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Marshall’s sign rule and density-matrix renormalization-group acceleration
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In applications of White’s density-matrix renormalization-group~DMRG! algorithm, computation time is
dominated by the diagonalization of large sparse Hamiltonians by iterative diagonalization algorithms, whose
convergence can be decisively accelerated by the usage of good start vectors. In this paper I show how, using
the Marshall sign rule, in a wide class of antiferromagnetic models the number of diagonalization iterations can
be reduced below 10, sometimes down to 2, accelerating the DMRG by an order of magnitude. This accel-
eration, applicable during the growth of long chains, complements the acceleration procedure proposed by
White. To illustrate the feasibility of the approach, I show how it performs if applied to the calculation of the
Haldane gap forS52. @S0163-1829~98!02037-2#
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I. INTRODUCTION

In recent years, the density-matrix renormalization-gro
algorithm proposed by White1 in 1992, has become togethe
with exact diagonalization and quantum Monte Carlo me
ods the algorithm of choice in low-dimensional quantu
models, including magnetic, fermionic and bosonic syste

White has proposed two different DMRG algorithms, t
so-called finite-size and infinite-size algorithm. The infinit
size algorithm precedes the application of the finite-size
gorithm: a chain is grown symmetrically to its final siz
whereas the finite-size algorithm treats the fully-sized sys
splitting it asymmetrically. This increases the precision
the results. Sometimes, it is however advantageous to stic
the infinite-size algorithm and increase its precision by
creasing the number of block statesM . For example, when
the Hamiltonian is invariant under reflection and parity th
a good quantum number, it is of great advantage to re
this quantum number, for easier classification of states
for thinning out the Hilbert space by splitting it into mor
sectors invariant under the operations of the Hamiltoni
This gives access to more states and speeds up the algor

In either case, DMRG precision is dominated by the nu
ber of block statesM , and time consumption scales asM3.
The most time-consuming part of the algorithm is the de
mination of low lying eigenstates of the approximate Ham
tonians that are construed during the iterative application
the decimation process of the DMRG. To do this, iterat
diagonalization algorithms such as Lanczos2,3 are used. They
can be accelerated if a good initial guess for the targe
state is available, as the number of~Lanczos! iterations
drops.

During the application of the finite size algorithm, a pr
vious ground state for full-length system under considera
as well as the~incomplete! DMRG basis transformations ar
available. White has used this information to make a v
good guess for the initial state of the diagonalizati
algorithm,4 basically carrying out basis transformations
the previous ground state. During the application of the in
nite size algorithm, previous ground state~s! were all ob-
tained on shorter chains, such that a basis transformatio
not feasible. What I want to show in this paper is how in t
PRB 580163-1829/98/58~13!/8194~4!/$15.00
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infinite size algorithm the old information can be used to a
make a good initial guess.

What the DMRG essentially does is to find a fixpoint
density matrix space, i.e., for large systems, essentially
same ~incomplete! transformation from a basis withMN
states (M block states andN spin states! to a new ~deci-
mated! basis with M states is carried out.5 A first guess
would be that the target state converges to a fixpoint in H
bert space also, implying that simply using the target st
found in the last iteration as the initial state vector should
a good guess.

This is not so: the overlap between the initial guess a
the result is typically far from 1, and̂v1uHuv1&, the energy
expectation value of the initial guess is much larger than
true target state energy. One finds that for longer chains,
absolute values of wave function coefficients~if labeled suit-
ably, see below! converge fast to fixed values, while th
signs vary randomly. If one could predict the sign chang
the old wave function would indeed provide an excelle
starting point. The randomness in signs has two orig
First, real eigenvectors are only determined up to a glo
sign, which is attributed unpredictably by the density-mat
diagonalization algorithm. Second, there are determini
sign changes with chain length. We will see how the lat
can be used to fix the global signs of eigenvectors such
almost all signs of the new wave function are correctly
produced in the old wave function, which then can serve
an excellent prediction for the new wave function.

