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Theoretical study of quadratic electro-optic effect in semiconducting zigzag carbon nanotubes

Abbas Zarifi,* Christian Fisker, and Thomas Garm Pedersen
Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg East, Denmark
(Received 14 March 2007; published 6 July 2007)

Using the perturbation treatment developed by Aspnes and Rowe [Phys. Rev. B 5, 4022 (1972)], an analytic
expression for the third-order nonlinear optical susceptibility x*(w:;0,0,®) is computed and analyzed for
single walled zigzag carbon nanotubes. By improving their method, our calculations based on a tight-binding
model take into account the transitions between all pairs of valence and conduction bands and thereby the
contributions to the third-order susceptibility associated with different energy bands are investigated. With
increasing radius of the nanotube, a nonmonotonous increase of the quadratic electro-optic effect has been
demonstrated except for the fundamental peak. The nonuniformity is a result of the overlap between two
energy bands as well as the reduced effective masses associated with each pair of conduction and valence
bands. A nonperturbative numerical calculation is applied to obtain the high-field response as well as to assess

the applicability of the low-field perturbation expression.
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I. INTRODUCTION

The physical properties of carbon nanotubes (CNs), as
quasi-one-dimensional systems, have been intensively stud-
ied theoretically and experimentally.'~® Of considerable in-
terest are the nonlinear optical (NLO) properties of semicon-
ductor CNs not only because the nonlinear spectrum gives
information on their electronic structure but also in view of
the possible device applications. Along with third-harmonic
generation, electro-optic (EO) or dc Kerr effect studies have
been used to investigate the origins of the optical nonlineari-
ties in CNs as well as CN-based composite materials. Several
experimental results on the NLO properties of CNs have
been reported so far’!# and some papers have studied theo-
retically the third-order nonlinear optical susceptibility and
EO effect in semiconducting CNs.'>19 All previous theoret-
ical approaches to NLO properties in CNs are based on nu-
merical calculations and rely on the two-band approxima-
tion. In this paper, we derive an analytic expression for the
third-order nonlinear optical susceptibility of semiconducting
zigzag CNs in the presence of a uniform electric field di-
rected along the nanotube axis. Our calculations are based on
a tight-binding model and include all energy bands of the
semiconducting zigzag CNs. Therefore, it is possible to study
closely the contribution to the quadratic electro-optic (QEO)
effect from different energy bands. The obtained results gen-
erally agree with those previously reported for the funda-
mental resonance peak. However, for higher resonance
peaks, a more complicated behavior follows from our cal-
culations. We do not see a monotonous increase of
)((3)(w;0,0, w) for higher resonances.

The outline of the paper is as follows. In Sec. II, we
derive an analytic expression for the QEO function of semi-
conducting zigzag CNs. In Sec. III, the physical reason for a
nonuniform behavior of X(3)(w;0,0, w) for higher resonances
is discussed. Furthermore, the apparent displacement of fun-
damental resonance peak between two groups of semicon-
ducting CNs reported in some papers is analyzed and shown
to be simply a question of taking an approximate rather than
exact value of the band gap for semiconducting zigzag CNs.
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In order to obtain the high-field response and to assess the
applicability of the perturbation approach, we study numeri-
cally the response of a long but finite length CN placed in a
uniform electric field in Sec. IV before summarizing our con-
clusions in Sec. V.

II. THEORY AND ANALYTICAL DERIVATIONS

Single walled CNs, constructed by rolling up a graphite
sheet into a cylinder, are characterized by two integers
(n,m). For a more detailed classification of zigzag CNs (m
=0) as a subclass of CNs, we introduce two integer param-
eters p and g which are connected with n by means of the
relation n=3p+q. The zigzag tubes with g=0 are known as
narrow gap semiconductors (metallic) whereas the tubes with
g=1,2 and arbitrary p are moderate-gap semiconductors
(MSs). Among these, the MS with index g=1 are defined as
MSI1 and those with index g=2 are defined as MS2. In our
previous work?® (hereafter referred to as I) using an orthogo-
nal mr-orbital tight-binding model, we obtained the electronic
structure, electric dipole matrix elements, and subsequently
linear susceptibility of zigzag CNs. In the present work, we
obtain an analytic expression for the QEO effect in zigzag
CNs. We utilize the perturbation expression obtained by As-
pnes and Rowe?! in their derivation of the third-order non-
linear optical susceptibility caused by a uniform electric field
using time-dependent perturbation theory. The same method
has been applied in Ref. 22 to find the QEO effect in the
conjugated polymer poly(para-phenylene). The zz compo-
nent of the EO function in the vicinity of each band gap is
given by?!

