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Two electrons in one-dimensional nanorings: Exact solutions and interaction energies
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Exact series solutions for two electrons in one-dimensional nanorings have been obtained by expanding the
Coulomb potential into power series and solving the corresponding equations in different regions. Electronic
structures and interaction energies of two electrons in nanorings with different sizes have been calculated. The
gquantum-size effect of interaction energies and energy levels and the size-dependent magnetic oscillations of
two-electron spectra have been revealed.
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[. INTRODUCTION series of the deviationsy(— yq) from the quasiequilibrium
valuesyg as follows:
Various nanometer structures are fabricated endlessly as
nanostructure technology develops rapidly. They are cur-

rently under intense study because of interests in phySics e?

and in technological applications. Quantum dots are one kind drmegeRV2[1—cod y)]

of useful quantum structures which can be fabricated by di-

rectly self-organized growthin quantum dots, multifarious e? “ mO%R?

guantum effects have been observed experimentally and a
large number of theoretical investigations about electronic
structures and related magnetic and optical properties have
been performed to explain the experimehts Compared
with quantum dots, semiconductor quantum rings belong to
another kind of topological structures in which more richwhere Q2= e?/(16meyesm.R%) and O(x) is the Heaviside
phenomena can be clearly shown. Very recently, the realizasnit step function. What was mentioned above makes one
tion of nanoscopic semiconductor rings inside a complete@rrive at analytical solutions of the wave functions and
field-effect transistor(FET) structure have been demon- the energy spectra, and then the optical absorption and
strated by Lorke and collaboratdt$® using the self- the differential cross section of resonant inelastic light scat-
assembly techniques. The outer radius of the rings is betwedrring can be calculated and the selection rules are clearly
30 and 70 nm and the inter radius is about 10 nm. Theshown!®

nanoscopic rings are in the true quantum limit and quite In the limit of a narrow-width nanoring, i.e., one-
different from the conventional submicron mesoscopicdimensional1D) quantum ring QR), as far as we know, the
structures*=23 exact solutions have not been obtained, and the size effects

Electron-electron interaction and correlation effects areon the interaction energies and electronic structures have not
shown to play an important role in electronic structures ofbeen studied. Therefore, it is interesting not only from
both quantum dots and rings. The exact quantum levels ana physical point of view but also from a mathematical point
interaction energies of two electrons confined in quantunof view to find out the exact solutions of two-electron
dots have been studied, and the size and shape effects hal®® QR’s. In order to investigated the size and interaction
been clearly showfi.The energy levels and FIR spectros- effects, exact energy levels and interaction energies of
copy of two-electron nanoscopic rings with a realized widthtwo electrons in 1D QR’s are obtained by expanding the
have been studie®. Many body wave functions and spin Coulomb potential into power series and using the exact
order-disorder transition of realistic 2D QR’s with different series solutions of the corresponding equations in different
radii have been calculated and studied, and some of the difegions in this paper. Based on them, the size-dependent
ferences and analogies between QD’s and QR’s have alsglectronic structures and magnetic oscillations have been
been discussetf. discussed in detail.

According to the realistic physical situation of two-  The remainder of this paper is organized as follows. In the
electron rings of GaAs with larger radius-@80 nm) and next section, we introduce a model Hamiltonian and define
narrower width (~20 nm), an adiabatic approximation al- two-electron interaction energies. In Sec. lll, exact series so-
lows one to decouple the radial motion from the angularutions are obtained and the difference of interaction energies
motion, and then it is reasonable to use the mean Coulombetween singlet and triplet states is confirmed. Main results
potential to describe the electron-electron interactioff. are shown and discussed in Sec. 1V, followed by a summary
The mean Coulomb potential can be expanded into a powen Sec. V.

