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MAXIMAL SUBALGEBRAS OF C(I).*

By KennetH HorrmaN and I. M. SIiNGER.

1. Introduction. In [2], Arens and Singer have presented a generali-
zation of part of the theory of analytic functions in the unit disc, established
by observing the role played in the classical theory by the group of integers
(and the non-negative portion thereof) and replacing this group by a locally
compact abelian group G possessing a suitably distingushed semigroup G..

We present here a study of the extension to this context of the following
result, established by Wermer [3].

TrEOREM 1.1. Let U be the Banach algebra of continuous functions on
the unit circle, | z | =1, which can be extended to the unit disc |z| =1 so as
to be analytic in the interior. The norm is the uniform norm on |z|=1.
Then % is a mazimal subalgebra of the Banach algebra C of all continuous
complez-valued functions on the unit circle,

Specifically, we shall show that if, in the Arens-Singer context, G is a
discrete abelian group with a semigroup @, satisfying the conditions

(1.21) G, UG, *=G; G, is a maximal semigroup in @,

the Wermer result is valid if and only if G is archimedean-linearly ordered
and @, is the set of elements not less than the identity. If the algebra of
“analytic” functions is not maximal, we describe completely a maximal sub-
algebra of C' which contains it. A by-product of this investigation is a very
brief proof of Theorem 1.1 (see Section 5).

2. Generalized analytic functions. We describe briefly in this section:
the results of [2] which are pertinent to the present study.

Let G be a discrete abelian group containing a semigroup @, such that
G.U G, *=G. Let 4; be the Banach algebra of summable functions on G
which vanish outside G., using the multiplication and the norm defined by

(F+0) @) = J_fe—pgwdy md 1f = J 7] da.

* Received October 26, 1956.
-1 The second named author was supported in part by a National Science Foundation
grant during the period of this research.
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296 KENNETH HOFFMAN AND I. M. SINGER.

Let A be the set of all multiplicative mappings of the semigroup @,
into the unit disc of the complex plane. There is a one-one correspondence
between the elements ¢ in A and the homomorphisms % of the Banach algebra

A4, onto the complex numbers, defined by & (f) =f f(z)¢(xz)da. Through
G+

this correspondence we give to A the standard topology of the space of
complex homomorphisms (regular maximal ideals) of 4,. This topology is
identical with the topology of pointwise convergence of elements of A as
functions on @,, and is compact Hausdorff.

Each character of the group G defines a multiplicative functional on G,,
and distinct characters of G define distinet functionals since G, U G, = G.
This embedding of characters in A is a homeomorphism of the character
group I' with a closed subset of A.

The canonical Gelfand representation of the Banach algebra A, makes
correspond to each f in A; a continuous function fT on A defined by

1) = f f(z)¢(z)de. The mapping of f into f7 is an isomorphism of 4,
Gy

with an algebra 4,7 of continuous functions on A.

In the classical situation, when G is the additive group of integers and
@, is the semigroup of non-negative integers, the space A is the unit disc of
the complex plane and T is the unit circle. The representing functions f7
are those functions continuous on A, analytic in the interior, with an
absolutely summable scquence of Taylor coefficients.

Fach ¢ in A has a “polar decomposition” ¢ = pa, where ¢ is in T and
p is a non-negative functional in A. The functional p is unique; however,
« is not generally unique (though it is if ¢ has no zeroes on G.).

The character group T is the Silov boundary of the space A of maximal
ideals of 4,. That is, T' is the unique minimal closed subset of A on which
all the representing functions f7 assume their maximum moduli. Thus, in
accordance with a general principle of Arens and Singer [1], there corre-
sponds to each point ¢ in A a regular Baire measure m, on the boundary T,
such that for any f in 4,,

(2.41) £7(0) =-.fr P (o) my (da).

The measure m, generalize (via 2.41) the familiar Poisson integral formula
of the classical situation.

A complex-valued function ¢ on A is called analytic on A if g can be
uniformly approximated on A by functions fT with f in 4,. A function is
called analytic in the interior of A, i.e., A—T, if it can be uniformly approxi-
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mated on compact subsets of A—T by functions f7, f in 4,. Thus, each {7
is analytic; and, in particular, each element z of the semigroup @, defines
an analytic function z7 on A by

(2.51) af({) ={(2).

