
Electron density of states in terahertz driven two-dimensional electron gases

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 Semicond. Sci. Technol. 12 1559

(http://iopscience.iop.org/0268-1242/12/12/003)

Download details:

IP Address: 129.8.164.170

The article was downloaded on 10/11/2008 at 11:35

Please note that terms and conditions apply.

The Table of Contents and more related content is available

HOME | SEARCH | PACS & MSC | JOURNALS | ABOUT | CONTACT US

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/0268-1242/12/12
http://iopscience.iop.org/0268-1242/12/12/003/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/pacs
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact


Semicond. Sci. Technol. 12 (1997) 1559–1564. Printed in the UK PII: S0268-1242(97)85857-9

Electron density of states in terahertz
driven two-dimensional electron
gases

W Xu†

Department of Physics, University of Wollongong, NSW 2522, Australia

Received 4 July 1997, accepted for publication 2 October 1997

Abstract. In this paper, a detailed theoretical study of the density of states (DOS)
is presented for free electrons in terahertz (THz) driven two-dimensional electron
gases (2DEGs). Using the Green’s function approach and including the
electron-photon interaction exactly, we have derived the electronic DOS in a THz
driven 2DEG. The results obtained show that: (1) in the presence of intense THz
electromagnetic radiations, the maximum DOS in the system will be shifted to the
high-energy regime; (2) a stronger effect of the radiation on electron DOS and
Fermi energy can be observed at relatively low-frequency and/or high-intensity
radiations where the energy shift induced by the radiation field plays an important
role in determining the DOS and the Fermi energy; (3) the processes of the
multiphoton absorption and emission will lead to a small increase in DOS; and (4)
as a consequence of (1) and (2), an intense THz radiation will drive electrons in a
2DEG to occupy higher electronic subbands.

1. Introduction

With the development of novel means of investigation,
such as free-electron-lasers (FELs), it has become possible
to study the nonlinear transport and optical properties
of two-dimensional electron gases (2DEGs) driven by
intense terahertz (THz) electromagnetic (EM) fields. FELs
can provide the tunable source of linearly polarized THz
radiations with which one can study the dependence of the
physical properties in an electronic device on the frequency
and strength of the EM radiation. Recently, experimental
measurements have been carried out in investigating the
nonlinear response of a 2DEG to the THz EM fields [1,2].
Some interesting phenomena, such as resonant absorption
of the THz radiation [1], radiation enhanced electron
temperature [2], etc., were observed in different two-
dimensional semiconductor systems. These experimental
observations have impelled further theoretical study [3].
Moreover, the current availability of measurements at THz
EM fields has resulted in proposals for observing photon-
induced novel quantum resonance effects such as magneto-
photon-phonon resonances [4]. It can be foreseen that the
study of THz-driven 2DEGs will be of significant impact on
the investigation and characterization of condensed matter
materials, such as low-dimensional semiconductor systems
and nanostructures.

Like in other studies, in the study of THz-driven 2DEGs
the density of states (DOS) is one of the central quantities
to determine and to understand almost all physically
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measurable properties. Therefore, it is of value to examine
how an EM radiation affects such a fundamental quantity
like the DOS, and is the motivation of this study. In the
presence of electromagnetic radiation, the electron DOS
in 3DEG andideal 2DEG structures has been investigated
very recently [5] by using the approach of the gauge-
invariant spectral function. For the case of aquasi-2DEG,
the presence of the confining potentialU(z) along the
growth direction makes it difficult to derive the DOS using
the gauge-invariant spectral function. In this paper we
consider a simple theoretical treatment to calculate the
electron DOS in a THz-driven 2DEG. The derivation of
the electron DOS in the presence of the EM radiation field
is presented in section 2. The main theoretical results are
presented and discussed in section 3, and the conclusions
obtained from this study are summarized in section 4.