T BmeeR o= 4

X(y=y0)?O(m—|v— o)),
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IIl. MODEL HAMILTONIAN AND INTERACTION 2

m
ENERGIES E,(m,s,w=0)= o2 (8
The HamiltonianH of two interacting electrons confined 0
in a 1D QR with a magnetic fluxp threading through its and

interior is as follows:

1
—_— /2) if s=0
1(d 2 1/ d 2 ——————coyme ,
H=——2(—+i¢) ——2(—+i¢) V(@)= 2m(1+ 6o 9
Rg deg Rg de, m,s\ ¢ 1
—=sin(me/2) if s=1,
w P n(me/2)
Rolsin(¢1— ¢2)/2]| wherem=0,1,2,3... for singlet states anch=1,2,3 ...
where the plane polar coordinates are ugeglis the radius ~ for triplet states. _ .
of the circular ring, and the third term wittv=1 is the Based on Eqgs(5), (7), and (9), the relation (-1)

interaction between two electrons confined in the ring. Here=1 is obtained, and thekl +m should be everM,m, and
we use the effective atomic units, in which the effective Ry-S can be used to label quantum levels of two electrons with
dberg RY =m? 4121 2(4meqe,)?, the effective Bohr radius and without the mteracthn term in 1D QR’s.
ak=4mege, h2m*e? and ¢o=27hcle are taken to be the COSM/2)/V2m(1+6m0) and sintng/2) /2 are, respec-
energy, length, and magnetic flux units, respectively. Fon_“vely’ c_hanged Into the other even and odd functions as the
GaAs materials, for example, Ry-5.8 meV, a§ =10 nm, Interaction term Is '|ncluded. , _

and ¢ included by a 1D ring with a radiuag corresponds The eigenenergie&o(M,m,s) of H with w=0 are

to the magnetic field 13.18 T. (M +2¢)2+m?
The HamiltonianH can be separated into center-of-mass E,(M,m,s)=E¢(M)+E,(m,s,w=0)= —_—
and relative-motion terms and rewritten as 2Rg
(10
H=Hc+H, @) while the eigenenergigs(M,m,s) of H with w=1 are given
with by
2
1/(d 2 _ _(M+2¢)
R B E(M,m,s)=E.M)+E,(m,s)= ——+E,(m,s),
; 2R2(d® *'zd)) © 2R}
0 (11
and where the eigenvaluds, (m,s) and the corresponding eigen-
> 2 W functions of Eq.(4) can be obtained by expanding the poten-

- - 4= (4) tial term into power series and using the exact series solu-
" RZde? Rolsin(e/2)]’ tions with proper boundary conditions in the next section.
For the sake of convenience, we define the electron-electron

where® =(¢1+ ¢2)/2 ande= ¢, — ¢,. This separability al- jnteraction energie§;,(M,m,s) as the difference between
lows us to write two-particle wave functions in the form g(m ms) andEy(M,m,s), i.e.,

P(¢1,02)=E(0)¥(¢). Noting that ®(¢1,¢,)=P(¢1

+21,00)=DP(@1,0,+27)=D(@+ 27, ¢,+27) wWe can m?2
get the period oE (0®) and¥(¢) to be 27 and 4r, respec-  Ejn(M,m,s)=E(M,m,s)—Ey(M,m,s)=E(m,s) - Py,
tively, and the relation as follows: 0

En(0) W (9)=En(@+m) ¥ (or2m). (5 (12
The eigenvalues and eigenfunctions of ER).are given by which are independent ov.

(M+2¢)2 Ill. EXACT SOLUTIONS
Ecd(M)= > (6) :
2R, In order to obtain E,(m,s), we should solve the
g Schralinger-like equation
an
Hi W s(@) =E(m,s)¥ (@) (13
(@)= 1 exp(iM ®) (7) which can be simplified as follows:
V27
d*¥ ()
with M=0,+£1,+2,+3, . ... For thespin singlet 6=0) and 402 —V(e)¥(¢)=0 (14
¢

triplet (s=1) states, the eigenvalues and eigenfunctions of
Eq. (4) without the interaction termw=0) are given by with
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Ry RS as long as a proper numbBrand the corresponding posi-
V(e)= g2 - E(ms). (15  tions of series expansion point®{,¢;, . ..,pr) are cho-

sen. For instance, the maximal errondfe)/R, in the whole
It is only needed to solve the equation in the region ofregion[0,27) is less than 18— 14 whenK andR are equal
[0,27), and ¥, ((¢) in other regions can be obtained by to 23 and 5, respectively. It can be seen that a higher accu-

using Egs(5) and(7), i.e., racy required in numerical calculations is easily reached by
" increasing theR or the K without more computation time
Vins(@)=(=1)"¥, (px2m). (16) consumption.

