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We calculate the quantum motion of a Bose-Einstein condensate in an optical lattice genera
a standing wave of laser light. We show how to boost a stationary condensate into motion or
a moving condensate by manipulating the optical lattice and how to achieve Bloch oscillations o
condensate in an accelerating optical lattice. We show how atomic interactions affect these pro
and discuss conditions for possible experimental realization. [S0031-9007(99)08636-6]
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Bose-Einstein condensates (BEC) [1–3] in dilute atom
gases provide a good opportunity for controlled stud
and manipulation of their dynamics, which has not bee
possible for He superfluids. Much work has already be
done along this line of research, including the studies
nonlinear response to time-dependent modulations of t
trap potential [4] and condensates in spatially period
potentials [5,6].

In this Letter, we investigate the possibility of manipu
lating the condensate by a periodic potential, which ma
be created by a standing wave of laser light [7]. In pa
ticular, we show how to boost a stationary condensate
a finite velocity and study how a moving condensate ma
be stopped by a stationary potential. We also show ho
Bloch oscillations of the condensate arise in an acceler
ing potential. The motion of ultracold but non-BEC atom
in accelerating potentials have been studied extensiv
and can be understood in a model of noninteracting ato
[8–10]. Here we are interested in the effect of atomic in
teractions on the quantum transport of the condensate.

Modeling of the system.—Instead of using trapped
gases, we study a model of a free condensate released f
a trapping potential after the ground state BEC is achieve
The typical size of a BEC wave packet is of order10 mm,
which expands with a typical time scale of 10 ms. Th
wavelength of our standing wave will be much smalle
than this size, and the proposed experimental proces
are also of much shorter duration than the expansion tim
It is then reasonable to model the condensate dynam
as a one-dimensional problem, where the system var
in the direction of the standing wave and is uniform i
the perpendicular directions. Another case of interest is
BEC strongly confined in a long cigar shape [11,12]. Th
density profile in the transverse directions is held fixed b
the trap while the motion along the longitudinal directio
can be considered free. When the standing wave of t
laser light is applied along the longitudinal direction, it i
sufficient to consider only that direction, with the cautio
that the effective scattering length between the particl
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is renormalized by a factor of half due to the transver
confinement [13]. In both cases we can model the moti
as a one-dimensional problem and take the initial state
be uniform before the standing wave is turned on.

Our study of the BEC dynamics will be based on th
nonlinear Schrödinger equation. The equation has be
successfully applied to the calculation of stable BEC stat
the expansion of BEC, and collective excitations [14–20
It can be derived from the mean-field theory, with the atom
atom interaction modeled by a repulsived-function poten-
tial, and should be very accurate for the dilute, near-ze
temperature condensate [21,22]. Specifically, we co
sider the following 1D equation:

ih̄
≠f

≠t
­ 2

h̄2

2m
≠2f

≠x2 1 V0 coss2kLxdf

1
4p h̄2a

m
jfj2f , (1)

where m is the atomic mass,kL is the wave vector of
the laser light,a is the s-wave scattering length between
atoms, andV0 is the magnitude of the potential which is
proportional to the light intensity. The normalization o
the wave function is such thatjfj2 represents the number
of atoms per unit volume.

We rescale Eq. (1) by introducing dimensionless va
ables,x̃ ­ 2kLx, t̃ ­ h̄

m 4k2
Lt, f̃ ­ fy

p
n0, Ṽ0 ­ m

h̄2 3

s 1
4k2

L
dV0, andC ­

pn0a
k2

L
, wheren0 is the density of BEC.

Then we obtain the dimensionless equation (replacingx̃ by
x, etc.),

i
≠f

≠t
­ 2

1
2

≠2f

≠x2 1 V0 cossxdf 1 Cjfj2f . (2)

We setV0 ­ 0.1 0.4 and calculate the response of th
solutions to the external potential for various values
C. As in Ref. [14], we use the Crank-Nicholson metho
[23,24] for the numerical solution of Eq. (2). This metho
preserves the unitarity of the time evolution and yield
good convergence of the solutions for moderate values
© 1999 The American Physical Society
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the nonlinear coupling strengthC (C # 1 mostly in this
work).

