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Analysis of Curved  Optical Waveguides by 
Conformal  Transformation 

Abstract-The  method of conformal transformations is applied to the 
analysis of waveguide bends. Equivalent  structures are obtained  that 
permit solution by traditional  methods of optical waveguide  analysis. 
Losses  associated  with  both curvature  and with  the  transition from 
straight to curved guides are discussed and  simple  first-order expressions 
that  describe the  dependence of  the losses on waveguide  parameters are 
derived. 

C 
I. INTRODUCTION 

ONFORMAL transformations provide a  method for an- 
alyzing curved or otherwise varying waveguides that  not 

only yields useful data concerning wave configurations and 
attenuation rates but also generates an equivalent structure 
whose properties may be readily appreciated on an intuitive 
level. Primary interest in this paper is centered on bend losses 
in curved waveguides. 'This determination is central to the 
design of integrated  optical systems because switches and ar- 
rays of switches utilizing cylindrical waveguides require geo- 
metric displacements that are provided by bends. 

The bend-loss problem has been previously investigated by 
Marcatili, Marcuse, and Lewin [l-a)-l-c)] using the established 
[2] technique of representing the field in  the  external region by 
a cylinder (Hankel) function  of  complex  order and matching to 
fields in the guide that are assumed unperturbed  from  a straight 
guide. The  transformations result in an analysis that differs 
from  this previous work in  that guides with  a continuously 
varying refractive index such as diffused guides may be treated, 
in that radii of curvature need not be restricted to large  values, 
and  in  that losses associated with  a change in the direction of 
curvature required for  a bend can be  treated. Taylor [3] has 
also treated  the bend problem using a computer-based analysis. 
Transformations .not only provide an analytic  approach but 
also avoid certain assumptions necessary for  the efficient 
application of numerical methods. 

Conformal transformations apply to solutions of the  two- 
dimensional scalar  wave equation 

[o:,, + k2(x,u)I J /  = 0. (1) 

Solutions are obtained in a  coordinate system u ,  u defined with 
respect to x and y by  the relation 

W=ut iu=f (Z)=f (x t iy )  (2) 

where f is an  analytic  function. Expanding V& in (1) with 
the aid of  the Cauchy Riemann relations (&/ax = au/a~y, 
au/ay = - au/ax), (1) may be expressed as 
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where IdW/dZ12 = (aulax)' + (au/ax)'. Equation (3)  is a well- 
known relation [4]. The objective of  the  transformation is to  
select an f(Z) that converts curved boundaries in the x ,  y plane 
to straight ones in  the u ,  u plane. Before discussing this  matter 
further (see Section 11) we wish to enumerate the kinds  of 
integrated  optical problems to which solutions to (1) are 
applicable. 

1) TE mode on  a planar guide. The guide is uniform  in z 
with discrete or  continuous  index variation in x and y .  The 
fields are constant in z and E has only a z component which 
we identify as $, i.e., E = $(x, y)2. Boundary  conditions re- 
quire continuity  of J /  and o$ and this  continuity is maintained 
in the x, y plane if it is imposed in the u,  u plane. 

2) TM mode on  a planar guide with discrete index variations 
and H = $(x, y)?. $ is continuous  and (1Ie)VJI is continuous. 

3) TM mode on a planar guide with continuous  index varia- 
tion.  In  this case the wave equation  for Hz is 

[V:,, -+ (Vx,y./.) . ox,y + k2(X,Y)lHZ = 0 (4) 

and in the u, u coordinate system 
2 

[Vi," -+ (Vu,&) . vu,u -+ lgl k2(X(U, u>,.Y(u, 4)l J /  = 0. 

( 5 )  

Although we concentrate  on  solutions to (l), the method  of 
analysis is applicable to (4) or ( 5 )  as will be indicated. 