Once the series expansion forms\f¢) in different re-
gions are obtained, the exact series solutions can be found.
In the regionp— 0 or ¢— 27 we have an exact series solu-
tion, which has a finite value at, =0 or 27 as follows:

It should be noted that zero andr2are regular singular
points of V(¢). It can be, respectively, expanded into Lau-
rent and Taylor series around the regular singular peint
=0 and 27 and at the normal pointg, € (0,277) up to the

Kth order in the form o
« V(@) =Ale—g) 2 an(e—e)", (20
ui(e—e,)' for ¢,=0 and 2,
i:z—l (o= o) or whereA, is a constant andly is equal to 1. Noting thaa, is
Vie)=) « equal to zero as is equal to a negative integer, the otlagr
> vi(e—¢,) for ¢ e(0,2m). can be determined by the following recurrence relation:
=0
(17) min(K,n—2)
) _ . al =; ual . (21
For the sake of conveniencR,points including two regular " n(n+1) £, “n-i-2
singular points are taken. The regular singular points corre-
spond tor =1 andR, ande, withr=2,3, ..., andR—1 are In order to match the solutions of E@O0) with ¢, =0 and
normal points. For example, the Laurent series around zerg, =2, we give T solutions aroundpy,¢,, .. .,¢¢, .. .,
and the Taylor series at are, respectively, as follows: and @1, which are the proper points for solving E@L4)
) exactly. The solution of uniformly convergent Taylor series
R 1 arounde(t=1,2, ... T) is written as follows:
= -1_ _O _ . 3 Pt 16 ’
V(QD) RO()D 2 Er(mls)+ 24R0¢+ 5760R0(P - -
31 . 127 , s W(9)=Ci2 cr(e—¢)"+D X di(e—gn)", (22
" 967680°0¢ * 15a828808%0¢ T (18

whereC, andD, are constants;;, andd} are equal to 1, and
c} andd}, are equal to 0. The}, andd, can be determined by
2 the recurrence relations

1 R? 1 ,
V(¢)= 5Ro 5 E(m,s)+ zRo(¢— )

and

1
cl= —(n—1)(n=2)ct _
5 ,. 61 ] ¥ n(n_l)(‘Pt_‘Pr){ (n=1)(n=2)cny
T 76870l ¢~ ™) garggRole T M min(K+1n—2)
t
(19 2 Y|Cn—l—2]r (23

It should be pointed out that the maximal error of thewhereY, are related to the expanding poiaf and the cor-
series expansions up to tKeh order can be extremely small responding coefficients in Eq17) as follows:

(i+1)! -
i;_l ity ile e " for ¢=0 or 2m,
- (24)
| S —(I + 1)! i—1+1
i=max(ol-1) (i —1+1)! vil@— @) for ¢, e(0,2m).
|
The recurrence relations df, are similar to those of!,. easily deduce the equation for eigenenergies of @8§).

Using the matching conditions between the exact serieBoth eigenenergie€, (j) and wave functions¥;(¢) in
solutions at the proper pointg; [ ¢;,¢i+1], in general, [0,2m) with j(j=0,1,2,3...) nodes are obtained numeri-
of =(e1+ ¢i11)/2, and the X 2 transfer matrices, we can cally. It should be pointed out thdt=R—2 and, in general,
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TABLE I. Exact energy level&(M,m,s) of two electrons in 1D

15 QR'’s with differentR,. The level sequences are in order of increas-
ing magnitude. For the sake of convenience, the short notation
about quantum numbers and spin, i&.b, ¢, etc., in the order of
increasing energy value under very strong confined condition of