Numerical results and theoretical analysis.—First, we
consider how the current of a moving condensate degra
when a stationary periodic potential is turned on. O
initial wave function is taken to bef ­ eik0x which has a
currentk0. (Later, we will show how such a state may b
prepared.) The potential is then turned on adiabatica
to a strengthV0 in a timet0 and stays constant afterwards
From the solution, we obtain the condensate currentj ­
s h̄

m d Imsfp df

dx d as shown in Fig. 1, where we have take
k0 ­ 1y4, V0 ­ 0.05, andt0 ­ 60. The current decreases
as the potential is turned on and settles down to new valu
depending on the strength of the atomic interactionC. For
small C, the current decreases dramatically, but forC $

1.0, the current stays almost constant [also see Fig. 2(a
These results show that the ability for the condensate
maintain its current depends crucially on the strength
interaction between the atoms.

This strong dependence is explained in terms of the
fective potentialV0 cossxd 1 Cjfj2 seen by each atom.
We view our system as a noninteracting gas in the effect
potential, with the condensate wave function correspon
ing to the Bloch state in the lowest energy band of th
effective potential and with initial wave numberk0. The
Bloch wave number is conserved because the potentia
periodic and the state lies in the lowest band becausek0
lies in the first Brillouin zone and the potential is turne
on adiabatically. The Bloch state has a periodic dens
profile so that the periodicity of the external potential
preserved in the effective potential. The effective pote

FIG. 1. Current as a function of time for the wave functio
with initial currentk0 ­ 1y4. V0 ­ 0.1, andt0 ­ 60. Results
are shown forC ­ 0.0, 0.1, 0.4, and 1.0.
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tial is reduced by the repulsive self-interaction because
density of atoms tends to be larger in the potential we
and smaller in the barrier regions, so that the second te
in the effective potential tends to even out the first ter
which represents the external potential.

An explicit analytic expression for the effective potentia
can be calculated using perturbation theory asVeff 3

cossxd 1 const, whereVeff ­ V0ys1 1 4Cd. This result
is valid as long as the condensate density is nearly unifo
i.e., whenVeff ø 1, which is realized for either a weak
external potential or a strong atomic interaction. Fro
this effective potential, we can also calculate the curre
perturbatively, with the result,j ­ k0 2 8k0V 2

effys4k2
0 2

1d2. We plot the current and the effective potential a
functions ofC in Fig. 2, where we see that the analytica
results agree very well with the numerical data.

The above picture of noninteracting condensate in
reduced effective potential also gives an idea of the tim
scale for adiabaticity. The relevant energy gap is th
between the lowest two bands at the same Bloch wa
number, which is aboutDE ­ 1y4 for k0 ­ 1y4 in the
limit of small Veff. In order to avoid excitations acros
the gap, we choose our turn-on time of the potential
satisfy the conditionDt0 .

2p

DE ­ 8p. Tiny oscillations
of the current in Fig. 1 are due to residual nonadiaba
excitations, as is evident from the fact that their oscillatio
frequency coincides withDE. These oscillations become
even smaller if we use a longer turn-on time.

Next, we show how a stationary condensate can
boosted to a finite velocity. We first turn on a stationa
potential adiabatically to a strength of 0.1, then acceler

FIG. 2. Average current (a) and the strength of the effecti
potential Veff (b) as a function ofC after the turn-on of the
potential for the runs in Fig. 1. Open squares and crosses
numerical results. Solid lines are analytic results.
2023
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the potential to a final velocity ofyf . The induced current
(the average velocity) of the condensate is shown in Fig
for yf ­ 0.2 and for various values of atomic interaction
C. For C ­ 0, the condensate follows the motion of th
potential, acquiring the same velocity as the potential. F
nonzeroC, the current is lower, implying a leakage o
the atoms through the potential. For largerC, very little
current is dragged by the potential. These results can ag
be simply understood in terms of the effective potenti
reduced by the self-interaction. The insensitivity of th
motion of the condensate with strong atomic interactio
to an external potential reminds us of the property of
superfluid.

A real three-dimensional BEC has an inhomogeneo
density distribution. Our results should be valid when th
spatial variation of the density over a lattice constant
small. When one tries to drag the BEC by a period
potential, it may happen that only the low density region
affected while the high density portion of the BEC remain
undragged due to the self-interaction of the atoms.