1 2P P[h20%x,.(w)]
34207 8m” anQ)?®

where ¢ >0 is the elementary charge, m" the reduced effec-
tive mass, F the dc field directed along the nanotube axis, Z,
and where AQ=fw+iAl includes the photon energy and the
phenomenological broadening parameter I". As in I, we have
introduced the dimensionless “susceptibility” x,.(w) ob-

X(@:0,0,0) = (1)
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tained by normalizing the polarizability (per unit length) by
the cross-sectional area A=mR2, where R=na/2 is the ra-
dius of a zigzag CN and « is the lattice constant of graphene.
We notice that Eq. (1) only includes transitions between
single pairs of bands while the linear susceptibility x..(w) in
our calculations includes contributions from many pairs of
bands. Consequently, to include all pairs of conduction (c)
and valence (v) bands, the reduced effective mass m”™ asso-
ciated with each pair is applied separately.

It follows from Eq. (1) that to compute X( (30,0, ),
the third derivative of x..(w) with respect to Q should be
taken. However, the third derivative of the final result for the
linear susceptibility obtained in I gives a rather complicated
form of the QEO function. Therefore, we first derive a more
useful albeit approximate form for the linear susceptibility.
We start with Eq. (15) in I written in the following form:

1
(w) — Z
X 6J /2

where y,=~2.89 eV is the nearest-neighbor overlap integral
and the integral bounds as normalized band-gap parameters

are given by pg=2\/3+2 cos(Quar/n)—4 cos(um/n) and
po=23+2 cos(2um/n)+4 cos(um/n), defined by Eq. (13)
in I, where u=1,2,...,n. A factor of 1/6 was missing in
Eq. (15) in I due to a typographical error. In evaluating the
linear susceptibility on the basis of Eq. (2), we apply the
following approximate method. First, we note the fact that

{po > py 1= p=(n-1)2

. for odd n,
po<p, if(n+1)2<sp<n
3)
po>p, iflsps<(n-2)2
po<p, if (n+2)2<p<n forevenn.

po=p, if u=n/2

H : [24_ 2

ence, in the case py<p,, the factor Vp,/4-p- in Eq. (2)
can be approximated by p,/2 since p is much smaller than p,
in the dominant part of the integration. After introducing this
approximation, Eq. (2) finally yields the following analytic
result for the long-axis linear susceptibility of zigzag CNs.
For odd n,

Xeo(w) = E X (w)+xz")(w)/2] (4)

de“a [
\37780A70 p=(nt1)/2

and for even n,

E X“(w)

() = de‘a [
Xzz\@
S BaeAy, | ustmon

+ X ()2 + X2 (w)] (5)

Here,
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373\p2g—p3( )

) +p2—16)?
X’Z( ) 32p§pgﬁ292 g Po )
)
iy arctan(u)
+ , #* n/2 6
24pgﬁ3(23 12 mFn (6)
and
(n2)( Ny = 777(2) 7
o4 (w) 3(4,}/(2)_ﬁ292)’ ( )
where

y= 3)/20(p§ +pi—16)/2 - H2Q2,
x =120 - pis,

u=ihQx™"*\1 = (py/p,)*. (8)

Above, g, is the vacuum permittivity. In Eq. (6), a small
frequency-independent term has been ignored since it makes
a vanishing contribution to the QEO function. The simplified
expression obtained for the linear susceptibility of semicon-
ducting zigzag CNs is in excellent agreement with the full
expression, Eq. (16), obtained in L. Introducing the results of
Egs. (4)—(7) into Eq. (1), one obtains the QEO function. It is
noticed that upon multiplication by #2Q)?, the first term of
Eq. (6) becomes independent of 7{) and thus its derivative is
zero. In addition, we find an infinite effective mass for the
flat energy bands associated with pw=n/2 and consequently a
vanishing nonlinear susceptibility. Therefore, the only non-
zero contribution to Eq. (1) comes from the second term of
Eq. (6).

For the calculation of x®(w;0,0,w), we need the re-
duced effective mass related to each pair of ¢ and v bands.
According to the tight-binding model, the band gaps
and the reduced effective masses for a (n 0) CN are
given by E,=2v|1+2 cos 77,u/n)| and m =h2/(3yya®)
where u= 1,2, ...,n. The
values of u for the fundamental band gap (A,) of each CN
are given by w=(2n+1)/3 and (2n—1)/3 for MS1 and MS2,
respectively.?? After using the only nonzero term of Eq. (6)
as well as the obtained reduced effective mass and assuming
that the slowly varying factors are constant during differen-
tiation, one obtains the following result

.4 D n—1
ie"aF
X (@:0.0,0) = —=—| 2 G¥W(w)+G"(w)2
l2\'380}’l ,u,:n/

)

where n'=(n+2)/2 and (n+1)/2 for semiconducting zigzag
CNs with even and odd n, respectively, and the function
G'™(w) is given by
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FIG. 1. Frequency dependence of y'¥(w;0,0,w) for four different CNs. In panels (a) and (c), the two lowest resonances are shown and
the higher resonances are illustrated in panels (b) and (d) using a different scale.