2. Model

In the absence of an EM radiation and scattering, the DOS
for a 2DEG at a fixed subbandn is characterized by a
step-function and given simply by

Dn(E) = D02(E − εn) (1)

whereD0 = gsm
∗/2πh̄2, gs = 2 is the factor for spin

degeneracy,m∗ is the effective electron mass,εn is the
energy for thenth electronic subband, and2(x) is the
unit-step-function. For a 2DEG subjected to an intense
THz EM field, the nature of the electron-photon interaction
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will result in a strong modulation of the electronic DOS
by the radiation. We start by studying this problem from
a time-dependent Schrödinger equation for noninteracting
electrons within a single-electron approximation, namely

ih̄
∂9

∂t
=
(
(P − eA)2

2m∗
+ U(z)

)
9 (2)

whereP = (px, py, pz) is the momentum operator with
px = −ih̄∂ /∂x, A is the vector potential induced by the
EM radiation, andU(z) is the confinement potential energy
for the 2DEG. For a THz-driven 2DEG, the EM radiation
is polarized along the 2D-plane of the 2DEG (taken along
the x-direction), and soA = (A, 0, 0). Furthermore, after
using the dipole approximation for the radiation field and
takingA = A0sin(ωt), with ω being the frequency of the
radiation, the solution of equation (2) is

9n,k(R, t) = 9n,k(R, 0)e−i[En(k)+2γ h̄ω]t/h̄

×eir0kx [1−cos(ωt)]eiγ sin(2ωt) (3a)

and
9n,k(R, 0) = eik·rψn(z) (3b)

which should be normalized. Here,R = (r, z) = (x, y, z),
k = (kx, ky) is the electron wavevector along the 2D-
plane, En(k) = h̄2k2/2m∗ + εn is the energy spectrum
of the 2DEG,r0 = eF0/m

∗ω2 with F0 being the strength
of the radiation electric field,γ = (eF0)

2/(8m∗h̄ω3), and
2γ h̄ω is the energy of the radiation field. We have used
the relationF = ∂A/∂t = F0cos(ωt) with F0 = ωA0.
Furthermore,ψn(z) and εn along the growth direction
are determined from the following time-independent one-
dimensional Schr̈odinger equation[

− h̄2

2m∗
∂2

∂z2
+ U(z)− εn

]
ψn(z) = 0. (4)

From the time-dependent electron wavefunction given
by equation (3), we can calculate the probability amplitude,
which describes a process that if one adds an electron in a
state|k′, n′ > at time t ′ to the system then the system will
be in a state|k, n > at time t , through∫

d3R 9∗n′,k′(R, t
′)9n,k(R, t) = δn′,nδk′,kR(n,k; t, t ′),

(5a)
and

R(n,k; t, t ′) = e−i[En(k)+2γ h̄ω](t−t ′)/h̄

e−ir0kx [cos(ωt)−cos(ωt ′)]eiγ [sin(2ωt)−sin(2ωt ′)] . (5b)

Here we have used a condition:
∫

d3Re−i(k′−k)·rψ∗n′(z)ψn(z)
= δn′,nδk′,k. Whence, by definition [6], the corresponding
retarded propagator or Green’s function in(n,k; t)−space
for noninteracting electrons is given by

G+(n′,k′; n,k; t > t ′) = δn′,nδk′,kG+(n,k; t > t ′), (6a)

where

G+(n,k; t > t ′) = − i

h̄
2(t − t ′)R(n,k; t, t ′). (6b)

Equation (6) is a two-time Green’s function, due to the
shift caused by the radiation field. Moreover, equation (6)
satisfies (notingd2(t − t ′)/dt = δ(t − t ′))[

ih̄
∂

∂t
− (h̄k − eA)

2

2m∗
− εn

]
G+(n,k; t > t ′) = δ(t − t ′)

(7a)
in the (n,k; t)−space and[

ih̄
∂

∂t
− (P − eA)

2

2m∗
− U(z)

]
G+(n,k; t > t ′)9n,k(R, 0)

= δ(t − t ′)9n,k(R, 0) (7b)

in the real space wheren andk are the quantum numbers.
It can be seen that when equation (4) can only be solved
in real space, which is in contrast to the case of 3DEG and
ideal 2DEG,G+(n,k; t > t ′) is the actual Green’s function
in the (n,k; t)−space.

