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Artificial molecules in coupled and single quantum dots

S. Bednarek, T. Chwiej, J. Adamowski,* and B. Szafran
Faculty of Physics and Nuclear Techniques, University of Mining and Metallurgy (AGH), Krako´w, Poland

~Received 16 January 2003; published 21 May 2003!

An exactly solvable model has been proposed for the artificial molecules composed of two electrons con-
fined in double coupled and single isolated quantum dots. This model allows us to study systematically the
spontaneous symmetry breaking, which results from the electron-electron correlation in the artificial molecules.
By comparing the exact and Hartree-Fock results we have shown that—in the barrier-separated coupled
quantum dots—the correlation increases with the increasing barrier thickness, which leads to the localization of
both the electrons in the different dots, i.e., the vanishing probability of finding both the electrons in the same
dot. In the single quantum dot, the correlation increases with the increasing dot size, which leads to a formation
of a Wigner molecule. We have found a remarkable similarity of the electron density distribution in both the
types of the artificial molecules.
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I. INTRODUCTION

A quantum dot~QD!, i.e., a nanostructure, in which th
electrons are confined in all three space dimensions, is ca
an artificial atom.1,2 The electrons confined in the tw
coupled QD’s can form an artificial molecule.3–8 The
artificial-molecule states can be formed in the vertically8,9 as
well as laterally coupled QD’s.10 The nanostructure with the
vertically coupled QD’s fabricated by Austinget al.9 consists
of GaAs, AlGaAs, and InGaAs layers, which were etched
form a pillar. Along the axis of the etched pillar~in the ver-
tical direction! the confinement potential can be appro
mated by the double-well~triple-barrier! potential. The elec-
trons are confined in the QD regions within the two InGa
layers by this vertical confinement potential and by the
eral confinement potential, which is created by the gate v
age applied to a side gate electrode.

Another class of the artificial molecules can be created
a single isolated QD at high magnetic field.11,12 If the mag-
netic field is sufficiently strong, the electrons can be loc
ized at different sites within the single QD forming a Wign
molecule.12

A theory of artificial molecules in single and double QD
deals with few-electron problems, which do not admit ex
solutions even for simple parabolic confining potentials. S
eral approximate methods have been applied to solve
few-electron eigenvalue problem in the QD’s. These inclu
the Hartree-Fock~HF!,13,14 configuration-interaction~CI!,3,15

and local-density approximation6,7,10,16 methods. The CI
method with a large number of Slater determinants yie
large matrices that can be exactly diagonalized, which allo
us to approach the exact solutions.17 Another possible
method to obtain the exact results is based on the real-s
mesh techniques18,19 that provide accurate numerical sol
tions. However, the singularity of the Coulomb potential
small interparticle distances limits the accuracy of the te
niques based on the finite differences.18 The Coulomb singu-
larity is especially hard to overcome in problems with t
reduced dimensionality, e.g., one-dimensional~1D! prob-
lems, which arise when considering the electrons confine
the 1D QD’s~Ref. 11! and quantum wires.20 Moreover, when
0163-1829/2003/67~20!/205316~6!/$20.00 67 2053
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applying the path-integral method to the QD’s,21 one obtains
systematic overestimates of the energy of the system with
Coulomb interaction. Therefore, it is desirable to replace
Coulomb interaction by some nonsingular effective inter
tion, which could simulate the behavior of the confine
electron system and lead to exact solutions~at least for the
small number of electrons!.

In the present paper, we propose such an effective in
electron interaction, which allows us to reduce the origin
three-dimensional~3D! electron problem to the effective, ex
actly solvable, 1D problem. Using this effective interacti
we obtain the exact solutions for the two-electron artific
molecules in the single isolated QD and double coup
QD’s. For the single QD, we study the conditions, und
which the electrons form the Wigner molecule and disc
the similarity between the artificial molecules created in
single and double QD’s. The paper is organized as follo
Section II contains the description of the theoretical mo
with the derivation of the effective interaction, Sec. III co
tains the results, and Sec. IV, the discussion and conclusi

II. THEORETICAL MODEL

We consider the cylindrically symmetric 3D electron sy
tem confined in the single isolated QD. We assume the c
finement potential to be a sum of lateral parabolic (U') and
vertical (U i) confinement potentials, i.e.,

Ucon f~r !5U'~x,y!1U i~z!. ~1!

For this separable potential the one-electron wave functio
a product

c~r !5c'~x,y!c i~z!. ~2!