II. PREDICTION MECHANISM

Let us consider, to simplify the description, an isotrop
Heisenberg antiferromagnetic spin chain with integer s
lengthS. Let us assume that we have reached a certain b
length L, such that the total chain under consideration h
length 2L12. Let us call the block states of the block o
lengthL umL8&, those of the block of lengthL11 umL11&,
with total magnetizationsSm

L8
z

and SmL11

z . If we call s the

spin state on siteL11, and the magnetizationSs
z , the

DMRG decimation procedure yields

^mL8sumL11&Þ0 ~1!
8194 © 1998 The American Physical Society
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with

Sm
L8

z
1Ss

z 5SmL11

z ~2!

as a necessary condition. Both the states of the block w
length L and the block with lengthL11 are nowordered
and numbered in the respective magnetization sectors
cording to their importance, i.e., the associated eigenva
of the density matrix when they were formed.I assume now
that the respective magnetization sectors for the blocks
length L and L11 have equal numbers of states. This
normally the case as soon as chains exceed certain, r
small lengths; if not, typically one or two states of extreme
small weight are redistributed. One can easily modify
proposed procedure to take this into account, which for r
sons of clarity I will not discuss; all results shown belo
were obtained by switching off the prediction mechanism
these rare circumstances. Otherwise the condition could
ensured by adding or dropping a state which has very l
weight, at minor loss of precision.

Fundamental rule.If this assumption holds, the globa
sign of the eigenvector of the density matrix givingumL11&
is chosen such that

~21!SmL11

z
^mLsumL11&.0 ~3!

for the case wheremL[mL11 , meaning that the states hav
equal label number~I will call them ‘‘equivalent’’!.

How can this rule be motivated? Let us consider M
shall’s sign rule.6 In its original form it states that for a
bipartite connected~i.e., that only sites on different subla
ticesA andB interact and that each site can be linked to ea
other site by a chain of bonds! isotropic antiferromagnet the
lowest energy stateucM& in a sector with total magnetizatio
M can be written in the Ising basis

ucM&5(
n

cn~21!( i PB 2S1Si
z
un&, ~4!

such thatcn.0. Theun& are the Ising basis states, the sum
the exponent effectively yields the total magnetization
sublatticeB. Marshall’s sign rule applies to the two mo
interesting states for the DMRG, the ground and first exci
states. Let us compare the two chains arising in the DM
procedure shown in Fig. 1, for block lengthL and block
lengthL11. If we assign the same sublattice positions to
center spins, the positions of the spins in theL-block shift

FIG. 1. DMRG chains for different block lengthsL and L11
with sublattice structure. Sublattices are labeled such that ce
spins remain on the same sublattice. Blocks are represented by
angles. Note the shift in sublattice position of block spins dur
system growth.
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their position from one sublattice to the other. Let us no
take the two~say, ground state! wave functions

ucL&5( cm
L
l s lsrm

L
r umL

l s ls rmL
r &, ~5!

ucL11&5( cm
L11
l s lsrm

L11
r umL11

l s ls rmL11
r &. ~6!

If we make now the assumption that the DMRG is clo
enough to its fix point that we may identify both systems, t
wave function coefficients will be~almost! identicalbut for
the sign, as sublattice positions of spins have changed. T
is confirmed by numerical evidence, and motivates call
states equivalent; while physically distinct, they make~al-
most! the same contribution to~physically also distinct!
wave functions as also supported by the arguments of Re
It remains to determine the sign. If we consider two equiv
lent states umL& and umL11&, the matrix element
^mLsumL11& is nonzero only ifSs

z 50. ExpandingumL& in
the Ising basis, the signs of the wave function coefficie

will be, up to a global sign, be given by (21)[Sz] n
B
, where

@Sz#n
B is the sum over the magnetization on sublatticeB of

Ising staten. If we identify nowumL& in ucL& with umL11& in
ucL11&, one sees that the added spin~sitting on sublatticeA)
makes no sign contribution, while the spins of theL-block
have changed sublattice, such that the sign will b

(21)[Sz] n
A
. The relative sign change will be

~21! [Sz] n
A

2[Sz] n
B
5~21! [Sz] n

A
1[Sz] n

B
5~21!SmL

z
5~21!SmL11

z
.