4) Approximately applicable to cylindrical' waveguides that 
are uniform in the z direction. An example is a diffused wave- 
guide [5] of rectangular cross section that undergoes a  bend  in 
the x, y plane. Using potential  functions ATE(x, y ,  z)2 and 
ATM(x, y ,  z)? that yield TE to z fields with E = V X ATE2 and 
TM to z fields with H = V X ATMp, approximate  solutions to 
the wave equation can be expressed 

ATM(X,Y,Z) =gTM(z)J/(xA (6) 

For  a guide centered  about y = 0 and z = 0, g(z) is a  solution 
of 

a 2  [ a22 
- + k2(0,0,  z )  g(z) = k2,g(z) 1 

where k ,  is the wave-propagation constant  for  a planar guide. 
J /  is a  solution of 

dimensional waveguides. 
lAlso referred to as  linear, twodimensionally  confined, and three- 
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[Vi,, + k2(x,y, 0) - (k2(0,0,0) - it;)] J/ = 0. (8) 

We may identify (8) with (1) using a k2(x, y )  in (1) that is 
modified by a  constant. An equation of the form (5) results 
for  ATE. It is not our purpose to consider the  approximation 
(+0) in detail. This is a complex problem that has received 
only limited attention [ 6 ] .  We wish merely to point out  that 
within a customary approximation that derives from  the field 
behavior in  a rectangular waveguide with perfectly conducting 
walls, (1) may  be employed to estimate  the wave function in 
curved versions of such important integrated optical structures 
as diffused guides. 

11. EQUIVALENT WAVEGUIDE STRUCTURES 
To illustrate the intuitive approach  that conformal transfor- 

mations provide, consider Fig. l(a), which shows a circularly 
curved dielectric waveguide with  a  step  discontinuity  in re- 
fractive index  at radii R1 and R 2 .  Wave propagation along this 
structure is described by (1) in which k2(x, y )  appears as a 
constant in each of the regions of the  structure. Using the 
conformal transformation 

W = R 2  In Z/R2 

for which 

(9) 

(3)is  found to describe the waveguide shown in Fig. l(b).  In 
the W plane the walls  are straight and lie between u = 0 and 
u = -R2 In R 2 / R l .  The refractive index in the  structure is the 
product of (10) and the refractive index in the  appropriate 
region of  the curved guide. Those familiar with  optical wave- 
guides  will note  that the  index profile of  the equivalent struc- 
ture resembles that in a prism coupler [9].  It is clear that all 
of  the modes of  the equivalent structure will radiate to the 
right where the refractive index exceeds the maximum refrac- 
tive index in the guide. 

If  the waveguide in Fig. 1 were a diffused guide in  a  substrate, 
as an important practical example, the process of lateral diffu- 
sion would result in an  index profile of the kind illustrated in 
Fig.  2(a). The modes on  the equivalent guide in Fig. 2(b) are 
radiative as before. Furthermore, unless the decay rate n&) 
of  the lateral diffusion is sufficiently rapid the minimum on 
the right side of  the curve in Fig. 2(b)  will  cease to appear and 
there will  be no confined modes. This "critical decay" condi- 
tion is readily found  by setting n&) = IdZ/dWI-' and results 
in the requirement 

< n2 . @,/PI R2 < P < (nz/n1)R2. (1 1) 

When the  equality  of (1 1) is met, the right side of Fig. 2(b) is 
constant  at value n2 in the manner depicted in Fig. 3. If there 
are no guided waves  in the equivalent structure,  neither will 
there be any in the curved  waveguide. 

The circular structure  with one boundary illustrated in Fig. 
4 will  also support guided, albeit lossy  waves [12]. This is 
made apparent by the equivalent guide of Fig. 4(b). We have 
n2 < n1 in this case. The guided waves on this  structure will 
have  wave refractive indices n,  that lie in the range nl > n,  > 
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(a)  (b) 
Fig. 1. A two-dimensional  bend  with  step  index  distribution  (a) and its 

transformation (b). 
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(a)  (b) 
Fig. 2. Index distribution of a  diffused  bend  (a) and its transformation 

(b). (Dashed lines  denote  the transformed step  distribution  bend.) 

(a)  (b) 
Fig. 3 .  Index  distribution of a  diffused guide  at  "critical decay" for 

which waveguiding  ceases. 

n2 and the waves  themselves  will  be confined to the range 
0 > u > R In nz/nl. The  latter limit is indicated in Fig. 5(a) as 
uo. In the original structure  this  boundary appears at po = 
R (n2/nl) .  As illustrated in Fig. 5(b), a ray tangent to the 
circle of radius po will strike the tangent to the  boundary  of 
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(a)  (b) 

Fig. 4. A twodimensional  one-boundary  bend  with  step  index distribu- 
tion  (a) and its transformation (b). 