We shall at times wish to think of 2T restricted to T, that is, consider the
character of T' which z defines. To avoid confusion, we shall therefore call
X» the character of T" which an « in G defines, so that

(2.52) Xo (@) =a(z) =<z, a>.

3. Subalgebras. 1f € is a (commutative) Banach algebra and 4 is a
subalgebra of C, we call 4 a mazimal subalgebra of C if As£C and if, for
any subalgebra B of C for which A C B C C, either A=25B or B=C.

If A is any subalgebra of a Banach algebra B (with unit), there is a
natural continuous mapping of the space &g, of complex homomorphisms of
B, into the space d4. This mapping is defined by simply restricting a homo-
morphism of B to the subalgebra 4. The mapping is in general not one-one.
We point out that if & is a homomorphism of B and ¢ is an element of 4,
we may speak of the vaule of the representing function ¢7 at the point &
as ¢T(h), without any confusion. For, the value of ¢T at h is the same
whether ¢ is viewed as an element of 4 or an element of B.

We are interested here in subalgebras of the Banach algebra C (I‘) of
all continuous complex-valued functions on a compact Hausdorff space T.
The norm is the uniform norm. If 4 isa subalgebra of C(T), there is a con-
tinuous mapping of T into the space d4. This mapping sends a point «
in T into the homomorphism-' &, defined by ko(f) =f(a), f€ A. The image
of T under this mapping is a closed subset of 44 which obviously includes Q,

“the Silov boundary of ..
If he is a complex homomorphism of 4, then [1; 7.1], there is a

regular Baire measure v, on Q such that &, (f) =-£z T (0)vo(do). Now v,

induces, via the mapping of T into &8, a measure w, on T such that

(3.11) ho(f) = f F(@no(da), fed.
We have used the fact that fT(hy) =7f(a).

3.2 TuroreMm. Let A be a subalgebra of C(T') such that the closed
linear space spanned by the functions in A and their complex conjugates is
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all of O(T). Let B be a subalgebra of C(T) containing A. If a complex
homomorphism h, of A is given by the measure p, on T (3.11), and if h,
extends to a homomorphism of B, then h, extends uniquely to the element h
of dp defined by

(3.21) v = [ F(@m(da), feB.

Consequently, B is homeomorphic to the closed subset of 34 of those homo-
morphisms hy (3.11) for which h (3.21) is a mulliplicative functional on B.

Proof. 1f h, extends to a multiplicative functional h on B, then h is
of the form & (f) =f f(a@)p(da), f€ B for some measure w on I'. Since
r

the functions in A, together with their conjugates, span C(T'), a positive
functional on C(T') is completely determined by its eftect on the functions
in A. Since p, as a functional on C'(T'), agrees with u, on 4, we must have
p == po, 1.€., b must be of the form (3.21).

Thus, the natural continuous mapping of Jp into S4 is one-one, and
because Bp is compact Hausdorff, the mapping is a homeomorphism of J5
with its image in & 4.

4. The maximality theorem. Returning to the setting of Section 2,
let 90 be the Banach algebra of continuous functions on the boundary T
which can be extended analytically to the interior of A. That is, o is the
completion under the uniform norm of the algebra of functions obtained by
restricting functions in 4,7 to the character group T.

4.1 TuroreM. For the continuous function f on T to belong to U,
it is necessary and sufficient that

4.11 f Kz, a>g(a)da=0
r
for each x in G which is not i G,.

Proof. The necessity is evident from the fact that the property is
possessed by functions in 4,7. Suppose f has the stated property. For each
€ > 0 there is a continuous function ¢ on TI' such that || f—f*¢ |, <e By
the Plancherel theorem, the Fourier transform of f#¢ is a function F in
L, (@), and the Fourier transform of F is f#¢. But since the Fourier
transform of f vanishes off G,, we see that F is in L,(G,) =A4,. Thus f
can be uniformly approximated on T' by functions FT with F in 4,. Conse-
quently, f is in 9.
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We now ask when 9 is a maximal subalgebra of C(T'). Clearly, it is
necessary that G, be a maximal semigroup in @, for any larger (proper)
semigroup would immediately yield an algebra properly between % and C(T),
e.g., the functions in C'(T') “analytic” with respect to this larger semigroup.
However, the maximality of @, is not sufficient for the maximality of %, as
we shall soon show.