~7!

The last expression is independent of the underlying Is
states and leads immediately to rule~3!.

Majority rule. Retracing the above argument, its cent
weakness is the assumption that block states can be iden
for different lengths. Calculating the overlap between p
dicted wave functions and calculated wave functions, it
found to have increased to typically well above 0.9, but t
does not lead yet to a large increase in performance of it
tive diagonalizations. Thus, rule~3! seems to catch an im
portant point, but is also oversimplifying. Block identifica
tion implied that the added spin had zero magnetizati
which is physically not true; there will be other magnetiz
tions contributing, in particular in excited states. Rule~3!
may therefore not apply.

To go beyond, magnetizationsSs
z Þ0 have to be consid-

ered also. It seems there is no strict rule to do this—a
because the overlaps between states may be so small th
sign is up to numerical arbitrariness—but we have found
following procedure to work extremely well.

The expression

~mL11 ,mL118 !:5sign~21!Ss
z
^mL8sumL11&

3^mL~2s!umL118 &, ~8!

where umL& and umL11&, and umL8& and umL118 & are equiva-
lent states respectively, is evaluated. If it is negative, the s
is considered ‘‘wrong.’’ One finds, that almost all stat
umL11& have all signs (mL11 ,mL118 ) right, and that some
states~typically less than 10 out of several hundred! have

ral
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8196 PRB 58BRIEF REPORTS
almost all signs wrong. The wrong signs of the ‘‘almost co
rect’’ statesumL11& are typically those (mL11 ,mL118 ), where
umL118 & is an ‘‘almost wrong’’ state. By globally flipping the
sign of the few ‘‘almost wrong’’ states, nearly all signs ca
be made right; the majority character of the rule make
extremely stable against numerical imprecisions. The
that only few flips are necessary justifies the assumpti
made for Eq.~3!: As we will show, the majority rule added
to Eq. ~3! ensures that the old wave function has an alm
perfect overlap with the desired new wave function.

One of several ways to see how this rule goes beyond
~3! is to imagine that we are adding two sites to a blo
assuming thatmL and mL12 can be identified, with spin
2s on the first and spins on the second site. There is n
shift in sublattice positions, one of the new spins make

sign contribution (21)Ss
z
. Therefore,

sign@~21!Ss
z
^mL~2s!sumL12&#51, ~9!

for identified states. Inserting(m
L118 umL118 &^mL118 u, we find

signF ~21!Ss
z

(
m8

^mL~2s!umL118 &^mL118 sumL12&G51.

Now we are not making a statement abo
^mL(2s)umL118 & @this would not go beyond Eq.~3!#, but
about a product. Identifying the decimationsL→L11 and
L11→L12 in the above for largeL,5 we obtain the major-
ity rule at least for the dominant overlaps.

Extensions.So far, we have only considered isotrop
chains. Retracing the derivation of the Marshall sign rule
becomes evident that~antiferromagnetic! anisotropies and
dimerized interactions are compatible with the sign rule;
found the prediction to work.7 In other cases, such as fru
tration, where the Marshall sign rule does not apply, Rich
Ivanov, and Retzlaff have shown that for small frustrati
the weight of the states whose signs violate the sign rul
zero or very small.8 In such cases, the method will still lea
to an efficiency gain, which gradually disappears with
creasing frustration. This has been confirmed numerica
We have not considered half-integer spins, as state pa
alternates during chain growth; this implies that states
are two DMRG steps apart will be related, making t
method more complicated. However, the sign rule still hol
and it should be possible to adapt the prescription to
situation.

