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Quenched disorder in graphene is characterized by 5 constants and experiences the logarithmic
renormalization even from the spatial scales smaller than the Fermi wavelength. We derive and solve
renormalization group equations (RGEs) describing the system at such scales. At larger scales, we derive a
nonlinear supermatrix � model completely describing localization and crossovers between different
ensembles. The parameters of this � model are determined by the solutions of the RGEs.
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Introduction.—The Dirac spectrum of the quasiparticles
in graphene confirmed by recent experiments [1–3] is a
consequence of the honeycomb lattice symmetry [4].
Although many properties of graphene can be understood
in terms of ballistic motion of ‘‘relativistic’’ electrons
described by a Dirac-like equation (see, e.g., [5]), disorder
plays an important role in sufficiently large samples.

Influence of disorder on two-dimensional electron gases
on the honeycomb lattice was studied in several works [6–
12] within a self-consistent Born approximation (SCBA)
standard for weakly disordered metals and superconduc-
tors. Within SCBA, such quantities as density of states or
localizationless conductivity [7–10] were calculated. The
weak localization (WL) correction was discussed in
Ref. [11] and calculated in Ref. [12]. However, the
SCBA is not justifiable for the Dirac spectrum, j"j �
vjpj, as it can be seen already in the fourth order pertur-
bation theory in the disorder potential (see below), and a
more careful analysis is needed.

In this Letter, we reveal the origin of the logarithmic
effects specific for the Dirac spectrum and different from
WL. These corrections (see Fig. 1) are contributed by all
spatial scales between the lattice constant a and either
wavelength �- " � @v=" or the scale determined by disor-
der, and that is why we will coin the name ‘‘ultraviolet
logarithmic corrections’’ (uvLC) for them. We will sum up
the leading series of uvLC within a one-loop renormaliza-
tion group (RG). At larger linear scales physics is de-
scribed by a nonlinear � model [13] and uvLC enter as
renormalized parameters in this model. We will show that
the low-energy asymptotics correspond to the orthogonal
ensemble. Thus, the one-particle states are localized at any
energies in contradiction with the findings of Ref. [1] of the
minimal metallic conductivity in the undoped graphene.

Disordered Hamiltonian.—In the undoped graphene two
bands cross the Fermi level at K and K0 points. The
corresponding Bloch functions comprise the basis of the
four-dimensional (4D) representation of the planar group
of the honeycomb lattice. We join them in a vector

 ~’ T�r� � ��’A;’B�AB; �’�B;�’
�
A�AB�KK0 ; (1)

where we use the fact the points K and K0 are connected to
each other by the time-reversal symmetry

 ~’ ��r� � ẑ ~’�r�; ẑ � �ABy � �
KK0
y ; (2)

where the 4D space of the wave functions is represented as
a direct product AB � KK0 of the sublattice AB and ‘‘val-
ley’’ KK0 2D spaces, and ��x;y;z, ��� � ��x � i�y�=2 are the
Pauli matrices acting in those spaces, � � AB, KK0 (we
omit the physical spin).

The low-energy properties are described in k 	 p ap-
proximation [4]; i.e., the wave function �"�r� is looked
for as �"�r�� ~’�r� 	 ~�"�r� with a smooth envelope, ~�"�r�,
satisfying the effective Schrödinger equation (@ � 1)

 
Ĥ0 � V̂�r�� ~�"�r� � " ~�"�r�; Ĥ0 � �iv
~̂
� ~r; (3)

where ~r � �@x; @y� and we introduced 4
 4 matrices [14]

 �̂ x;y � 1KK
0
� �ABx;y ; Ĝm;i � �KK

0

m � �ABi : (4)

For the spinless particles, the time-reversal symmetry
(TRS) requires ���r� � ~’��r� 	 ~���r� also to be the eigen-
state of the original Hamiltonian. Together with Eq. (2) it
constrains the effective Hamiltonian from Eq. (3) as

 

FIG. 1. Interfering scattering events involving (a) two- and
(b) three-impurity scattering.
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 Ĥ 0 � ẑĤT
0 ẑ; V̂ � ẑV̂T ẑ: (5)

The disorder, V�r� � Vy�r�, in Eq. (3) may break all the
symmetries except that of the TRS (5). This leads to

 V̂�r� � 1u0�r� � Ĝm;ium;i�r�; (6)

where u0, um;i are real random functions, 1 � 1AB � 1KK
0
,

and the summation over indices fi;mg � fx; y; zg is implied
in Eqs. (6) and (7a). Equation (6) is the most general form
for the disorder before averaging. Averaging must restore
the rotational (D6) and translational symmetries, which
leads [15] to the Gaussian correlations

 hV̂r � V̂
0
ri � �r;r0 
�01 � 1� �imĜm;i � Ĝm;i�: (7a)