First, let us make a few observations under the assumptions (1.21). Let

(4.21) Gh=GoU Gy

where @, is the subgroup of G consisting of the elements of &, having their
inverses in G,. We distinguish the functional p, in A defined by

(4:. 22) Po(x) = 1, $€ Go, p0=0, $€ Gl.

If we consider the quotient group

(4. 23) 9 ==G/Go,
it is easy to see that
(4.24) 4.=G./G

is a sub-semigroup of this group. The character group of & is (of course)
isomorphic and homeomorphic to the closed subgroup A of T' which consists
of the characters of G which are identically 1 on G,.

We shall now assemble some useful facts concerning %, &., po, ete.

4.3 LeMmMmaA. Under the condilions (1.81),

i) the semigroup %, defines an archimedean-linear order on the group &
ii) if @ is i Gy (4.21), the analytic function aT (2.51) has zeros on
A exactly at the points { = poa, @ tn T ,
iii) the measure po on T associated with p, by (2.41) s the Haar
measure of the subgroup A, i.e., po(Z)=pn(E NA) for a Borel
set I in T, where u is the Haar measure of the compact group A.

Proof. i) From the definition of G, we see that the semigroup &,
has only the identity element of & in common with %, Consequently,
% is totally (linearly) ordered by the semigroup %.. Since G, is a maximal
semigroup in G, &, is a maximal semigroup in . Let ¢ and » be elements
of %, both different from the identity of &. Then there must be a positive
integer n such that & >, i.e., such that & is in &,. For, if this is not
the case, the set of elements &6, § in &%,, is a semigroup properly larger
than &, (since &' has been adjoined) and is not all of &, since &7 > 4*
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for every 6 in &,. Hence, &, defines an archimedean-linear order on %, with
9. the set of elements not less than the identity. ii) If @ is in @,, then
a7 (po) = po(z)a(z) =0-a(x) =0. Conversely, suppose that z7(pa) —0.
Since G, is a group, p must be identically 1 on G, Hence, p defines a
multiplicative mapping p; of &, into the unit interval. If 5 is the coset of @
(modulo (), then p;(n) =p(2) =0. If ¢is any element of %, other than
the identity, there is a positive integer n such that &4 is in &,. Then

pr(&)"=pi(€") =pi (n)pr(n71€") =0.

Thus p; is the functional which is 1 at the identity of & and is 0 at all
other elements of &,. C(onsequently, p must be 1 on G, and 0 on the
remainder of (,, i.e., p=p,. 1iii) The measure u, has the Fourier-Stieltjes
transform

T () =f T, adpo(da) —1 it £€ Go, and =0 if v€ G— G
Jr
On the other hand, if p is Haar measure on A,
I (z,adp(da) =1 if v€ Gy, and =0 if z€ G— Go.
A .

Since a measure on I' is completely determined by its Fourier-Stieltjes
coefficients, we must have puo(f) =u(£ N A) for each Borel set F.

We now define our candidate for a maximal subalgebra of C(T') con-
taining . Let 9, be the subalgebra of C'(T') of those functions f for which

fp <y a>f (o) o (dor) =0, ¢ G,

In other words, A, is the collection of continuous functions on I' whose
restrictions to A have Fourier transforms that vanish outside the semi-
group %, (4.24). When ¥, is described in this way, one can see easily
that A, is an algebra, as we have asserted.

4.5 LemMma. U is a subalgebra of U.

Proof. Suppose f is in %. Then for any z in ¢ —G,,

@s) @Bl @) = f o (@m(da).
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The first condition of (1.21) tells us that #7* is in G,. Then, by (2.41) the
right integral of (4.51) is

(ﬁ'l)T(po)j; f (@) po(da) = po(@7") J;f(a)#o(d“) =0
Thus f belongs to .

4.6 TurorEm. The space By, of complex homomorphisms of U, is
the set of points ¢ in A for which either 1) {(x) =1 for all & in G, or
%) ¢ 1s in T.