W plane 2 plone 

(a)  (b) 
Fig. 5 .  Ray picture of modes j and m that propagate in the  guide of 

Fig. 4.  

the circular medium at  the critical angle. Rays tangent to 
circles greater than p o  are (nearly) totally reflected from  the 
boundary while rays tangent to smaller  circles  are incident at 
angles  less than  the critical angle and pass through  the 
boundary. 

There are a  number of transformations  in  addition to  the 
logarithmic one  (9)  that are of potential  interest in connec- 
tion  with  integrated optics. One class of such transformations 
may be  obtained  from familiar equipotential surfaces and 
streamlines of electrostatics or laminar flow problems. Fig. 6 ,  
for  example, shows the surfaces obtained when a conducting 
cylinder is placed in a  uniform electric field. The  transformation 

W = Z + -  a2 
Z 

applies to this  situation  with u equals constant defining the 
equipotential surfaces, and u equals constant defining the 
streamlines. If we  have  an optical waveguide with tapered 
walls  (a horn-shaped structure [7] obtained  by flaring a wave- 
guide for coupling purposes, for example) that has the appear- 
ance of a segment of any  two streamlines in Fig. 6 ,  the  trans- 
formation (12) will convert the waveguide into one with straight 

Fig. 6 .  Equipotential and  streamlines of a  conducting  cylinder placed 
in  a uniform electric  field.  The transformation' W = Z + a2/Z converts 
curved guides  whose shape is that of any two streamlines into wave- 
guides with straight  boundaries. 

\ 
( 1 )  -i 

Fig. 7 .  Waveguide displacement  produced  by two circular bends.  Dot- 
ted  lines  show  transition regions. 

walls.  By varying a in (12), a wide variety of waveguide shapes 
can be generated. The refractive index  in  the equivalent struc- 
ture varies along the guide as well as across it. This situation 
differs from  the  transformation (9) where the equivalent struc- 
ture is uniform  in  the direction of propagation and necessitates 
x more complex analysis [8] . 

The waveguide bend illustrated in Fig. 7 represents an im- 
portant passive integrated optical  component.  Under  appropri- 
ate design the bend can consist of  two sections of circular arcs 
connected to each other and to straight waveguide sections, as 
indicated by  the  dotted lines in Fig. 7. The arcs need not be 
90" in length as in the figure. Loss mechanisms in this  struc- 
ture include the radiative loss due to  modal attenuation along 
the bends and transition losses that occur  between guides at 
the  dotted lines. The remainder of  the paper is devoted to an 
analysis of these effects  that is based on  the transformation 

111. ATTENUATION ALONG A BEND 
Strictly speaking, the  solution  of (3)  for structures  with re- 

fractive index  distributions of the  kind shown in Figs. 1, 2, 
and 4 does not contain any guided waves because the refractive 
index at u = 00 is greater than  it is elsewhere. The region to the 
left  of  the minimum in refractive index can support  a guided 
wave, however, and from  a practical point  of view, a field of 
the  form 

$(u, u)  = F(u) exp [i(p t ia)v] = F(u) exp [ i ( p  + i0r)R26'], 

u < u g  (1 3) 

can be used to  represent the guided wave as in  the prism 
coupler [9],  In this expression p and Q are the respective 
propagation and attenuation  constants of the wave, 6' is the 
angular and R26' the  actual  length  of  the  bend along the greater 
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arc, and F(u)  is the spatial characterization of the wave. Equa- 
tion (13) can be used to the  left  of  the turning point indicated 
as u6 in Fig. 8 where n(2.46) = P/ko. 

F(u), p, and a are functions of the radii of curvature of the 
bend. Characteristics of F(u(x, y)) determine transmission 
losses as the wave proceeds from one section to the  next. This 
loss is  discussed  in Section IV. For  the present we consider 
properties of and a of a  uniform bend. For  the general struc- 
ture shown in  Fig. 8, P and a may be obtained as the  solution 
of an  eigenvalue equation  that we express as 

D1,6(kV)JkU=P+iLY = 0. (14) 

D1,6, termed the “system function”  for  the  structure, is a func- 
tion of a wavenumber k,. At certain values of kv,D1,6 is zero 
and these values  are the complex propagation constants  for 
waves on  the  structure. 