Coefficients �im > 0 are independent from �0 > 0 and

 �zz � �z; �fx;ygz � �?; �z
fx;yg ��z; �fx;yg

fx;yg ��?;

(7b)

so that the disorder is characterized by 5 parameters.
Thereinafter, we will treat these parameters �, � of

Eqs. (7) as the starting point of the theory, not calculating
their particular values determined by the details of the
single impurity on the scale of the lattice constant.
However, some conclusions can be drawn from the sym-
metry arguments [15]. The remote charge impurity poten-
tial weakly varying on the scale of the lattice constant a, is
invariant with respect to the continuous rotations and gen-
erate only the diagonal term ��0 > 0;�im � 0�. A defect in
the crystal still preserving the point symmetry D6 (inter-
stitial atom) generates �0 ’ �z > 0. A vacancy in a perfect
honeycomb lattice preserves D3 symmetry and allows for
�z ’ �? ’ �? ’ �0. Bond disorder (D2) generates �? ’
�? ’ �z ’ �0.

The uvLC originate from the interference of the waves
multiply scattered by the disorder potential; however, the
configurations of the impurities giving rise to the effect
differ from the familiar WL[13]. Thus, it is instructive to
explain them first in terms of the counting of the scattering
events and then present the rigorous calculation. It will also
illuminate reasons for the failure of SCBA.

If there were no disorder potential, the wave function
~��0�k would be the plane wave with a momentum k and the
structure of Eq. (1). We limit ourselves by positive energies
" � vk, k � jkj for concreteness, and the projection op-
erator P̂�n� � �1��n�=2; n � k=jkj chooses the chi-
rality corresponding to the positive energy. Consider an
impurity placed at point R1. The asymptotics of wave
function acquire the form ~�k � ~��0�k �

~��1�k , where

 

~� �1�
k �

8><
>:

exp�
ijr1 j

�
-
"
�����������

�ijr1j
p

P̂�
r1
jr1 j
�f̂1���������

2��- "

p ~��0�k �R1�;
jr1j
�- "
� 1;

i�2�jr1j
2��1�̂r1f̂1

~��0�k �R1�; jr1j � �- ";

(8)

and r1 � r�R1 is the distance from the impurity.

Equation (8) is valid for both jr1j and �- " much larger
than the characteristic size of the scatterer. All the details
of the impurity are encoded in the matrix f̂1 which can be
viewed as the scattering length, a0 � jjf̂1f̂

y
1 jj

1=2. The
value of a0 is of the order of the size of the impurity.

The asymptotic behavior of Eq. (8) at jr1j � �- " is
nothing but the outgoing spherical wave, corresponding
to the s scattering. It is important to emphasize that the
dominance of the s channel is the consequence of the large
wavelength and not of the peculiarities of the impurity
potential. The proportionality coefficient between the
spherical wave and the amplitude of the plane wave is
the scattering amplitude that enables us to find the elastic
scattering cross section of the electron with the original
momentum direction ni to the final direction nf:

 dŝ �
dnf

2��"

P̂�nf�f̂1P̂�ni�� � 
P̂�nf�f̂1P̂�ni��y: (9)

If there were no interference, Eq. (9) would describe all
the kinetics of the system. For the impurity density, nimp �

1=a2
0, the mean free path is estimated from

 ‘el ’ �nimp k ŝ k�
�1 ’ �- "=�nimpa

2
0� � �- ": (10)

To understand the role of the multiple scattering, consider
the two-impurity scattering [see Fig. 1(a), panels (i) and
(ii)].

Applying Eq. (8) twice we obtain for jR12j � �- " �
jr1j, the outgoing wave with f̂1 ! �f̂ � f̂12 � f̂21 and

 f̂ �ij� � �f̂i�̂Rijf̂j�2�jRijj
2��1; Rij � Ri �Rj;

(11)

for i, j � 1, 2, i � j, and a0 & jR12j & �- ". Equation (11)
describes the two-impurity scattering amplitude for the
given configuration of the impurities. The transport [see
Eqs. (9) and (10)] is determined by the powers of the f̂�ij�
averaged with respect to all configurations:
 

hf̂�ij� � f̂
y
�ij�i�nimp

Z d2R
4�2R4 
f̂i�̂Rf̂j��
f̂

y
j �̂Rf̂yi �

’ �4���1nimpL
f̂i�̂�f̂j��
f̂
y
j �̂�f̂

y
i �; (12a)

where L � ln��- "=a�. Analogously, we find

 4�hf̂�ij� � f̂
y
�ji�i ’ �nimpL
f̂i�̂�f̂j� � 
f̂

y
i �̂�f̂

y
j �: (12b)