— I Rp—0, is used to show the change of the level order.
*fm Ro(ad) 1 4 20
§ a:  E(0,00) (a) 173174 @) 5.18474 @) 22.40328
E b: E(x1,1,1) (b) 223174 p) 5068474 p) 22.90328
2» 3 ¢ E(0,2,1) (c) 361722 () 7.18474 () 24.40328
Nl 5k d: E(+2,0,0) (d) 373174 ¢) 7.91615 f[) 26.90328
L e E(+1,1,0) (e) 411722 ¢) 841615 ¢) 27.54199
f: E(x2,21) (f) 561722 f) 9.68474 ¢) 28.04199
Singlet States 9: E(0,20) (h) 623174 ) 991615 ) 29.54199
""""" Triplet States h: B(+3,1,1) (g) 6.38133 @) 11.40424 (n) 30.40328
001 — 1 s 2 — 3 o= 4 e ~5 i E(x1,3,1) (i) 6.88133 () 11.90424 {) 32.04199
it B(x3,1,0) (j) 811722 () 1241615 @) 33.36149
ki E(x2,20) (k) 838133 (n) 13.18474 () 33.86149
I: E(04,1) (m) 973174 k) 13.40424 k) 35.36149
m: E(+4,0,0) (I) 10.07614 [) 15.70729 p) 35.54199
n: E(=x1,3,0) (n) 1057614 () 1590424 ¢) 37.86149
0: E(%3,3,1) (0) 10.88133 p) 15.91615 [) 39.89374
— : p: E(x42,1) (p) 11.61722 () 16.20729 () 40.39374
: 40: q: E(x2,4,1) (q) 1207614 @) 17.70729 () 41.89374
< |
@ 30
g Ei(M,m,0)—E;(M*1m+1,1)= (25)
E/ 20 ¢ ’
IV. RESULTS AND DISCUSSION
105 Singlet States We have performed numerical calculations for energy lev-
AT e Triplet States | els E(M,m,s) of two electrons in 1D QR’s with different
O T D T R,. For the sake of convenience, the normalized energy lev-
0 B 10 15 20 els E(M,m,s) which areE(M,m,s) multiplied by R are
Ro(a;) used. AsR, changes from 04} to 20a%, E(M,m,s) in-

crease and the level order varies greatly as shown in Fig. 1
. ~ and Table I. In Fig. (a), the lowest intersection of two levels
FIG. 1. Normalized total energids(M,m,s) of two electrons ~ ~ . ~ =
versusR,. The quantum numbers @,b,c, ... p,q states are E(0:2,1) zand_ E(2,00), e, E(021)=E(2,00)
listed in Table. 1. =4.1Ry*ag~ with different spin can be found aR,
=1.3a%, and there are much more intersections of higher

T is much larger thaR and that in numerical calculations the levels with same or different spin in Fig(ld. Those inter-

largerT is taken, the less terms of the exact series solution§eCtlonS show the q“a.”t“m size effect induced by the
are required. electron-electron interactions.

. : _ For a better understanding of the quantum size effect, the
Because V(g) s s¥mmetr|cal aboqt ¢=m We electron-electron interaction energieg(M,m,s) defined by
have Wi(e+m)=(=1)V;(=¢tm), le., Wi(e) Eqg. (12) are studied. For the sake of clearness, the normal-
=(— 1)’\1' (27— ¢). Then we can get \If i(®) ' ' ’

—(— 1)M+1q, (- @) with use of Eq.(16), and we havavl  ized interaction energie&;,(M,m,s)=E;(M,m,s)R3 are

+j to be even and odd for singlet and triplet states, respedntroduced. As mentioned abovg,(M,m,s) in which M
tively. Noting that E,(m,0)=E,(m+1,1) and that -+m mustbe even are independent\dfAs shown in Fig. 2

Ein(M,m,0)=E(m,0)— mZ/ZRS and E(M*1m+1,1) and Table II,E;,(M,m,0) andE;,(M=+1m+1,1) approach
=E,(m+1,1)— (m+1)%2RZ, we have m+ 1 and zero afky becomes small, and it is in agreement
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25—
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FIG. 2. E;,(M,m,s) versusR,. The part of solid circles is in-

teraction energies shown in Table I, and the lines are obtained by
nonlinear fitting with parameters in Table Ill. The order of

Ein(M,m,s) at Ry=10a} is noted in the figure.

r0.5

6-30 3 6
G 9

with Eq. (25). All values ofE;,(M,m,0) are larger than those FIG. 3. Relative-motion wave function , (¢) of two elec-
of Ei,(M’,m’,1) atR,=0.1a} , and the situation is changed trons versusy in a ring of Ry=20a} (a) without and(b) with the
as R, increases. E,(M*=1m+1s) are larger than Coulomb interaction term.