The system function is the  determinant  obtained  by matching 
boundary  conditions  for  a multilayer structure when waves  of 
arbitrary  amplitude are assumed to exist in each layer. The 
system function  for  step index profiles is  discussed in  the Ap- 
pendix. Our interest lies in the system function  for  continu- 
ously varying index profiles which can be obtained in the man- 
ner indicated in the Appendix. The  method consists of 
subdividing the  structure into thin slabs as indicated in Fig. 8, 
writing the expression for Dl$ for a  multilayer, and then 
taking the limit as the thickness of each slab reduces to differ- 
ential dimensions. The limit procedure results in a series that 
must be expressed differently  on each side of the  turning 
points ul,  u4, u6 of Fig. 8 and in the vicinity of the  turning 
points. The series expressions are presented in [ 1 I ]  . We will 
obtain  approximate expressions by employing the first term 
of this series expression which involves  Wentzel-Kramers- 
Brillouin (WKB) related approximations shown in  the 
Appendix. 

To present the  equations to determine j3 and a we  use the 
symbol ku to represent the wavenumber 

k,(u) = [kln2(u) - k:] ‘I2 (15) 

and define integrals over k,  as 

The  approximate eigenvalue equation  for  a wave propagating 
on  the  structure lying to the  left of u5 in  Fig. 8 is found to 
be [see (A1 l)] 

where 

k,l Mi+,-’ for solutions of (3) 

Ki.9- = {?, 
, for  solutions of (5) .  

U p -  

W plone 

Fig. 8. Transformed  index  distribution of  a bent guide  with continuous 

etc.,  define the positions at which the  representation of the system 
index  distribution.  The turning points  are u l ,  u4, and u6. ul+, ul-, 

function changes. The original straight  guide  has constant index  be- 
tween u2 and ug. u1 and U G  are arbitrary  points  beyond u1 and ug. 
To  the right  of u1 some  sublayers  are  shown that are used to reduce 

continuously varying index  distribution. (Characters  with  underbars 
the system function  for discrete  layers to  the system function of a 

in the figure appear boldface in text.) 

Insight into  (17) may be obtained by considering the simple 
uniform, straight-step index guide. For such a guide n(u) is 
piecewise constant and the regions u1++u2 and u3 +u4- are  of 
zero length. Equation (17) then reduces to 

k,t = rnn t tan-’ - Kt- + tan-’ - K4+ 
iK1+ iK4- 

where t is the guide thickness and rn is the mode order. This is 
the familiar eigenvalue equation for waveguides. The terms 
tan-‘ KijiKi+ are functions of k, and take values between 0 
and ~ 1 2  for  a  step  discontinuity. At a  continuous turning 
point, such as appears in Figs. 2 and 8, we may take 
tan-‘ KijiKi+ to be n/4 based on  the assumption that ui+ and 
ui- are selected to achieve this result. A more precise specifica- 
tion of the  location of these points is discussed in Section IV. 
We will  discuss examples of (17) for  index  distributions  appro- 
priate to waveguide bends following the discussion of a. 

Using the same  WKB-type approximation as is  used to obtain 
(17), the change in propagation constant due to the presence 
of the high refractive index region on the right  of  Figs. 1, 2 ,  
4 may be expressed 

(20) 

as obtained from (A12). 
The terms in (20) are to be evaluated at p, the  solution of 

(17). This renders k4+,6- positive imaginary in (20) and the  ex- 
ponential  in (20), which may achieve  small  values,  largely de- 
termines the behavior of a. The parameter L is the derivative 
of (17), viz., 
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and may be  termed  the effective longitudinal ray length. For 
TE modes  in  a  uniform, straight guide ( l ~ ' + , ~  = h3,4- = 0 ,  
K p  = (k&*), for example, L is 

where t' is the effective width of the waveguide, which includes 
the decay distances, and @ is the angle the wave normal in  the 
guide makes with  the surface of the guide (Fig. 9). The second 
equality  in  (20) follows from  the assumption that ug+ and 
2.46- are selected so that K6+ = K6- / i .  For  a  continuous change in 
index at u4 the sine function  in (20) can be approximated by 
unity. 