The lateral potential is assumed to be parabolic, i.e.,

U'~x,y!5
mv'

2

2
~x21y2!, ~3!

wherem is the effective electron band mass andv' is the
lateral confinement frequency. The ground state wave fu
tion for the lateral motion has the form
©2003 The American Physical Society16-1
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c'~x,y!5~2b/p!1/2exp@2b~x21y2!#, ~4!

whereb5mv'/2\.
Let us consider the electron-electron interaction energ

U125
e2

4p«0«E d3r 1d3r 2

uC~r1 ,r2!u2

ur12r2u
, ~5!

whereC(r1 ,r2) is the two-electron wave function and« is
the static dielectric constant. For the parabolic lateral pot
tial and under assumption that the vertical confinemen
considerably weaker than the lateral one, we can separat
ground-state two-electron wave function as follows:

C~r1 ,r2!5c'~x1 ,y1!c'~x2 ,y2!C i~z1 ,z1!. ~6!

Substituting this form into Eq.~5! and integrating over the
lateral coordinates, we obtain

U125E
2`

`

dz1E
2`

`

dz2uC i~z1 ,z2!u2Ue f f~ uz12z2u!. ~7!

In Eq. ~7!, Ue f f is the effective 1D electron-electron intera
tion given by

Ue f f~ uzu!5
e2~pb!1/2

4p«0«
erfcx~b1/2uzu!, ~8!

where

erfcx~z!5exp~z2!erfc~z! ~9!

is the exponentially scaled complementary error function22

The effective interaction energy~8! is essentially Coulombic
at large interelectron distances but—contrary to the Coulo
potential—does not possess any singularity at zero dista
~Fig. 1!. At small distances, the effective interaction is mu
softer than the Coulomb interaction and possesses a c
which stems from the averaged Coulomb singularity at o
gin. The nonsingular effective interaction~8! can be used to
obtain exact solutions for the few-electron problems in
QD’s.

The assumption of the separated form of wave funct
~6!, under which Eq.~8! has been obtained, means that t
energy-level differences for the quantized motion in thez
direction are much smaller than the corresponding diff
ences for the lateral motion. In this case, several low-ene
levels of the quantized vertical motion correspond to
ground state of the lateral motion. This assumption is w
fulfilled in the QD formed from a section of a quantu
wire,20 for which the vertical extension of the QD is muc
greater than the lateral one. The vertically coupled dou
QD’s9 with the same~or comparable! size provide anothe
possible physical realization of the model system conside
In the nanostructure made of the two QD’s with the com
rable size, the main contribution to the two-electron wa
function stems from the single-QD one-electron wave fu
tions, which are associated with comparable energies. T
the corresponding energy differences for the vertical mot
are much smaller than those for the lateral motion and
excited states of the lateral motion only slightly affect t
two-electron ground state.
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The effective electron-electron interaction~8! allows us to
simplify considerably the two-electron problem, which—in
general case—depends on the six coordinates. After sep
ing the lateral and vertical motions and using Eq.~8!, we can
reduce the number of independent coordinates to two.
corresponding two-electron Hamiltonian has the form

H~z1 ,z2!52
\2

2m S ]2

]z1
2

1
]2

]z2
2D 1U i~z1!1U i~z2!

1Ue f f~ uz12z2u!12\v' , ~10!

where the last term is the ground-state energy of the
noninteracting electrons in the two-dimensional~2D! lateral
parabolic confinement potential. The two-electron eigenva
problem with the Hamiltonian~10! is a unique two-electron
problem, which can be solved exactly, i.e., with the corre
tion effects entirely taken into account. This solution h
been obtained by the iterative extraction-orthogonalizat
method,23 which allows us to achieve an arbitrary precision24

for the eigenvalues and wave functions. In the present pa
we require that the uncertainty of the calculated energy l
els does not exceed 1026 meV. Therefore, we can regar
these solutions to be exact in the framework of the pres
model which is based on the assumption of parabolic lat
confinement~3! and separability of wave function~6!.

In the present approach, the one-electron approximat
are not necessary. Instead, we can study the quality of
approximate methods based on the application of the o
electron wave functions, e.g., HF method, by comparing
exact and approximate solutions. The exact solutions of
two-electron problem—in contrast to the HF solutions
fully take into account the electron-electron correlation.