The Fourier transform (or average over timet − t ′) of
the retarded Green’s function is given by, after generating
eixcosy andeixsiny into the Bessel functions [7],

G+n,k(E, t
′) =

∫ ∞
−∞

d(t − t ′) ei(E+iδ)(t−t ′)/h̄G+(n,k; t > t ′)

=
∞∑

m=−∞

Fm(kx, t ′)
E − En(k)− 2γ h̄ω −mh̄ω + iδ

,

(8a)
where an infinitesimal quantity iδ has been introduced to
make the integral converge. Here,

Fm(kx, t ′) = (−1)mFm(kx)
∞∑

n=−∞
inJm+n(r0kx)ei[nωt ′−γ sin(2ωt ′)] (8b)

where ReFm(−kx, t ′) = ReFm(kx, t ′), ImFm(−kx, t ′) =
−ImFm(kx, t ′), Jm(x) is a Bessel function, and

Fm(kx) =
∞∑
n=0

Jn(γ )

1+ δn,0 [J2n−m(r0kx)+(−1)m+nJ2n+m(r0kx)].

(8c)
For studying the steady-state properties, we can average
over the initial timet ′. After averagingt ′ over a periodicity
of the radiation field [5], the averaged Green’s function then
becomes

G∗n,k(E) =
ω

2π

∫ π/ω

−π/ω
dt ′ G+n,k(E, t

′)

=
∞∑

m=−∞

F 2
m(kx)

E − En(k)− 2γ h̄ω −mh̄ω + iδ
.

(9)

One can find that the energy sum rule for this Green’s
function is exhausted by the imaginary part alone, i.e.,∫∞
−∞ dE ReG∗n,k(E) = 0 and

∫∞
−∞ dE ImG∗n,k(E) = −π

(noting
∑∞

m=−∞ F
2
m(kx) = 1).

The DOS for electrons in thenth subband is determined
by the imaginary part of the Fourier transform of the
Green’s function

Dn(E) = −gs
π

∑
k

ImGn,k(E)

= D0

∑
m

2(E − εn − 2γ h̄ω −mh̄ω)

×Rm(E − εn − 2γ h̄ω −mh̄ω) (10a)
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where

Rm(x) = 2

π

∫ 1

0

dy√
1− y2

F 2
m

y√2m∗x
h̄2

 . (10b)

A direct and important application of the DOS is to
determine the Fermi energy in an electronic system. Using
the condition of electron number conservation, the Fermi
energyEF for a 2DEG subjected to an EM radiation can
be determined by, after assuming that the total electron
densityne in the 2DEG is not varied by the presence of the
radiation field, by

ne =
∑
n

∫
dE f (E)Dn(E), (11)

where f (E) = [e(E−EF )/kBT + 1]−1 is the Fermi–Dirac
function. In the low-temperature limit (i.e.,T → 0), we
havef (E)→ 2(EF − E) and, consequently,

ne = D0

∑
n,m

2(EF − εn − 2γ h̄ω −mh̄ω)

×(EF − εn − 2γ h̄ω −mh̄ω)
×Sm(EF − εn − 2γ h̄ω −mh̄ω) (12a)

where

Sm(x) = 4

π

∫ 1

0
dy

√
1− y2F 2

m

y√2m∗x
h̄2

 . (12b)

3. Results and discussions

When a 2DEG is subjected to an EM radiation field
polarized along the 2D-plane, like in the case of the 3DEGs,
the electron wavefunction is characterized by a Floquet state
[8] which is the analog to a Bloch state when replacing
a spatially periodic potential with a time periodic one.
As can be seen in equation (3a), the coupling of the
radiation field to the electronic system results in that: (i)
the energy of a 2DEG system becomesE = En(k)+2γ h̄ω
shifted by a positive energy arisen from the EM radiation:
2γ h̄ω = (eF0)

2/(4m∗ω2). This has been observed in,
e.g., dynamical Franz–Keldysh effect [5]; (ii) the time
evaluation of the electron wavefunction will no longer be
in the form of9 ∼ eiEt/h̄; and (iii) an anisotropic nature of
the wavefunction along the 2D-plane can be present. The
physical reason behind this is that the polarized radiation
field has broken the symmetry of the sample geometry. As
a consequence of (iii), the Green’s functions given above
are also anisotropic, i.e., depending onkx .