_ yzx_m(hﬂ)_ﬁ
pel2 + 1/cos(mu/n)|
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u

+9x2(h )2 = 24x(hQ)* + 13(hQ)°] - [6x3

1 +u?
+ 3227 Q)% + 24x(hQ)* - 33(m)6]}. (10)

Together with Eq. (9), this relatively simple equation allows
us to compute analytically the QEO function for all semicon-
ducting zigzag CNs while still including transitions between
all pairs of valence and conduction bands. Importantly, as
shown in Eq. (10), the position and magnitude of resonances
associated with different transitions are accounted for by us-
ing separate band gaps and effective masses for each term.

III. RESULTS AND DISCUSSION

The imaginary (Im) and real (Re) parts of
X (@;0,0, ) for some semiconducting zigzag CNs are il-

lustrated in Fig. 1, where the broadening parameter Al
=0.15 eV. A monotonous increase of the third-order optical
nonlinearity as well as QEO effect with the increasing CN
radius has been reported in Refs. 15, 16, and 19 and some
papers have reported a monotonous increase within each
group of MS1 and MS2.'82% In fact, this is not the case for
all resonance peaks. For example, the graphs plotted in Fig. 1
demonstrate that the magnitude of the third resonance peak
around Aw=4A, of (14,0) is much larger than that of (20,0).
This difference can be understood from the band structure of
the two species. Thus, the large magnitude resonance peak of
the (14,0) nanotube can be attributed to a near degeneracy
between third and fourth bands (counted from the Fermi
level) at k=0 as well as a small effective mass of the fourth
energy band. The same is the case for the fourth resonance
peak of (13,0) illustrated in Fig. 1 for iw between 5 and 64,
which is much larger than that of (19,0) as a result of the
overlap between the fourth and fifth energy bands around k
=0 as well as the small effective mass of the fifth energy
band. Thereby, the difference between magnitudes of the first
resonance peaks for the two MS groups with nearly the same
radius is reasonable. By considering the values of w for the
highest v band and lowest ¢ band, it is found that the effec-
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tive mass of MS1 is smaller than that of MS2 and, besides,
the dipole matrix elements of MS1 are larger than those of
MS2, when they have nearly the same radius. Therefore, they
result in a very pronounced peak of ¥ (w;0,0,w) for MSI.
Again, we notice that this is not the case for all resonance
peaks. For example, as shown in Fig. 1, the magnitude of the
second peak of MS2 is larger than that of MS1, because of
the smaller effective mass and larger dipole matrix elements
associated with the second v band and ¢ band of MS2 in
comparison with that of MS1. All in all, except for the fun-
damental resonance, we do not see a monotonous increase of
QEO effect with increasing tube radius.

When plotted as a function of the normalized photon en-
ergy fiw/A,, the fundamental resonance is expected to be at
an identical position for all CNs. However, a displacement of
the X(3)(w;0,0,w) resonance peaks of MS1 with respect to
those of MS2 has been reported in Ref. 18. The authors
claimed that the shift resulted from the curvature effects and
-0 hybridization. The same displacement has been reported
in Ref. 24 in a theoretical study of the third-order nonlinear-
ity in CNs exposed to intensive electromagnetic fields based
on a perturbative and a nonperturbative model. We express
that this is not a characteristic feature of these two groups of
semiconducting CNs. The reason for the apparent displace-
ment is simply that an approximate rather than exact value of
the band gap has been applied. In both papers, the dispersion
energy as well as electric dipole matrix elements are ob-
tained based on a tight-binding model and then to normalize
the photon energy with the band gap, the authors of Refs. 18
and 24 have taken an approximate value of the band gap
given by 2y,m/3n. If the exact value of the band gap ob-
tained by the tight-binding model is used, as in the present
work and in Ref. 23, no shift will appear as is apparent from
Fig. 1. By taking the approximate value of the band gap, the
same shift of =0.03 appears in our plots, which do not con-
tain the curvature effects or -0 hybridization. In addition,
an incorrect factor of 4 has been included in the second term
of the transition matrix elements by Xu and Xiong,!”!3
which changes the transition matrix elements for zigzag CNs
appreciably. Therefore, using this form of transition matrix
elements, one cannot get a reliable result for QEO function.
Regarding the second and higher resonances, the peaks ap-
pear at different positions for different CNs even when plot-
ted versus the normalized photon energy fiw/A,.

