the relative change of the desired eigenvalue is
. , ) 13 Hrat
sign| (—1)Se>, (m(—o)|m{ . XM/ jo|m o) |=1. less than 10~ between Lanczos iterations.
m’ The prediction algorithm makes the number of Lanczos
. iterations drop dramatically, once the chain exceeds a certain
Now  we ,are not making a statement aboutigngih For>200, more than 30 percent of all Lanczos runs
(m(=o)|m(.,) [this would not go beyond Eq3)], but  finish after 4 or less iterations, where it has to be kept in
about a product. |dentifying the decimatiohs-L+1 and  ming that 2 is the minimum number of iterations to establish
L+1—L+2 in the above for large,” we obtain the major-  that a result has already converged. Less than 15 percent take
ity rule at least for the dominant overlaps. _ 10 or more iterations, and the average is 7 iterations only.
Extensions.So far, we have only considered isotropic The intermittent peaks are due to rearrangements of the
chains. Retracing the derivation of the Marshall sign rule, itgjock states which reflect the growing chain length. In these
becomes evident thafantiferromagnetic anisotropies and jterations, prediction works only partiallghe same phenom-
dimerized interactions are compatible with the sign rule; wWesnon can be observed in strong form belbw 200). The
found the prediction to work.In other cases, such as frus- number of Lanczos iterations is closely connected to the
tration, where the Marshall sign rule does not apply, Rlch'terguess erroFig. 2), the difference between the energy ex-
Ivanov, and Retzlaff have shown that for small frustratlonpectation value for the reused old ground state and the con-
the weight of the states whose signs violate the sign rule igerged Lanczos result. Far>200, the guess error relative
zero or very smalf.In such cases, the method will still lead to the ground state energy is always better than®1enostly
to an efficiency gain, which gradually disappears with in-5; or pelow 102°. This shows that the prediction rules are

creasing frustration. This has been confirmed numericallyyery powerful indeed. Remaining errors also come from the
We have not considered half-integer spins, as state parity

alternates during chain growth; this implies that states that

, i S=2 first excitation
are two DMRG steps apart will be related, making the

method more complicated. However, the sign rule still holds, 00
and it should be possible to adapt the prescription to that
situation. -20 |
o
11l. PERFORMANCE §
1] -4.0 |
The above two rules can be implemented very ed&80/ %
or so lines at mosgt and consume almost no memory and £
computation time. The gain is however striking. To illustrate @ -6.0 ¢
that the above procedure is useful, we calculatedSke §,
Haldane gap using chains with total lendth;= 600, while - el
keepingM =400 block states, employing magnetization and '
parity as good quantum numbers. The chain is long enough,
that the expectedl ~? convergence of the finite length gap ~10.0 ‘ ‘
can be observed, and a gap=0.0907(2) extrapolatettf. 00 2000 enan C° 600.0
Ref. 9. The number of Lanczos iterations without prediction ’
varies betweern~60 for the ground state and 70 for the FIG. 3. Decadic logarithm of the relative guess err@{;

first excitation; here, we consider the Lanczos algorithm con— Ees)/Ejia for the first excitation of é&=2 chain vs length.
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fact that the assumption that the absolute weight of statesignificantly longer than the correlation length, this approach
does not with chain length is of course only approximate. is feasible, but precision deteriorates somewhat because of
Results for the first excitation are not quite as good, aghe imperfections of the prediction rule; to control this loss
was to be expected, but still the number of Lanczos iterationsf precision, one should feed results into the speeded-up fi-
drops to about 20, with some peaks up to 40. This is still anite size algorithrhafterwards. Then, however, some of the
saving up to a factor 3. The relative error goes down togain in performance is lost once again.
10"°, which shows that the method is also efficient here
(Fig. 3.
Let us close with the remark that on an alpha workstation, IV. CONCLUSION

thesg calculat!‘ons (iould all be done ove_rnlght and Bat We have shown how using information about the nature
=2 is not an “easy” case for demonstration purposes: the

very long correlation length is damaging for the underlyingOf antiferromagnetic wave function provided by the Marshall

i f q Al its found here d ign rule can be used to strongly reduce the number of di-
assumptions of our procedure. results found here do no gonalization steps in the infinite system growth phase of the
change significantly if the Lanczos convergence condition i

modified to somewhat higher or lower precision or the con:CDMRG’ allowing the growth of very long high-precision

: : : . . hains in r nable time. While the pr r re i
vergence of the eigenvector is considered instead. While thC ains easonable time e the proposed procedure is

. ) . . ) ot as completely versatile as White's finite chain
number of Lanczos lterations will be globally.s_llghftly In- roceduré, it covers many important scenarios and can be
creased or redgced if the convergence condition is mad sed as complementary to his procedure.
more or less stringent, the savings remain of the same order
and numerical results are only affected in numerically insig-
nificant digits. One_may also con_sider to rep_lace the Lanczos ACKNOWLEDGMENT
convergence condition by carrying out a fixed number of,
say, 5 iterations at each step. However, for short chains, there | thank J. Richter for drawing my attention to his conti-
is a danger not to converge to the right state; for chainsuity argument for the Marshall rule in frustrated chains.
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