To further examine the  equations  for and a we note  that  in 
regions in which the refractive index is constant in x, y ,  the 
equivalent index is n(u) = n exp u/R. The resulting expression 
for hi,i can be integrated in closed form. As an example, for 
the single-boundary guide of Fig. 4, only h1+,2 of the h's is non- 
zero in (17). Taking ul+ = -R  In (konl/P) and u2 = 0 we find 
the eigenvalue equation  for 0 of a TE mode (3) to be 

71 - - - =  
4 

mr. 

Similarly, for  the  step  index profile of Fig. 1 ,  u2 = -R2 In * 

R2/Rl,  u3 = 0,  h1;,2 = 0, h3,4- = 0, and the eigenvalue equation 
is2 

For  the diffused guide of Fig. 2, if the lateral diffusion results 
in  an  exponential-type decay of the  form n(p) = nl + (n2 - nl )  . . exp - [{(p - R2)/R2] where {/R2 is the decay rate of the index 
difference, the equivalent index profile is n(u) = exp . 
[-{ exp u/R2 t { t u /R2] .  A closed form  for h3,4- is not known 
for such a profile. On the  other  hand,  it is not difficult to  
generate approximations as is indicated in the  next paragraph. 
Solutions of (23) and (24)~can be obtained  by graphical or 
numerical means. 

The  determination  of a in closed form can be accomplished 
for  index profiles exponential in the W plane. The results in- 

Fig. 9. The  effective  thickness t' and the  effective  longitudinal ray 
length L for  a straight guide. 

initial slope of n(u) expressed in the previous paragraph; i.e., 
b/R2 = - [(l  - {)/R2]  exp {. An additional  approximation  for 
the diffused guide in Table I is made in  the  exponential  term 
ofa .  We take 

h4+,6- = 2 [(P/ko)2 - n2(uS)] llz[ur - us]  (25)  

where u5 is the  point  at which n(u) is a minimum (Fig. 8) ,  viz., 
us = (R2 / l  + b)  In [b(n2 - nl) /nl] ,  and ur is the  point  at which 
k,(u) decreases by l/G, viz., [(Plko)' - n2(ur)] '1' = (2)-'12 . 
[(O/ko)' - n2(us)l '/'. 

Turning to  a consideration of  the dependence of 0 and a on 
the radius of curvature, we note  that as the radius of curvature 
decreases, the  index profile of  the guide is skewed increasingly 
upward on the right. Fig. 10 illustrates this  point.  The figure 
shows a waveguide of  constant thickness at  different radii of 
curvature. Note  that when n2(R1/R2) < n3, the behavior of 
the  step waveguide of Fig. 1 is similar to  that of  the single 
boundary guide of Fig. 4 since the inner boundary lies in the 
evanescent region of the wave. Furthermore,  there is a mini- 
mum radius of curvature R below which the single-boundary 
and two-boundary guides cease to carry any  mode.  From (23), 
setting tan-' and m to zero and P =  Icon2, 

where ho is the free-space wavelength. This same expression is 
obtained  for  the  step  index guide with nl/n2 replaced by 
nz/n3. When n2 differs from n1 by a small amount, Rmin 
reduces to3 

Using (26), Rmin = 0.45 ho for nl/n2 = 1.5. Using (27), 
Rmin N 4200h0 for (nl - n2)/nl = and Rmin = 133ho for 
(nl - n2)/nl = lo-'. 

When the radius of curvature is large compared to  the wave- 
length,  the value of 0 does not change radically from  its value 
Po when the waveguide is straight. Using (24) to obtain  a first- 
order expression for 0 in a  step  index guide, we find 

volve specification of sin (2 tan-'K4-/tK4+),L, and exp (2ih4+,5). (" [h1+,4-1 /a(l/Rz))[ 
These results are presented in Table I. For  the diffused guide P Po - * 1/R2  =Po(l - t/2R2) 
of Fig. 2  with  exponential lateral diffusion, we approximate 
n(u) - n1 exp u/RZI + (n2 - nl )  exp - bu/R2, where b/R2 is the (28) 

-L . / R , = O  

2For small t/R2, (24) reduces  to [k&zj - (@R2/R1)2]112t - $ 1  - $2  = 3Defining cos-' nz/nl  = y and [ ( n l / t ~ 2 ) ~  - 1]'/' = tan y ,  for smally 
v n .  tan y - y N l/3y3. 
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TABLE I 

L 

’ - 1  kt-k: 

2 2 3 5  2 235 

Two Boundaries 
2(k2-6 1 (6  -kg) 6 

(Fig. 1) [s2-k2(L)2]%k2(f2-62]’ k:-k: 
R2 R1. 