Combining Eqs. (12a) and (12b), we obtain

 4�h�f̂ � �f̂yi ’ nimpLd
i0j0

ij 
f̂i�̂�f̂j� � 
f̂
y
j0�̂�f̂

y
i0 �; (12c)

where nonvanishing coefficients are d12
12 � d21

21 � 1, d21
12 �

d12
21 � �1, and summation over all repeating indices here

as well as over � � x; y in Eqs. (12) and (14) is implied.
Equation (12c) is the main result of the qualitative

consideration revealing the origin of the logarithmic diver-
gence. The Boltzmann equation neglects those contribu-
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tions. SCBA accounts only for the diagonal components
d12

12, d21
21 and misses all the other. For the scalar disorder,

e.g., it leads to the violating the TRS of the problem.
There are two more sources for the nimpa2L corrections.

One of them is the correlation of the one-impurity scatter-
ing with the two-impurity scattering in which one of the
impurities is visited twice as shown in Fig. 1(a), panels (iii)
and (iv). The corresponding result is easily obtained from
the three-impurity scattering amplitude [cf. Eq. (11)]

 f̂ �ijk� � �f̂i�̂Rijf̂j�̂Rjkf̂k�=�4�2jRijj
2jRjkj

2�; (13)

and we find

 4�hf̂�121�f̂
y
2 i ’ nimpL
f̂1�̂�f̂2�̂�f̂1� � f̂

y
2 : (14)

This correction is missing in SCBA. The last logarithmic
effect arising in this order is the logarithmic dependence
/ nimpa2" ln" of the averaged forward scattering ampli-
tude. It does not affect scattering processes directly but
renormalizes the spectrum of the free Hamiltonian H0. If
one considers the three-impurity configurations [see
Fig. 1(b)], starting from Eq. (13), he finds 54 contributions
/ n2

impL
2, only 6 of which are included in the SCBA.

Interference of few processes is somewhat special as it
does not vanish completely even if the distance between
impurities is larger than �- ". In fact, interferences 1–2 and
3–5 are the first contributions giving rise to the WL
correction which is also logarithmic. The WL, however,
originates from the spatial scales larger than ‘el, and that is
why they can be separated from the uvLC.

Field theory and RG.—Let us turn to the rigorous cal-
culations using the supersymmetry method. Because of the
4
 4 matrix structure of the Hamiltonian [Eqs. (3) and
(6)], the supervectors  should have 4 times more compo-
nents than usually used [13], i.e., we need 32 components
for calculation of the conductivity. The resulting 32D space
can be presented as a direct product of five 2D ones, AB �
KK0 � AR � eh � g, where AR, eh, and g are the retarded-
advanced, particle-hole, and the fermion-boson sectors.
Averaging over V̂ and using Eq. (7a), we find

 

h	 	 	i �
Z
	 	 	 exp��L
 ��D ;  y�̂ � � � 
Ĉ �T;

�̂ � �̂ � 1AB; �̂ � �ARz � 1KK
0
� 1eh � 1g;

Ĉ � iĈ � �ABy � ẑ � �ARz � ��
eh
� � 1g � �eh� � �

g
z �; (15)

where h	 	 	i on the left-hand side stands for any combina-
tion of advanced or retarded Green functions ĜA;R � �"�
!=2� Ĥ0 � V̂ � i0��1 and 	 	 	 on the right-hand side
stands for the corresponding sources [13]. The
Lagrangian L
 � � L0
 � � Lint
 � is (sum over i, m �
x, y, z is implied)

 

L0
 � � i
Z

� 
�
"� Ĥ0 � �̂

�
!
2
� i0

��
 dr;

Lint
 � �
1

2

Z

�0� �  �2 � �im� � Ĝm;i �2�dr;

(16)

where �Ĥ0; Ĝm;i� � �Ĥ0; Ĝm;i� � 1g � 1AR � 1eh.
The perturbation theory in Lint
 � leads to uvLC, and we

can calculate the integral (15) using an RG [16]. We
decompose  as  �  0 � ~ , where ~ is slow and  0 is
fast, and integrate out  0. We rescale ~ and the coordinates
to keep the coefficient in front of " and the ultraviolet
cutoff intact. It gives back Eq. (16), with renormalized
couplings �0, �im [Eq. (7b)] and the velocity v [Eq. (3)].
This yields renormalization group equations (see Ref. [15]
for details), which we display for the most interesting case
�0 * �im:
 

2�v@tv � ���0 � gk � 2g?�;

9�v2@t�0 � 2�g2
k
� 2g2

?�;

�v2@t�gk;? � �3�0�gk;?;

9�v2@tgk � �8g2
k
� 20gkg? � 14g2

?;

9�v2@tg? � 4gkg? � 18g2
?:

(17)

Here gk � �z � 2�?, g? � �z � 2�?, �gk � �z � �?,
�g? � �z � �?, and t is the logarithm of the running
energy.