In equations (8)–(12),m = 1, 2, 3, . . . (−1,−2,−3, . . .)
corresponds to the absorption (emission) of 1, 2, 3, . . . pho-
tons with the frequencyω. This implies that the electrons in
a 2DEG system can interact with the radiation field, which
will be accompanied by the processes of photon emission
and absorption.

When F0 = 0 (i.e., r0 = γ = 0), due to the feature
Jm(0) = δm,0, the Green’s functions given above become
the well-known results obtained in the absence of the EM
radiation and the DOS given by equation (10) becomes that
given by equation (1).

The theoretical approach employed in the present study
is a generalization of those documented in reference [9].
We find that this approach is of great convenience in dealing
with quasi-low-dimensional electron gases. It should be
noted that the results shown in this paper are obtained from
using the Coulomb gauge [10] which allows us to choose
the vector potentialA and the scalar potentialφ for the
radiation field such that5·A = 0 andφ = 0. The Coulomb
gauge corresponds to a situation where the charge density
ρ = 0 and the current densityj = 0, which is true for the
case of free electrons in a 2DEG subjected to EM fields
polarized along the 2D-plane. It can be verified that the
Green’s function given by equation (6) and the DOS given
by equation (10) are gauge-invariant in the Coulomb gauge.

The numerical results of this paper pertain to GaAs-
based 2DEG structures. For GaAs, the effective electron
mass ism∗ = 0.0665me with me being the rest electron
mass. To calculateFm(x) given by equation (8c), we
have takenn = 0, 1, 2, . . . and 20. Furthermore, we have
included the contributions fromm = 0,±1,±2, . . . and
±10 to calculate the DOS and the Fermi energy.

The contribution from different optical processes to
electron DOS is shown in figure 1 at a fixed radiation
field. From equation (10a), we see that with increasing
electron energyE, a contribution from the process ofm-
photon absorption (−) or emission (+) to the DOS becomes
possible when the conditionE − εn − 2γ h̄ω ∓ mh̄ω ≥ 0
is satisfied. The opening up of the new channel for optical
absorption or emission leads to an increase in DOS. In
contrast to the case ofF0 = 0 (see figure 2) where the
DOS is given by equation (1), in the presence of the EM
radiation the electron DOS in a 2DEG can be present in
the energy regimeE − εn < 0 andDn(E) can be larger
than D0. This arises from the processes of the photon
emission. From figure 1, we note that: (i) the maximum
DOS appears whenE − εn is around 2γ h̄ω for the case of
m = 0 (because limx→0 Jm(x) = δm,0); (ii) in the energy
regimeE−εn ∼ 2γ h̄ω, the contribution to the DOS from a
process ofm+1-photon emission is smaller than that from a
m-photon emission process; and (iii) the contribution from
multiphoton absorption processes can only be observed in
high-energy regime.

The influence of the strength and frequency of the THz
radiation field on the DOS for electrons in a fixed subband
is shown in figures 2 and 3. With increasing radiation
intensity F0 and/or decreasing radiation frequencyω, the
maximum DOS shifts to the high-energy side due to the
increase inγ . For the case of very low-frequency radiations
(e.g., ω/2π = 0.7 THz in figure 3), the contributions
from multiphoton emission and absorption to the DOS
can become larger in comparison to the situation of high-
frequency radiations. Under the low-frequency radiations,
the electrons can interact with the radiation field via
multiphoton processes because of relatively small energy
transfer. The theoretical results obtained in this paper agree
with those observed in dynamical Franz–Keldysh effect in
an ideal 2DEG (see figure 4 in reference [5]). The results
presented in figures 1 – 3have given a more clear physical
picture regarding the effect of the EM radiation on the DOS
in a 2DEG and on the dynamical Franz-Keldysh effect.
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Figure 1. The contribution from different optical processes
to electron density of states at a fixed radiation field with
intensity F0 and frequency ω. m > 0 and m < 0
correspond, respectively, to the channels of m-photon
absorption and emission. When F0 = 5 kV/cm and
ω/2π = 1 THz, h̄ω ' 4.14 meV and 2γ h̄ω ' 4.19 meV.