Proof. Since % C %o, we know from (3.2) that By, is homeomorphic
to the closed subset of A containing the points { for which (see (R.41))

(4.61) b = J H@meaa)

defines a multiplicative functional & on %, Let C, denote the algebra of
continuous functions on T' which vanish on A. Its space of maximal ideals
is '—A. Furthermore, C, C %,. Suppose h (4.61) is multiplicative on
9N,, and let h, denote the restriction of A-to C,.

If ho==0, then the carrier of the measure m, lies in A. If z€ G, and
a € A, then (z,a> =1, so that

1= f, <@ eme(dn) =27 (0) = ().
Thus 1) holds.

If ho=%0, then there .exists a point y in I'— A such that for every f
in C,

j;f(a)mz(da) =1(f) =ho(f) =7 (v)-
Let N be any open set containing y such that N N A is empty. Let gy be

a non-negative continuous function on T' which is identically one on T'—N
and vanishes at y. Then 1— gy belongs to €, and

. @—gv(@)m(dan) =1—g5() —1.

Since m,;(T') =1, we have f gy(a)m;(da) =0. Therefore the measure
r

my is concentrated at the point y. Thus {=+y and 2) holds.
If 2) holds, & (4.61) is obviously multiplicative on %, If 1) holds,
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¢ defines a multiplicative functional on %, (4.24) and hence a homomor-
phism of 9,/C,, thus a homomorphism of 9.
Our maximality theorem is as follows.

4.7 TuroreM. The algebra %, is « mazimal subalgebra of C(T)
containing A. In order that A be mazimal, i.e. that A = W, it is necessary
and sufficient that G be archimedean-linearly ordered, with G, the semi-
group of elements not less than the identity.

Proof. To see that %[, is maximal. we assume that 9B is a subalgebra of
C(T) which contains %, We know from (4.6) that p, (4.22) defines a
homomorphism of %, (i) If the p, homomorphism extends to B, it does
so in the form

(4.71) b = J H@m(da).

Let f be in B. Then for any z in ¢ — G,

[ @nfm(dn = [ @ ai@hda) —pa) [ 1@pd).

But ' is an element of G, not in Go, S0 that po(2z*) =0. Consequently,
for z in G—G,,

fp @, asf (@) po(da) — 0.

Thus, f is in A,. Therefore B= A, (ii) If the p, homomorphism (4.71)
does not extend to B, we shall show that 8= C(T). Let = be an element
of G,—=@G,—G,. From part (ii) of (4.3) we know that the only zeros
of 7 on A are at the points {—po® « in T. On the other hand, (4.6)
tells us that the only such point in B¢, is p,. Consequently, viewing X
(R.52) as an element of B, we see that its representing function has no
zeros on dg (p, having been removed). Therefore X, =X, is in B.
Thus B contains all characters of T and must be all of C(T').

The condition that 9% — 9, is evidently that the subgroup A be all
of T'; for, if this is not the case, % must be properly included in %, because
9, contains all functions in C(T') which vanish on A. But, the condition
that A —T is simply the condition that G, reduces to the identity, i.e., that
G is isomorphic to the archimedean-linearly ordered group & (see 4.3,
part (i)).

An interesting example of the situation which this theorem describes
is obtained by letting G be the additive group of the Gaussian integers, that
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is, the direct sum of the group of integers with itself. The most natural
semigroup to consider is the pairs of integers (m,n) for which m =0, n = 0.
However, this semigroup does not satisfy G.U G,*=G. This can be
remedied by adding to the set the pairs (m,n) with m < 0 and n > 0. Now
we have a semigroup satisfying the first condition of (1.21). However,
this is not a maximal semigroup, so we extend it to the set G, of pairs (m,n)
for which # =0, m arbitrary. Then G, is a maximal semigroup. The
character group I' is then the torus; the subgroup G, of G is the set of pairs
(m,0) ; the subgroup A of T' is a unit circle on the torus, in fact, I =A X A.
The algebra 9 consists of the continuous functions f on the torus such
that, for every integer m, the function ¢, on the unit circle defined by

2:
gm(0) =f 7}(4/, 6)e?¥ dy has a Fourier transform vanishing on the negative
0

integers. The maximal subalgebra 9, is the collection of continuous func-
tions f for which the function g(6) =f(0,0) is an “analytic” function on
the unit circle.