Solving Eq. (17) down to the energy, j"j, we find

 v�"� �
�
�0

�
ln
j"j
"0

�
1=2
; �0�"� � �0�O

�
gk�"�
�0

�
; (18)

where "0 ’ J exp���v2
0=�0� is the energy at which the

first loop RG breaks down, and J is the bandwidth.
The last of Eq. (17) yields nonmixed valleys, g? � 0, to

be unstable, and g? flows towards

 gk�"� � g?�"� � 9�0=f14 ln
t�= lnj"j="0�g; (19)

�gk;?�"� / ln3�j"j="0�, and t� depends on gk;?�" ’ J�.
Equation (18) enables one to use the renormalized pa-

rameters for the standard calculation of the transport co-
efficients. The diffusion coefficient D�"� is given by

 D�"� � v2�"��tr�"�=2; 1=�tr�"� � ��0	"=4; (20)

where 	" � j"j=
�v�"�2� is the density of states (per one
physical spin). Einstein relation and Eq. (18) yield [17]

 � �
4e2

�2
@

ln
�
j"j
"0

�
: (21)

Equation (21) is the universal formula for the uvLC. It
describes either the temperature or the density dependence
of the conductivity limited by the short-range disordered
potential j"j ! max�"F; T�. It also gives the leading de-
pendence of the thermopower through the Mott-Cutler
formula. At j"j & "0, the logarithms are cut by 1=�tr,
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which leads to the replacement of ln�	 	 	� to the factor of
the order of unity. The precise value of this factor, however,
cannot be calculated within Eq. (17).
Nl� model and localization.—At distances larger than

v=max�j"j; "0�, soft modes giving rise to uvLC freeze out,

and only the degrees of freedom guarded by the funda-
mental symmetries of the system remain gapless. All those
degrees of freedom are described by the nl� model [13]
and functional integral (15) is replaced by integral over
16
 16 supermatrices in KK0 � AR � eh � g space [15]:

 h. . .i �
Z
	 	 	exp��F
Q̂��DQ̂; Q̂2 � 1; Q̂� ĈQ̂TĈT; Q̂y � K̂ Q̂ K̂; K̂�

1g 0
0 �g3

� �
AR
�1KK

0
�1eh: (22)

The free energy functional F
Q� takes the form (the definition of supertrace, Str, can be found in Ref. [13])
 

F�
�	"
16

Str
Z �
D�"�

�
rQ̂�

ieA
c

Q̂; T̂ 3�

�
2
� 2i!�̂ Q̂�

�	"gk
4


̂z; Q̂�

2�
�	"g?

4
�

̂x; Q̂�

2�

̂y; Q̂�
2�

�
dr;

�
̂�; T̂ 3� � ��KK
0

� �1eh;1KK
0
� �ehz � �1AR �1g;

(23)

where A is the vector potential due to the magnetic field
normal to the graphene, and the entries include uvLC.

Equation (23) is the only form allowed by the symme-
tries of the problem. The symmetries of the Q matrices
[Eq. (22)] correspond to the two replicas of symplectic
ensemble, which would flow to the limit of large conduc-
tances. However, due to gk;? > 0, only Q̂ / 1KK

0
is al-

lowed at large distances, and one obtains a generic or-
thogonal ensemble. Thus, all the eigenstates are localized.
Schematic temperature dependence of � for undoped gra-
phene is sketched on Fig. 2.

The fist loop correction in Eq. (23) yields the WL [17]:
 

��WL �
e2

2�2
@

X3

j�0

dj

�
ln
�

1

�i!j�tr

�
� Y

�
1

�i!j�B

��
;

!0 � !� i0; !1 � !�
i
�?

;

!2;3 � !�
i

2�k
�

i
2�?

;

(24)

where �d0 � d1;2;3 � 1, ��1
k;? � 2�	"gk;?, ��1

B �

4D�"�eB=�@c�, Y�x� �  �1=x� 1=2� � lnx, and  �x� is
the digamma function. Inelastic processes are accounted
for by �i!! �i!� ��1

� , where �� is the dephasing
time. Equation (24) agrees with Ref. [12]. The new infor-
mation here is the logarithmic dependence of the parame-
ters on the electron energy; see Eqs. (18)–(20).

In conclusion, we have presented a complete description
of a disordered graphene and demonstrated that there are

two different types of logarithmic contributions into physi-
cal quantities; see Eqs. (21) and (24).
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FIG. 2. Schematic dependence, ��T�, for the undoped gra-
phene and for ��1

� / T. Observation of weak localization (or-
thogonal case) is reported in the note added of Ref. [18].
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