III. PERFORMANCE

The above two rules can be implemented very easily~30
or so lines at most!, and consume almost no memory a
computation time. The gain is however striking. To illustra
that the above procedure is useful, we calculated theS52
Haldane gap using chains with total lengthL tot5600, while
keepingM5400 block states, employing magnetization a
parity as good quantum numbers. The chain is long enou
that the expectedL22 convergence of the finite length ga
can be observed, and a gapD50.0907(2) extrapolated~cf.
Ref. 9!. The number of Lanczos iterations without predicti
varies between;60 for the ground state and;70 for the
first excitation; here, we consider the Lanczos algorithm c
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verged once the relative change of the desired eigenvalu
less than 10213 between Lanczos iterations.

The prediction algorithm makes the number of Lancz
iterations drop dramatically, once the chain exceeds a cer
length. ForL.200, more than 30 percent of all Lanczos ru
finish after 4 or less iterations, where it has to be kept
mind that 2 is the minimum number of iterations to establ
that a result has already converged. Less than 15 percent
10 or more iterations, and the average is 7 iterations o
The intermittent peaks are due to rearrangements of
block states which reflect the growing chain length. In the
iterations, prediction works only partially~the same phenom
enon can be observed in strong form belowL5200). The
number of Lanczos iterations is closely connected to
guess error~Fig. 2!, the difference between the energy e
pectation value for the reused old ground state and the c
verged Lanczos result. ForL.200, the guess error relativ
to the ground state energy is always better than 1026, mostly
at or below 10210. This shows that the prediction rules a
very powerful indeed. Remaining errors also come from

FIG. 3. Decadic logarithm of the relative guess error (Efinal

2Eguess)/Efinal for the first excitation of aS52 chain vs length.

FIG. 2. Decadic logarithm of the relative guess error (Efinal

2Eguess)/Efinal for the ground state of aS52 chain vs length.



at
.
a

on
ll
t
r

on
t
th
ng
n

n
t
-
ad
rd
ig
zo
o
he
in

ch
e of
ss
p fi-
e

ure
all
di-
the
n
e is
in
be

ti-

PRB 58 8197BRIEF REPORTS
fact that the assumption that the absolute weight of st
does not with chain length is of course only approximate

Results for the first excitation are not quite as good,
was to be expected, but still the number of Lanczos iterati
drops to about 20, with some peaks up to 40. This is sti
saving up to a factor 3. The relative error goes down
1029, which shows that the method is also efficient he
~Fig. 3!.

Let us close with the remark that on an alpha workstati
these calculations could all be done overnight and thaS
52 is not an ‘‘easy’’ case for demonstration purposes:
very long correlation length is damaging for the underlyi
assumptions of our procedure. All results found here do
change significantly if the Lanczos convergence condition
modified to somewhat higher or lower precision or the co
vergence of the eigenvector is considered instead. While
number of Lanczos iterations will be globally slightly in
creased or reduced if the convergence condition is m
more or less stringent, the savings remain of the same o
and numerical results are only affected in numerically ins
nificant digits. One may also consider to replace the Lanc
convergence condition by carrying out a fixed number
say, 5 iterations at each step. However, for short chains, t
is a danger not to converge to the right state; for cha
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significantly longer than the correlation length, this approa
is feasible, but precision deteriorates somewhat becaus
the imperfections of the prediction rule; to control this lo
of precision, one should feed results into the speeded-u
nite size algorithm4 afterwards. Then, however, some of th
gain in performance is lost once again.

IV. CONCLUSION

We have shown how using information about the nat
of antiferromagnetic wave function provided by the Marsh
sign rule can be used to strongly reduce the number of
agonalization steps in the infinite system growth phase of
DMRG, allowing the growth of very long high-precisio
chains in reasonable time. While the proposed procedur
not as completely versatile as White’s finite cha
procedure,4 it covers many important scenarios and can
used as complementary to his procedure.
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