Diffused Guide 
(Fig. 2) 

I I I 
Note: The  attenuation along  a bend is given by 01 as expressed in (20). The  three  parameters L ,  sin, and  exp  that  are given 

in (20) are given for single-boundary, two-boundary,  and diffused  curved  guides. For diffused guide  parameters see the 
paragraph  containing (25) and  note  that e and b are  related to  the  initial slopes  of the refractive index profile on the inner 
and  outer  boundary, respectively, of  the guide. Note also that ki = koni. 

W plane proaches kon(u5), where u5 is the location of the index mini- 
mum (Fig. 8). For  a prescribed CUL we may specify a minimum 
0 by solving equation (20) for 0. Using the approximate ex- 
pressions in Table I  for  a diffused waveguide and representing 
n(u) near u5 as n(u5) + (l/2)(a2n/au2)(u - u5)2 we find 

omin = kon(u5) t In (~~~)-~/8[n(u~)/(a~n/au~),51’1~ 

where 

Fig. 10. Transformed  index  distribution of a step  index  guide of  con- 
stant ’ thickness at  different radii  of curvature.  At small radius  of 

as a single-boundary  guide. The  dotted curve  which corresponds to 
curvature (l), i.e., when R l / R 2  < n3/n2 the  step  index  guide  appears 

the largest radius of curvature should be labeled (3) and  the dashed 
curve (2). 

where h1+,4- is defined in (16), L is shown in (2 l), and t is the 
thickness of the guide Rz - R1. In (28) it is clear that  a dra- 
matic change in 0 occurs only when the radius of curvature 
approaches the guide thickness. 

To consider the  attenuation rate a! expressed in (20), we note 
that the longitudinal ray path  length has a simple geometric 
interpretation (Fig. 9) and is a  number greater than  the  width 
of  the equivalent guide. Unless exp ( 2 # ~ ~ + , ~ - )  is small, the at- 
tenuation is  excessive. The exponential is small unless 0 ap- 

and b is related to the gradient of the lateral diffusion {/Rz as 
discussed previous to (25). Using the value of L for  a straight 
guide, (29) can provide a useful design relation for bends in 
diffused guides. 

If we consider the  attenuation rate of the  step  index guide 
(Fig. 1) for  the  situation in which 0 = kon3(l + 6) differs by a 
small amount  from  the wavenumber of region 3 ,  we find from 
Table I that the  exponential  term in a to first order in 6 is 

This simple expression shows that unless the radius of curva- 
ture approaches the value ho/4?7n36 - ho/h(nz - n3)  the  at- 
tenuation will  be small. Even when the index difference is 
lod3, a radius of curvature of several hundreds ha can  be 
tolerated. 

Authorized licensed use limited to: California State University Fresno. Downloaded on June 30,2010 at 09:17:28 UTC from IEEE Xplore.  Restrictions apply. 



HEIBLUM AND HARRIS: CURVED  OPTICAL WAVEGUIDES 81 

It should be emphasized that  the two-boundary guide (Fig. 1) 
behaves  like a  one-boundary guide (Fig. 4) not only when 
n2(Rl/R2) < n3 (as  was noted before) but also when 
n2(Rl/R2) > n3 and p > n2(Rl/R2).  In both cases, the expres- 
sions for 0 and a for  the  one-boundary guide should be used. 

As a point of reference, in the  limit  of large radii of curva- 
ture (R2 >> ho, t), the  attenuation formula for  a  two-boundary 
guide (given in Table I) reduces to Marcuse's formula [2, eq. 
(32)] except  for  a  factor of 2. This factor is the square of the 
transmission coefficient at  the  turning  point and should be 
inserted in front  of Marcuse's formula. The approximation 
for large radii can be shown easily by replacing the effective 

and (24) using different representations in the regions ul+-  u2, 
u2 - u3,   u3  - u4-. The wave function within the guide region 
of  a  step  index guide, for example, transformed back to  the 
x,y  plane is 

where k2 = kon2 and 
longitudinal ray length of the bend (L) by that of a straight p2 - k i r ~ : ( R ~ / R ~ ) ~ ] ' ~ ~  
guide (22) and by using R2 >> t. tan-1 - = iKl+ K1- [ k$(R1/R2)2 - p2 . tan-' 