Ein(M,m,s) and their differences are much larger for large
Rq. It is worthwhile to point out that the crossover between
Ein(M,m,0) andE;,(M’,m’,1) can appear aR, changes
from O to a finite value. The behavior of the interaction en-
ergies of 1D QR's is quite different from that of 2D QD's and without the Coulomb interaction are plotted. From the

with parabolic potential8,in which the normalized interac- difference between wave functions with and without the
tion energies decrease with increasing the relative angular

moment. What mentioned above can be understood from the

distribution of the relative-motion wave functioni, o(¢)
and their variation induced by the singularity of the Coulomb
potential.

In Fig. 3, theW¥ ((¢) of singlet and triplet states with

TABLE IIl. Nonlinear fitting parameters oE;,(M,m,s) with

. : = use of the formE;,(M,m,s,Re) =Ap ¢+ By RE™.
TABLE II. Exact interaction energieg;,(M,m,s) of two elec- : :

trons in 1DQR’s with differeniR,.

Singlet states Ans Bm.s Cms
Ro(a%) 0.1 1.0 10 £, (0,0,0) 05 1.21914 0.96453
£,(0,0,0) 0.626809508  1.731743163  11.75359702 Ein(1.1.0) L5 1.64921 0.91509
£.(1,1,0) 1668829593  3.117217611  15.10196848 Ein(0.2.0) 25 2.02440 0.88713
£, (020) 2694483873  4.381327404  18.15519236 En(1.3.0) 35 234133 0.87145
E,(130) 3712839318 5576142929  20.95569979 Ein(0.4.0) 4.5 2.60500 0.86319
B, (040) 4727105767 6728294117 2354045018 En(150) >3 282281 0.85956
B (150) 5738766402  7.852265289  25.94128634 Ein(0.6.0) 6.5 3.00247 0.85891
E,(060) 6748623604 8956505108  28.18533850 Ein(1,7.0) 73 3.15052 0-86018
Bu(170) 775715619 1004627088 302956158 L. A . .
m,s m,s m,s
E,(111) 0126809508 1231743163  11.25359702 E, (1,1.1) 0.0 1.21914 0.96453
£, (021) 0168820593 1617217611  13.60196848 E, (0,2.1) 0.0 1.64921 0.91509
E,(131) 0104483873 1881327404  15.65519236 E, (1,3.1) 0.0 2.02440 0.88713
E.(041) 0212839318 2076142929  17.45569979 E. (0,4.1) 0.0 2.34133 0.87145
E.(151) 0227105767  2.228294117  19.04045018 E. (151) 0.0 2.60500 0.86319
E,(061) 0238766402 2352265280  20.44128634 E, (0,6.1) 0.0 2.82287 0.85956
B, (171) 0248623604 2456505108  21.68533850 E, (1,7.1) 0.0 3.00247 0.85891
£, (081) 0257150619 2546270881  22.79561158 E, (0,8.1) 0.0 3.15052 0.86018
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0.8} 1
R =500.0
R =100.0
06 R=200 ]
= ,=5.0
~5 04F R=1.0 4
(=]
B
0.2} 1
0.0 :
0 1 2 3 4 5 6

FIG. 4. ¥, () versusp €[0,2m) for Ry=1.0, 5.0, 20.0, 100.0,
500.0af .

Coulomb interaction, it is easy to evaluate the magnitude of
interaction energieg;,. For example, there are two more
nodes inW o) with the Coulomb interaction than in that
without the Coulomb interaction. The number of nodes in
¥, (@) with the Coulomb interaction is equal to that with-

out the Coulomb interaction, and th&h,(M,0,0)>E;,(M

* *2
=
9/ So

FMms)Ry'a)

il
w T\

~

PHYSICAL REVIEW B 68, 045324 (2003

* %0,

EM,m,s)(Ry a;’)

-~

)
5

B
—_
.1.