Figure 2. Density of states for electrons in the nth subband
as a function of electron energy E at a fixed radiation
frequency ω for different strengths of the radiation field F0.
Here, εn is the electronic subband energy and
D0 = gs m∗/(2πh̄2

).

As can be seen from Figs. 1 - 3, the blue shift of the
absorption edge arisen from the dynamical Franz-Keldysh
effect is mainly caused by the energy of the radiation field
2γ h̄ω ∼ (F0/ω)

2 and the electron DOS presented in the
lower-energy regime is mainly induced by the processes of
the photon emission.

The results shown above indicate that the processes of
optical absorption and emission may result in an increase
in the DOS. However, due to the shift by the energy of the
radiation field and to the nature|Jm(x)| ≤ 1, the overall
DOS for electrons in the low-energy regime will be reduced

Figure 3. Density of states for electrons in the nth subband
as a function of electron energy E at a fixed radiation
intensity F0 for different radiation frequencies ω.
D0 = gs m∗/(2πh̄2

).

Figure 4. Fermi energy EF in a single quantum well as a
function of radiation intensity F0 for different radiation
frequencies. ne is the electron density of the 2DEG, L is
the width of the quantum well, and εn is the energy for the
nth electronic subband.

in comparison with that atF0 = 0 (see figure 2). The
DOS measures the maximum number of electrons which
can occupy an energy range. The EM field applied will
drive electrons out of the low-energy regime by a factor
of 2γ h̄ω, so that a reduced electron DOS in the lower-
energy regime can be achieved. Due to the limiting feature
limx→0 Jm(x) = δm,0, for a radiation with relatively high-
frequency (e.g.,ω/2π = 4 THz in figure 3) and/or low-
intensity (e.g.,F0 = 0 in figure 2), which leadsr0 → 0
and γ → 0, the effects of the EM radiation on the DOS
can be suppressed. Moreover, becauser0 ∼ F0/ω

2 and
γ ∼ F 2

0 /ω
3, the radiation frequency has a stronger effect

on the DOS.
The dependence of the Fermi energy in a 2DEG on the
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Figure 5. Fermi energy in a single quantum well as a
function of radiation frequency ω/2π for different radiation
intensities.

frequency and strength of the THz driving fields is shown in
figures 4 and 5. Here we consider an AlGaAs/GaAs single
quantum well structure in which the electronic subband
energy is given byεn = n2π2h̄2/(2m∗L2) where n =
1, 2, 3, . . . andL is the width of the quantum well. Because
the reduction of the DOS in the low-energy regime by the
radiation field, especially at the low-frequency and high-
intensity radiations, the electron occupation of the higher
subbands can be observed at a radiation with low-frequency
and/or high-intensity. From equation (12), we can find
that for a radiation field with very high-intensity and low-
frequency so that 2γ h̄ω � h̄ω and 2γ h̄ω � εn, the Fermi
energy is of the featureEF ∼ 2γ h̄ω ∼ (F0/ω)

2, which
can be seen in figures 4 and 5. Under the high-frequency
(e.g., ω/2π > 2 THz in figure 5) and/or low-intensity
(e.g.,F0 < 7 kV/cm in Fig. 4) EM radiations, the Fermi
energy in a 2DEG depends very weakly on the radiation.
A significant conclusion we draw from these results is that
by varying the strength and frequency of the THz EM
radiation, one can tune the electron population in different
subbands and, consequently, the photon-induced quantum
resonance effects, which are electrically analogous to the
Shubnikov–de Haas effect, may be observed.