(34) 

IV. TRANSITION EFFECTS To provide a useful parameter we may determine  the position 
The distortion in the  index profile results in a displacement of the peak po of (34) in accordance with (33) to first order in 

of  the modes towards the outside of a bend and this  effect (p - R 1 ) / R 2 .  The result is 
results in transmission losses at  the interfaces shown in Fig. 7. 
The WKB approximation  of  the spatial distribution of a mode po = R 1  + tan-' - [kin$ - (/ .X2/Rl)2]1/2.  
in the region to  the  left of u6- as obtained  from (A6) is ( Z Z ) /  (36) 

(- 1)" [(IK4+K4-1)1/2/1 K4+ + K4-1] (K3  /K)'12 exp i k, du, u4+ < u < us- 

(1: k, du - tan-' %) iK1+ ' u1+< u < u4- 

u < 2.41- 

where K is the same as in (18) for an arbitrary  point u. This Approximating p as in (28),  with Po = (1 - 6')kon2 where 6' is 
expression holds  outside  the  turning points. The positions presumed small, and retaining first-order terms in 1/R2,  p o  
ul-, ul+, etc., are determined by requiring reduces to 

where E is a number  much less than 1. Equation (32) is estab- 
lished by considering the second-order terms in the expansion 
of  the system functions [ 1  1 ] ? 

Equation  (3 1) indicates displacement of a mode because the 
argument of the cosine term contains an integral over k, = 
[kin2(u) - p2]' l2 and the  distortion  in n(u) results in a larger 
contribution  from  the right side  of the guide than  from  the 
left. For  the lowest order mode,  the  approximate peak occurs 

where t = R2 - R1 and t 3 ( P O )  is the evanescent decay distance 
into region 3  of  a straight guide (Fig. 9). The displacement 
po is sensitive to the radius of curvature as presented by ( t /R2)  
only when Po differs from kon2 by an  amount of the order 

The power transmitted at the  transition between guides of 
different  curvature, as appear in Fig. 7, can be estimated by 
the overlap integral 

~/2( t /R2)2 .  

when the argument of the cosine  is zero, i.e., 
( p ' F d p y / p  dp I F f 2  dp 1; ku du = tan-' -. K1- 

iK1+ (33) 
P = 4  

(1 + P'/P)2 (38) 

where F' and F are the  wave,functions of connecting guides 
Expressions for  the integral in (33) may  be  obtained as in (23) and 0' and p are the propagation constants. T2 can be evalu- 

ated numerically for any given configuration using (31), or as 
4The  second-order  term in the  expansion of the  system  function is a specific example, (34). The overlap integral depends  on  the 

direction of the displacement (36). To provide an estimate of 
- d In - K(uJ exp ( i L u i  k,r d u j .  the power transmitted  at  intersection (2) of Fig. 7, consider 
du K(u) the  approximation F@) - cos a@ - po) and F'(p) - cos . 
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a(’ - po t A) where a = 7r/2t and A represents the displace- 
ment  between  the two wave-function  maxima  in symmetric 
guides (nl = n3), viz., A = 2(p0 - R l )  - t .  We obtain 

(39) 

For small  displacements the power loss is propartional to 
(A/t)’ and is a small  percentage  of the  total. As A/t approaches 
unity  there is,  of  course, substantial power loss. The overall 
power  transmission  of the  structure  shown  in Fig. 7 may  be 
approximated as a  product of the  form 

where A, = A/2 is the displacement between guided-wave 
maxima at intersection (1) and B1 and e2 are the lengths  of the 
arcs that make up  a  bend. Using  (30) to approximate CY and 
(37) to obtain A, (40) can  provide a relatively simple approxi- 
mation  for the overall losses  in a bend. 