5. The classical case. It would seem worthwhile at this point to see
how these methods apply to the classical situation, in order that the simplicity
of the argument in that case should not be lost in the complexities of the
more general situation. The argument which we present applies with vir-
tually no change to all cases where G is archimedean-linearly ordered <(sub-
group of the additive group of real numbers) and @, is the semigroup of
non-negative elements.

Proof of Theorem 1.1. Suppose that B is a subalgebra of C which
contains . The origin, z=0, defines a homomorphism % of 9 by

2T
(5.11) ‘ h(f) — ‘;‘j F () db.
T 0
(i) Suppose that the homomorphism (5.11) extends to 8. This homo-
morphism is represented by a measure u on |z|=1, and since any measure

on the unit circle is completely determined by the Fourier-Stieltjes coeffi-
2T
cients 2—1- f ey (df), n=0,1,2,- - -, the measure p must be (normalized)
T Jo

Lebesgue measure. Consequently, for any f in B and any positive integer n,

2T 2
:)if ein0f (¢i0)df — 77 (0) - L f"f(eiﬂ)do=o.
i o “T J o

Thus, the Fourier transform of f vanishes on the negative integers, i.e., f
belongs to 9. (ii) Tf the homomorphism (5.11) does not extend to B,
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the functions x,(f) =e®, n=1,2,- - - belong to no maximal ideal of B,
as the analytic functions #z* vanish only at 2=20. Consequently, each X, is
invertible in B. Therefore, B contains all characters X,, n=0, =1, =2, - -,
so that B=2C.

6. Concluding remarks. The method of this paper is a special case
of a general procedure for finding maximal subalgebras %, of C(X) which
separate the points of X. If 9 is a “separating” subalgebra of C'(X), then
its space of maximal ideals By contains X. Since the norm of a function
in % is its sup over X, X contains the Silov boundary T of 9. ILet A be a
closed subset of X and let s denote the closure of the restriction of functions
in U to the set A, so that Aa is a subalgebra of C(A). Let %, be the sub-
algebra of C'(X) consisting of all continuous functions on X whose restriction
to A lies in . U C Ay; and if Aas5C(A), then Wo54C(X). Thus A
cannot be a maximal subalgebra if Aas4C(A) and As£9%,. This is the
situation in the non-archimedean ordered case of Section 4, where we go
on to prove that 90, is maximal because s is maximal in C(A). Thus the
maximal subalgebras % of C'(X) are of two kinds. Of the first type are
those for which there exists a closed subset A such that . is maximal in
C(A) and A =9, [though it is not clear that all such algebras are maximal] ;
of the second type are those for which no such subset exists. For the first
type, the problem “reduces” to finding the maximal subalgebras of C'(A).

Note further that in order for ¥ to be maximal in C(X), the Silov
boundary I'=2X. For the map: f—f|r is norm preserving and therefore
gives an isomorphism of 9 with Ar. Tf Yr = C (1), then T'= By, = Sy D X,
so that T=X. If Ars4C((T), then A, =N (by maximality of A) so that
every function in 9, has a unique extension to .X. In particular, the zero
function on T has a unique extension to X, i.e., = X.

So in seeking maximal subalgebras we can assume the Silov boundary
is X. Suppose B¢ 5% X. Consider the class £ of subalgebras of C'(X) with
the same space of maximal ideals By Let 9, be an increasing family
(under inclusion) of algebras in 4. Let B be the closure of the algebra (| 9,.

One can easily check that B€ 4. Consequently, Zorn’s lemma applies and
we conclude that every € £ is contained in a maximal BE 4. Since
By=By#%X, B%4C(X). Therefore, in order for 9 to be maximal in
C(X), then ¥ must be maximal in 4.

Suppose, then, that 9 is maximal in 4 and oA ;:% C C(X). Then
dg~ B9 and by Theorem 3.2 (under the conditions of this theorem)
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B = By. The problem now is to show that there are suticiently many
functions {f,} in % whose zeros lie entirely in So— Sy (fo* € B), such
that 9, {f.} generate all of C(X), i.e.,, B=C(X). The proof of the main
theorem is the verification that % is maximal in 4 and enough such functions

fa exist.
It was pointed out to us by Wermer and de Leeuw that the sup norm

is not essential to these arguments.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY.
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