Experimentally, the DOS at low-temperatures can be
obtained by measuring thermodynamic quantities such as
specific heat [11], capacitance [12], etc. These low-
temperature experiments measure the DOS at the Fermi
energy, i.e., D(EF ). For example, D(EF ) can be
determined by the data measured for specific heat via
Cv = π2k2

BTD(EF )/3. In figures 6 and 7 we plot the total
DOS,D(EF ) =

∑
n Dn(EF ), as a function of the frequency

and strength of the THz radiation, respectively. By varying
the radiation intensity and frequency, the Fermi energy
changes, which is similar to the change of the electron
energy shown in figures 1 – 3. Due to theopening up or
closing down of the channels for different optical processes
with varying the Fermi energy, the step changes inD(EF )

can be observed. From the fact that the multiphoton effects

Figure 6. Total density of states at the Fermi energy,
D(EF ) =

∑
n Dn(EF ), as a function of radiation intensity for

different radiation frequencies. The parameters are the
same as in figure 4.

Figure 7. Total density of states at the Fermi energy as a
function of radiation frequency for different radiation
intensities. The parameters are the same as in figure 5.

on the DOS are more pronounced for low-frequency and
high-intensity radiations, a stronger modulation of the DOS
at the Fermi level can be seen at a radiation field with
relatively high-intensity and low-frequency. Again, at high-
frequency and/or low-intensity EM fields,D(EF ) depends
very little onω andF0.

We note that in the experiments carried out by
references [1] and [2], the frequency and the strength of
the THz radiations are, respectively,ω/2π ∼THz and
F0 ∼kV/cm. These parameters of the EM field may
result in the strongest effect of the THz radiation on the
DOS in a 2DEG, as presented and discussed in this paper.
This may be one of the important reasons why some
interesting and distinctive phenomena can be observed in
their experiments.
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The physical reason behind a strong effect of the
EM radiation on electron DOS and on the Fermi energy
in a 2DEG system can be understood by the fact that
for a GaAs-based 2DEG driven by an EM field with
F0 ∼ kV cm−1 and ω ∼ THz, the conditions such as
r0[2m∗(EF − εn − 2γ h̄ω ∓ mh̄ω)/h̄2]1/2 ∼ 1 andγ ∼ 1
can be satisfied. As a consequence, (i) the radiation field
can couple strongly to the electronic system; (ii) the energy
of the system is shifted to the high-energy regime by the
energy of the radiation field 2γ h̄ω; and (iii) the electrons
in the system can interact with the radiation field via the
processes of photon emission and absorption. Hence, the
features distinctive for electron-photon interactions can be
exposed.

4. Conclusions

In summary, in the present study we have derived the
steady-state DOS for noninteracting electrons in a THz-
driven 2DEG using the Green’s function approach and
including the electron-photon interaction exactly. Using the
DOS obtained, we have studied the influence of the intense
THz radiation on the quantities such as Fermi energy and
the low-temperature DOS at the Fermi level. We found that:
(1) the DOS and the Fermi energy for a THz-driven 2DEG
will be strongly modulated by the frequency and strength
of the radiation field; (2) applying an EM driving field to a
2DEG will result in a decrease in the DOS in the low-energy
regime and, consequently, in an increase in the Fermi
energy, due to the nature of electron-photon interactions;
(3) a stronger effect of the radiation on the DOS and the
Fermi energy can be observed at relatively low-frequencies
and/or high-intensities where a large energy shift induced
by the radiation field is present and the processes of the
multiphoton emission and absorption are possible; (4) the
processes of optical absorption and emission, including
the multiphoton absorption and emission, have a relatively
weak effect on the Fermi energy in comparison with those
induced by the energy shift of the radiation field; and (5) by

varying the frequency and/or strength of the THz radiation,
the electron population in different subbands can be varied.
Furthermore, the DOS for noninteracting electrons in a
THz-driven 2DEG, obtained from this study, can be used
for further derivation of the DOS or Green’s function in
the presence of electronic scattering mechanisms such as
impurities and phonons.

The phenomena predicted and discussed in this paper
may be observed within the radiation intensity and
frequency regimes of recently developed free-electron
lasers such as the UCSB FELs [1, 2] and the FELIX [13].
We hope those presented in this paper could be verified
experimentally.
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