V. CONCLUSION 
The method of conformal  transformations  has been  shown 

to provide a useful qualitative as  well as quantitative view  of 
wave propagation  in curved optical waveguides. The  method 
requires no a priori limitations in radii of  curvature  or index 
differences. It has  been  shown how useful representations  for 
the wave functions, eigenvalue equations,  and  attenuation  con- 
stants can be  obtained by analyzing  equivalent structures  in 
the  transform plane. Using first-order  approximations, simple 
expressions for the  attenuation along a  bend,  the displacement 
of the wave from  its  position  in  a  straight guide, the change in 
propagation  constant due  to bending  of  the guide, and  the 
overall transmission loss in a practical bend  have  been presented. 

APPENDIX 
Solutions  for  the  eigenfunctions  and eigenvalue equations of 

continuously varying  media may  be  obtained  starting  with 
solutions of a  step  discontinuous  index profile containing  con- 
stant  index  between steps. In  such  a  profile,  solutions to (3) 
or (5) are obtained by setting $j(u, u )  = (l/Ki)(aT exp ikUju + 
ai exp -ik,.u) exp ik,v in layer j and  matching boundary  con- 
ditions at  the  interface  between layers. The resulting equations 
in a; and ai take  the form 

lines, respectively, are denoted and D2,3. It is simple to 
show from  (Al)  that 

Dl,, = O1,202,3 - D;,2’D2,3 (A2) 

where the primes indicate 

Dij =z Dij(kui9 . * 3 - kuj), ’Dii = Dii(-kUi7 * . , kUi). (A3) 

Furthermore,  it may  be  shown that (A2) can  be  generalized to 
any  number layers in  the  form 

D 1 , N = D l , p D p , N -  D:,pBp,N (A41 
where p is any layer between I and N .  

The complex  propagation constant  for a guided  wave  is the 
value  of k ,  for which the  determinant in (AI) is zero. The 
eigenvalne equation is thus 

(Dl, N)k,=fl+ior = 0. (A5) 

Furthermore,  it may be shown that  the eigenfunction  can  be 
expressed 

. exp ( i k g )  , up-1 < u < up 1 (Ab) 

where p refers to any layer in which (A6) is evaluated and A is 
a  constant. 

If the number  of layers is permitted to become infinite  and 
n(u) becomes continuous,  it is possible to represent the system 
functions in a series of  the  kind first described by Bremmer 
[ 101 and presented  by  Harris [ 1 11. The first terms of the series 
are the WKB forms 

Dr,,/(2Kr) . . . (2Kq-J = (Kq/Kv)1’2 exp [ -i l:‘ k ,  du 

where the k, and K’s are defined, respectively, in (15) and  Near a  turning  point (A7) fails and we  have 
(18), the  subscript refers to the  layer,  and u1 and u2 are two 
interfaces  for  a three-region problem. 

The determinant of the  matrix  in (Al) is denoted D1,3, while 
the  determinants of the matrix  within  the dotted and  dashed  (A81 

Kr + Kq 
Dv,q = (2KJ . . . ( 2 K q - A ( T )  exp i(kuqUq-1 - %+Yr). 
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The primes of (A8) are obtained as in (A3). The subscripts in 
(A7) and (A8) refer to sublayers as indicated in Fig. 8 and are 
described more fully in the  next paragraph. 

To express (A5) or (A6) for continuously varying media to 
the  approximation (A7) and (A8) we employ (A4) sequentially 
stopping  at each turning  point (ul,  u4, and u6 of Fig. 8) and 
write,  for  example, 

D1,6 = Dl, 1-{ [D1-,1+01+,4-04-,4+ -k Di-,1+Bif,4-B4-,4+] 

. D4+,6-06-,6+ -k [Dl-,l+D1+,4-D;-,4+ i- Di-, l+Di+,4- D4-,4+] I 1  

. 9;+,6-96-,6+}06+,6. (‘49) 

The zero functions of the  third  equatioa’in (A7) have been in- 
corporated in (A9). Subscript 1 refers to the  point u1 located 
to the  left of ul- as indicated in Fig. 8. Similarly, 6 refers to 
U 6  located to the right of u6+. Using the first equation in (A7) 
to describe the way the subscripts are used, we  have 

a , t -  = (K,,-/K,)1/2 exp { - i 1; k ,  du 
2K, . * *  2Ku, 

Note that to employ (A7) and (A8) conveniently, (AS) can 
also be written D 1 , ~ / 2 K 1  - . 2KN = 0. 

The  equation  for p is obtained  by neglecting the region to 
the right of u4+ and can be expressed as 
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