FIG. 1. Effective ~solid curve! and Coulomb~dashed curve!
electron-electron interaction potentials as functions of electr
electron distance z. Length is expressed in unitsl'
5(2\/mv')1/2, energy in units\v' , and we take onRD5\v' ,
whereRD is the donor rydberg.
6-2
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the present paper, we have performed the calculations ap
ing the two versions of the HF method, namely, the restric
HF ~RHF! and the unrestricted HF~UHF! method. In the
UHF method for all the states and in the RHF method for
triplet states, each one-electron orbital is independently o
mized for each spin state. When calculating the singlet st
by the RHF method, the one-electron orbitals are the sa
for the different spin states.

III. RESULTS

A. Coupled quantum dots

The calculations have been performed for the doub
barrier vertical confinement potential with the 12-nm w
width and depth2240 meV ~the energy is measured wit
respect to the conduction-band minimum of the barrier m
terial!. Moreover, we take onm50.064me for In0.05Ga0.95As,
«512.9, and\v'56 meV. The material parameters used
the calculations correspond to the vertically coupled QD’s
Austing et al.9

We study the artificial-molecule states, which are form
in the two vertically coupled QD’s separated by the poten
barrier with thicknessb. By varying b we can change the
coupling between the QD’s. Figure 2 shows the exact, U
and RHF results for the lowest-energy singlet and trip
states. For the strongly coupled QD’s, i.e., forb<6 nm, the
singlet and triplet states are nondegenerate and the si
state is the ground state of the system. Forb.6 nm, i.e., in
the weak coupling regime, the singlet and triplet energy l
els become degenerate. We note that the exact results

FIG. 2. Lowest singlet~lower solid curve! and triplet ~upper
solid curve! energy levels of the two-electron system confined
the double QD as functions of barrier thicknessb. The UHF~RHF!
results for the singlet state are drawn by the dashed~dotted! curve.
For the triplet state the results of both the HF methods are the s
and are shown by the dashed curve with crosses.
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fairly well reproduced by the UHF method, while the RH
approach considerably overestimates the energy of the
glet state. Forb.4 nm the RHF method yields the incorre
ordering of the energy levels~the singlet energy level is er
roneously predicted to lie above the triplet level!. The results
for the triplet state obtained by both the HF methods are
same and are almost indistinguishable from the exact res

We have studied the accuracy of the HF methods by e
mating the errorsDE5uEexact2EHFu, whereEHF is the HF
energy estimate obtained by either the RHF or UHF meth
Usually, the correlation energy is defined asEcorr52DE
with EHF calculated by the RHF method. For the triplet sta
both the UHF and RHF methods are equivalent and lead
the identical results marked by HF in Figs. 2 and 3. In t
state, the HF energy estimates are nearly exact, i.e., the
relation error is negligibly small at all interdot distances. T
inaccuracies of the HF methods appear for the singlet st
The error of the UHF method increases withb for smallb, is
maximal for b53 nm, and decreases for largerb. For b
.6 nm the UHF results become indistinguishable from
exact ones. On the contrary, the RHF energy estimates
remarkably distinct from the exact results at allb and the
RHF error monotonically increases withb.

In order to get a more deep physical insight into the pro
erties of the system considered, we have plotted in Fig. 4
contours of the two-electron probability density, i.e
uC i(z1 ,z2)u2, for the singlet@Fig. 4~a!# and triplet@Fig. 4~b!#
states. The caseb50 corresponds to the single QD, in whic
the two joined potential wells form the single potential we
with the double width. For the singlet state andb50 the
electrons are localized nearly at the center of the single
@cf. Fig. 4~a!#. Nevertheless, the interelectron repulsi
slightly shifts the electrons in the opposite directions, wh
is visible as a small deformation of the exact two-electr
wave function. This is a trace of the weak electron-elect

e

FIG. 3. Estimated errorDE of the UHF ~solid curve! and RHF
~dashed curve! methods for the singlet state of two electrons co
fined in the double QD with barrier thicknessb. The errors for the
triplet state of both the HF methods are shown by the dotted lin
6-3
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correlation. If we introduce the barrier with the increasi
thickness, the correlation increases and the electrons ca
found with the increasing probability in the different QD’
For b56 nm the probability of finding both the electrons
the same QD vanishes. In this case, the correlation is str
These properties of the exact two-electron wave function
reproduced by the UHF method. However, the redistribut
of the electrons over the different QD’s occurs with som
‘‘delay’’ when the barrier thickness increases. This leads
the increase of the UHF error for smallb and its disappear
ance for largeb. For b56 nm the UHF and exact electro
densities are indistinguishable. The ground-state wave fu
tion @cf. exact and UHF results in Fig. 4~a!# does not posses
the symmetry of the confining potential, i.e., the one-elect
parity is not conserved. Only the total parity, which corr
sponds to the simultaneous inversion of the coordinate
both particles, is well defined for the artificial molecules co
sidered. However, the RHF wave functions are additiona
symmetric with respect to the one-electron parity, wh
leads to the erroneous prediction of equal probabilities
finding one or two electrons in the same QD. In the trip
state, the correlation is negligibly small and the exact and
wave functions are identical@Fig. 4~b!#.