Finally, we show in Fig. 4 Bloch oscillations of the con
densate when the potential is accelerated at a constant
a. The average slope of the current is given by the acc
eration, meaning that the condensate follows the poten
on average. The oscillatory modulations can be und
stood by the following arguments. In the comoving fram
the potential is stationary but the atoms feel an inert
force, which makes the Bloch wave number drifting at
rate of 2a. If the lowest band of the effective potentia
has the dispersioneskd, then the velocity in the comoving
frame is given bye0s2atd. Because of the periodicity of
the Bloch band, this velocity has a zero mean and an

FIG. 3. Current as a function of time for the wave functio
with zero initial current. V0 ­ 0.1 and the acceleration occurs
betweent ­ 0 and t ­ 50. Results are shown forC ­ 0.0,
0.1, 0.4, and 1.0.
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cillation period of1ya, which agree with the results in the
figure.

The size and shape of the modulations (excluding t
fast oscillations to be discussed below) in Fig. 4 can a
be explained in terms of Bloch oscillations in the effe
tive potential [9]. ForC ­ 0, the potential of strength
V0 ­ 0.4 is known to produce a narrow band with
cosine energy dispersion, which explains the small a
sinusoidal modulations in that case. For largeC, the ef-
fective potential is weak, and the energy dispersion is pa
bolic (ask2y2 in the free case) except near the Brilloui
zone edgek ­ 6

1
2 , where it becomes flat due to Brag

reflection. The acceleration of the condensate in the
moving frame is given by2ae00s2atd, which nearly can-
cels the acceleration of the potential everywhere, exc
when k is near the zone edge. The velocity of the co
densate should then follow a stair case curve, with t
steps coinciding with the occurrence of Bragg reflection
The fast oscillations for the cases ofC ­ 0.3 and 0.5 in
Fig. 4 are due to Landau-Zener tunneling [25] through t
gap between the lowest two bands of the effective pote
tial. The critical acceleration for the tunneling ispV 2

effy2
[8], which is smaller for larger values ofC and becomes
comparable to the acceleration used in the calculation
the above two cases. A detailed study of Zener tunnel
of a BEC will be reported in the future.

Experimental realization and future directions.—In
typical experiments to date, the relevant parameters
given by n0 ­ 1020 m23, a ­ 5.4 nm, and kL ­ 2py
l ­ 8.06 3 106 m21 for Rb [26] and n0 ­ 3 3

1021 m23, a ­ 2.65 nm, andkL ­ 1.07 3 107 m21 for

FIG. 4. Current as a function of time for the wave functio
with zero initial current. Parameters areV0 ­ 0.4 andt0 ­ 70.
The acceleration isa ­ 0.01 for t $ 100. Results are shown
for C ­ 0.0, 0.1, 0.3, and 0.5.
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Na [12]. The strength of atom-atom interaction is give
by C ­

pn0a
k2

L
­ 2.6 3 1022 for Rb andC ­ 2.2 3 1021

for Na. Larger values ofC may be achieved by a higher
density of the condensate, a highera, and a smallerkL.
All three parameters can be changed independently.
higher density may be achieved by a factor of 5 enhanc
ment without rendering the condensate’s lifetime to
short for the processes discussed here.a can be tuned as
well by a Feshbach resonance [12,27,28]. A smallerkL

may be achieved by adjusting the relative angle betwe
the two beams of interfering light without changing th
laser frequency. Therefore, the phenomena discuss
in this Letter should be observable within the curren
experimental capability.

Apart from a detailed study of the Landau-Zener tun
neling mentioned above, future theoretical investigatio
are needed to explore other possibilities of the conde
sate motion such as Wannier-Stark ladders and quant
chaos, which have been observed on cold but non-BE
atoms. Because of the nonlinearity due to atomic inte
actions, spontaneous breaking of translational symme
of the condensate can occur under certain conditions a
seen in a primitive study of ours. Further improvemen
of the theoretical framework is also needed to include th
effects of thermal and quantum fluctuations.

We acknowledge with gratitude extensive discussio
with Dan Heinzen, Matt Choptuik, Mark Raizen, and
Anthony Leggett. The research was supported in pa
by the NSF (PHY9722610, PHY9722068, PHY931008
PHY9318152-ARPA supplemented), the Metacent
Grant No. MCA94P015, the Welch Foundation, and
Cray Research Grant.

Note added.—During the revision of this manuscript,
we received a preprint (now published) from Anderso
and Kasevich, reporting the observation of Bloch oscilla
tions and Zener tunneling of a BEC in a stationary op
tical lattice under gravity [29]. In the free-falling frame
of reference, this experimental system is equivalent to t
one described here and offers a potentially good testi
ground for our theoretical predictions.
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