To show the limiting behavior of the QEO effect with
increasing CN radius, Fig. 2 illustrates that the imaginary
and real parts of ¥*(:;0,0,w) of (38,0) and (50,0) CNs
belonging to MS2 display an equal peak magnitude. By con-
sidering CNs with even larger radii, we observed a decrease
in the magnitude of the QEO effect.

IV. NUMERICAL RESULTS

For comparison with the analytical result, a numerical
tight-binding calculation is made as well. A long nanotube is
modeled as a sequence of N unit cells and a constant electric
field F=F7 is applied in the direction of the nanotube axis.
The elements of the 4nNX4nN dimensional Hamiltonian
matrix are defined by
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FIG. 2. Frequency dependence of y*(w;0,0,w) for (38,0) and
(50,0) zigzag CNs. The rightmost part of the plots has been multi-
plied by a factor of 30.

- er,» lf i =j
H;=\"% if i and j are nearest neighbors (11)
0 otherwise.

The third-order nonlinear optical susceptibility in the weak-
field limit is approximated as

X(F,(i)) —X(O,(l)) )

Ax(@;0,0,0) = I

(12)
Using molecular electronic states ®(7), the field-dependent
susceptibility y(F ,w) is defined as

gV gg ng Efs(F) - 120 .

Here, V= V‘ENTrRza is the CN volume, E,(F) are field-
dependent eigenvalues of the Hamiltonian matrix

and (P, F)|z|<I> (=Sl )]zl gy = Siel etz
where ¢} c are expansmn coefficients of the molecular
elgenstates 1n the basis of atomic 7 orbitals ¢,(r) and the
upper summation limit corresponds to the number of atoms
in a zigzag CN. Studying a (7,0) CN limited in length to
180 unit cells, the weak-field limit in Eq. (12) is found to be
reasonably approximated for F=0.1 mV/A. We compare the
approximate analytical result with the full numerical calcu-
lation and find virtually indistinguishable results, as demon-
strated in Fig. 3. Although the Aspnes perturbation expres-
sion has been derived for transitions in the vicinity of the
band gap, it is surprisingly good even far from the band gap.

For strong fields, higher-order terms in the expansion of
Xx(F, ®) become important which give rise to oscillating tails

X(F,w) = (13)
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FIG. 3. Comparison of analytical ¥® and numerical Ay results
taking F=0.1 mV/A and #I'=0.1 eV for a (7,0) CN.
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FIG. 4. Numerically obtained Ay(F=5.5 mV/A) for a (7,0) CN
taking AI'=0.1 eV. The oscillations above the band gap demon-
strate that higher-order terms in the expansion of x(F,w) are sig-
nificant for such large fields.

of the peaks above the band gap. As an example, Fig. 4
shows a plot of Ay(F=5.5 mV/A). We find that for fields
larger than ~1 mV/A, oscillations above the band gap
emerge, which is a characteristic of the nonperturbative
Franz-Keldysh regime.?

In order to address the possibility of experimental verifi-
cation of the present results, a number of issues need to be
considered. First, experimental samples invariably contain a
mixture of CNs differing by diameter and chirality. The pre-
cise composition depends on the method of production. Sec-
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ond, the spectral width of all field-induced features is obvi-
ously very sensitive to the line broadening I". Hence, ideally
an experimental sample should be (1) dominated by rela-
tively few CN species and (2) characterized by small line
broadening. The latter is typically obtained in micelle-
wrapped CNs (Ref. 26) for which broadening as low as Al
~25-50 meV has been observed. In this type of samples,
the linear absorption of each CN species is clearly resolved
and, hence, we clearly believe that the electro-optic response
predicted in the present work should be observable as well.

V. CONCLUSIONS

Using a tight-binding model, the quadratic electro-optic
(QEO) effect in moderate-gap semiconducting (MS) zigzag
CNs has been calculated analytically including contributions
from the entire energy band structure. Although the promi-
nent resonance peak of QEO for MS1 is larger than that of
MS2 for nearly the same radius, this is not the case for the
second peak. Moreover, it is shown that the monotonous in-
crease of the QEO with CN radius within each group of MS
is not a general case for all resonance peaks. As a result of
the overlap between two energy bands around k=0 as well as
small reduced effective mass, a large magnitude peak for a
small radius CN can appear which is much larger than that of
a large radius CN. To assess the applicability of our analyti-
cal results obtained in a perturbative approach, a nonpertur-
bative numerical calculation has been performed for com-
parison. The comparison demonstrates a good agreement
between the two approaches for fields weaker than approxi-
mately F=0.1 mV/A.
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