E(M,m,s)(Ry

~

FIG. 6. E(M,m,s,Ro,qﬁ) versus¢ for (8) w=1 andRy=4aj

and(b) w=1 andRy=20ag . The quantum numbers af b, c, etc.,
states are listed in Table I.

+1,1,1). In Fig. 4%, (@) with differentR, has been plot-
ted, and it is localized ab= 7 gradually asR, increases
from lag to 500 . The situation of¥', {(¢) is similar, so

[4,]

o]

Q

EMms)Rya))
CANE~

FIG. 5. E(M,m,s,Ry, $) versuse for (a) w=0 and anyR, and
() w=1 and Ry=1aj . The quantum numbers d, b, c, etc.,

0o,

states are listed in Table I.

that behavior of two electrons in large rings is more similar
to a Wigner molecuf®?° than that in small ones, and then
Ein(Ei)(M,m,1) is not proportional toRy(1/R,) exactly,
however, it would be proportional B3 °(Ry* %) with &
>0 which is dependent onm and s. Furthermore,
Ein(M,m,0)=E, (M*1m+1,1)+m+3 as mentioned in
Eqg. (25).

According to the characteristics oﬁin(M,m,s) and
¥ ms(e), we have found a formula

Ein(M,m,s,Rp)=An s+ B dRg™s, (26)

where Ap, p=m+1/2 andAp,1=0. By 0=Bn+11 @and Cpp
=C+1.1, Which can be obtained by a nonlinear curve fitting
with use of exact calculated results. The fitting results are

listed in Table Ill. There are several points which should be
noted. With increasingm, all B, and C, s increase and

045324-6



TWO ELECTRONS IN ONE-DIMENSIONA . .. PHYSICAL REVIEW B 68, 045324 (2003

decrease, respectively, aft},  is always less than 1, i.e., exact solutions of two electrons in 1D QR’s. It is worthwhile
Cms=1—6ns, With 6,,s>0. It is consistent with what is to point out that the periodic boundary conditions are impor-
mentioned above. Furthermore, we can give the energies ¢&nt for determining the exact solutions of singlet and triplet

two electrons in nanorings as follows: states. In the case, without the interaction term, ne=,0,
S the analytical solutions are shown in Ed§)—(9) and M
E(M,m.s,R, ¢):(M t2¢4)°+m YA _+B. RCms +m should be even. In the casewf 1, however, the con-
T 2 ms~Emstto dition ¥;(¢)=(—1)"*1¥(—¢) should be used to deter-

(27)  mine the singlet and triplet states and their difference of in-
By using Eq.(27), the electronic structures and related teraction energies.
properties can be easily shown. The energy levels of two The electron-electron interaction plays a significant role
electrons in a 1D QR as a function of magnetic fiixhave  in the order of quantum levels and size-dependent phenom-

been plotted in Figs. 5 and 6. As shown in E#{l) or (27),  ena. The interaction energi&,(M,m,s) in which M +m
¢ is for nothing inE,(m,s) so that the period of the energy ., st be even are independentfand E,,(M,m,0) is al-

gscillations is 0.5. For irlstancE(0,0,0)(gb:O) is equal to ways larger thaf, (M’,m+1,1), Additionally,E, (M, m,s)
E(-1,1,1)(¢=0.5) andE(—2,0,0)(¢=1.0) and the spin increase withm, while those of 2D QD’s decrease with in-
of two electrons is oscillating too. The oscillations of creasing the relative angular momént.

E(0,2,1) andE(—1,1,0) is similar to those d(0,0,0) and Noting the singularity of the Coulomb potential and the
E(—1,1,1). However, for a 1D QR with differeri,, the ~ Variation of wave functions witlR, in 1D QR's, theR,
level order is changed by adding interaction energies a§ependence of interaction energies has been found by the
shown in Figs. 5 and 6. AR, changes, the oscillation pic- nonlinear fitting method with use of the exact calculated re-
tures, i.e., so called magnetic fingerprints, are changed. fults. Based on the form of Ed27), the Ro-dependent
means that the Coulomb interaction of two electrons in 1DE(M,m,s) and their magnetic oscillations are clearly shown.
QR’s causes quantum size effects and makes magnetic fifi-may be useful for the further theoretical and experimental
gerprints. studies of narrow quantum rings.
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