B. Wigner molecules in a single quantum dot

In the double QD, the localization of electrons change
we change the repulsive potential of the barrier. As a res

FIG. 4. Contours of the two-electron probability density in t
coupled QD’s as functions ofz1 andz2 ~in nm! for the singlet~a!
and triplet~b! states for several values of barrier thicknessb. The
darker the shade of gray, the larger the electron density. The w
areas correspond to the electron probability density equal to ze
20531
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for the potential barrier with the sufficiently large height a
thickness the electrons become spatially separated and l
ized in the different QD’s. The correlation is of crucial im
portance in the separation of the electrons between the
ferent dots. In the single isolated QD, the electron-elect
correlation can also be responsible for the localization of
electrons. In order to show this effect we have performed
calculations for the two-electron system in the single Q
with the varying size and with the same values of the ot
parameters as those for the double QD. Figure 5 sh
that—similarly as for the double QD—the singlet state is t
ground state of the system and the singlet and triplet st
become degenerate if the size of the QD exceeds;120 nm.
Like in the double QD, the results for the singlet state a
fairly well reproduced by the UHF method, while the RH
approach leads to a considerable overestimation of
ground-state energy, which increases with the increasing
of the QD. Moreover, the RHF method erroneously predi
the triplet state to be the ground state for the QD’s of a la
size. The corresponding errors are displayed in Fig. 6. Si
larly as in the coupled QD’s, the error of the UHF method f
the singlet state grows with the size of the QD, reaches
maximum atZ575 nm, and next decreases to zero. T
RHF error is a monotonically increasing function of the Q
size. In the triplet state, the HF error is negligibly small.

Let us look at the electron density distribution in th
single QD~Fig. 7!. If the size of the dot increases, the ele
trons in the singlet state tend to be localized at the differ
sites of the QD @cf. exact results in Fig. 7~a! for Z
>70 nm]. The results forZ570 and 100 nm can be inter
preted as a creation of precursors of Wigner molecules.11,12If
Z is larger than;120 nm, the electrons become strong

ite
.

FIG. 5. Lowest singlet~lower solid curve! and triplet ~upper
solid curve! energy levels of the two-electron system confined
the single QD as functions of linear sizeZ of the QD. The UHF
~RHF! results for the singlet state are drawn by dashed~dotted!
curve. For the triplet state the results of both the HF methods are
same and are shown by the dashed curve with crosses.
6-4
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localized at the different sites within the QD. In this case,
Wigner molecule11,12 is formed with the clearly separate
electrons. The Wigner molecules can be created in the sin
@Fig. 7~a!# as well as in the triplet@Fig. 7~b!# state. It is
interesting that—contrary to the magnetic-field induced f
mation of the Wigner molecules12—no external field is nec-
essary to create the Wigner molecules of this kind. In
present case, the formation of the Wigner molecules res
from the strong electron-electron correlation. This effect
well reproduced by the UHF method~cf. Figs. 5 and 6!, but
not by the RHF method. Comparing Fig. 4~a! with Fig. 7~a!
and Fig. 4~b! with Fig. 7~b! we note the remarkable similar
ity of the electron density distributions in the artificial mo
ecules formed in the double and single QD’s.

IV. DISCUSSION AND CONCLUSIONS

We have considered the 3D problem of interacting el
trons in double and single QD’s. The assumption of
harmonic-oscillator potential for the lateral confinement~3!
and the separability of wave function~6! allows us to reduce
the 3D problem to the 1D problem. The effective electro
electron interaction obtained is a smooth nonsingular fu
tion of the interelectron distance with the long-range Co
lomb tail. These properties of the effective interaction ena
us to solve the two-electron problem exactly. In the pres
paper, the effective interaction has been applied to the t
electron artificial molecules created in the double and sin
QD’s.

In quantum wells, the effective electron-electron intera
tion has been studied by Priceet al.25 The authors25 per-
formed the averaging over the electron ground state in
vertical direction and obtained the effective interaction in

FIG. 6. Estimated errorDE of the UHF ~solid curve! and RHF
~dashed curve! methods for the singlet state of two electrons co
fined in the single QD as a function of linear sizeZ of the QD. For
the triplet state the errors of both the HF methods are shown by
dotted line.
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lateral direction, which is qualitatively similar toUe f f @Eq.
~8!#. However, in the calculations, the authors25 preferred to
use the simpler model interaction, which at sm
distances—on the contrary to Eq.~8!—possesses the fla
parabolic-like maximum. The parabolic form is also chara
teristic for the model interaction proposed by Johnson a
Payne.26 According to the derivation presented in Sec. II a
that given by Priceet al.,25 the effective interaction should
have a cusp at zero interelectron distance~cf. Fig. 1!, which
results from the Coulomb singularity at origin.

The problem of two electrons in the quasi-1D coupl
QD’s was considered by Tamborenea and Metiu,20 who,
however, did not derive a closed formula for the effecti
interaction. Jaureguiet al.11 investigated the formation o
Wigner molecules in quasi-1D QD’s using the mod
interaction.25 Yannouleas and Landman5 discussed the spon
taneous symmetry breaking in the single and latera
coupled QD’s applying the two-center-oscillator confin
ment. The results for the planar two-dot system5 exhibit a
qualitative similarity to the present results for the vertica
coupled QD’s.

The effective electron-electron interaction proposed in
present paper can be used together with the model con
ment potential, which is sufficiently flexible to account fo
the realistic confinement. In Ref. 27, we have proposed

-

he

FIG. 7. Contours of the two-electron electron probability dens
in the single QD as functions ofz1 andz2 ~in nm! for the singlet~a!
and triplet ~b! states for several values of dot sizeZ. Note the
different length scales for differentZ. The gray scale is as in Fig. 4
6-5
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power-exponential confinement potential, which allows us
model the properties of real QD’s.

In order to study the correlation effects we have p
formed calculations with the use of both the RHF and U
methods. We have found that the UHF method fairly ac
rately takes into account the electron-electron correlat
The deviations of the UHF results from the exact ones oc
only for the the small barrier thickness in the double QD a
for the small size of the single QD. If the barrier thickness
the coupled QD’s~linear size of the single QD! increases, the
UHF results become indistinguishable from the exact on
In particular, both the exact and UHF methods predict
formation of the Wigner molecule in the single QD with th
sufficiently large size. When the Wigner molecule is creat
the Coulomb interaction potential energy dominates over
other energy contributions. In this case, the confinin
potential symmetry of the two-electron wave function is b
ken, which leads to the localization of the electrons at
different sites of the QD. Due to the application of the sa
electron orbitals for the singlet states, the RHF method d
not allow for this symmetry breaking and does not lead to
formation of the Wigner molecule.

It is interesting that the spontaneous breaking of the s
metry of the confining potential leads to the very simi
electron density distributions in the different types of t
artificial molecules studied, namely, the artificial molecu
formed in the double coupled QD’s and the Wigner m
ecules formed in the single isolated QD. In both the cas
the redistribution and localization of the electrons resu
from the electron-electron correlation, which becomes str
for the nanostructures of the sufficiently large size.

In the coupled QD’s, the electron-electron correlation
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creases with the increasing thickness of the barrier la
separating the dots. This means that—in some sense—
correlation can be artificially tuned by changing the thic
ness of the barrier layer. Therefore, in the double coup
QD nanostructure, we can intentionally change the electr
electron correlation from weak~for the thin barrier! to strong
~for the thick barrier!. The same tuning of the correlation ca
be realized in the single QD by changing its size.

In summary, we have proposed the model for the 3D el
tron systems confined in single and double QD’s, which
lows us to obtain numerical solutions of the arbitrary r
quired precision within the present model for the tw
electron artificial molecules. The effective interactio
obtained in the present paper can also be applied to
many-electron systems. We have determined the condit
under which the electrons are strongly localized in the d
ferent QD’s in the double-dot structure and in the spatia
separated parts of the single QD. We have obtained accu
results that allow us to study systematically the format
and evolution of Wigner molecules from the weakly
strongly correlated systems. We have found that the elec
density distribution in both types of the artificial molecul
studied show a remarkable similarity. Additionally, we ha
discussed the accuracy of the HF methods and pointed
that the UHF method leads to the exact results for the tw
electron Wigner molecules and for the two-electron syste
confined in the weakly coupled QD’s.
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