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Quantum Hall criticality, superconductor-insulator transition, and quantum percolation
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A model consisting of a mixture of superconducting and quantum links is proposed to describe the integer
guantum Hall transition. The quantum links correspond to tunneling of electrons between trajectories trapped
in adjacent potential valleys, while the superconducting links mimic the merging of these trajectories once the
Fermi energy exceeds the saddle point energy separating the two valleys. The quantum Hall transition in this
model corresponds to percolation of the superconducting links. Numerical calculations and scaling analysis
using two different approaches yield the critical exponest2.4 and a two-peak conductance distribution at
the critical point. The role of quantum coherence is discussed, allowing an interpretatien1o8, found in
some experiments, in terms of the percolation critical exponent. The model suggests that the critical behavior
of the superconductor-insulator transitigon the insulating sideis in the same universality class as the
gquantum Hall transition.
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The integer quantum HallQH) effect is one of the most analysis leads us to conjecture that, as viewed from the in-
studied manifestations of a second order quantum phasgilating side, the SIT belongs to the same universality class
transition! As such it is characterized by a length scdle as the QHT, thereby explaining why theoretical and experi-

which controls the decay of wave functiofand conduc-  mental estimates yield similar exponents for the two seem-
tance with system size and diverges at a critical point with Aingly distinct transitions.

universal poweKcritical exponent v. Most numerical inves- The model is based on the following picture. In strong

tigations in various models yield= 2.42 Experiments, how- aanetic fields. electrons with Fermi ener erform
ever, disagree on the critical behavior. While some indee gnetic M ’ Wi ! & p

yield an exponent close to the theoretical predicBiathers ~SMall oscillations around equipotential lines. When is
yield an exponenv=1.3, close to the classical percolation sr_nall, their trajectories are _trapped mgde potential vglleys,
critical exponenty,=4/3# This points toward the important With weak quantum tunneling occurring between adjacent
role of percolation in the QH transitiofQHT), as has been valleys. We associate each such potential valley with a site in
indeed experimentally demonstratedit the same time, a lattice. Nearest neighbor valleysapped orbits are con-
other experiments claim that there is no critical behavior ahected by links representing random tunneling between them
all.’ (see Fig. 1 As e increases and crosses the saddle-point
A similar lack of clarity prevails with the critical exponent energy separating two neighboring valleys, the two isolated

{jescr_itpingSItThe t;]/\_/or-]dimert;siqnéil S‘épe{ﬁong“‘:ting'ipsu'atofrajectories coalesce, the electron can freely move from one
ransition(SIT), which can be induced either by a continuous, .. 1 its neighbor, and the link connecting them becomes
change of film thickness or by a magnetic field. While some erfect or “superconducting(SC). Here the phrase super-
experiments(on the insulating sidereport an exponent P P 9 ) P P

v=1.3, (Ref. 7) others yieldv=2.8 (Ref. 8. On the super- conducting refers pyrely tq p'e.rfect transmission..The QHT
conducting side only the value=1.4 has been reportéd. OCCUrs when there is an “infinite” cluster of SC links con-
Similar to the QH case, some experiments present evidendtecting the two sides of the system. The critical behavior is
that there is no critical behavior at 8lThe relevance of the determined by quantum mechanical transport of an electron
percolation of superconducting islands to the SIT has beeffom one side of the system to the other, namely, tunneling
pointed out as welf and has been experimentally substanti-and interference. The main difference between the present
ated both in granuldt and in amorphous systensRecent model and previous models is the emergence of two length
scanning tunneling measuremédthave directly demon- scales, the localization length and the percolation coherence
strated the separation of these systems into superconductitength, both diverging at the critical point. The interplay of
areas and metallic or insulating ones. these scales with system size may lead to different apparent

In this work we develop a model to describe the QHTcritical behaviors. Additionally, unlike, e.g., the Chalker-
with direct relation to SIT and to quantum percolation. It Coddington(CC) model!* where the random phases are the
enables us to clarify the interplay of classical percolationonly source of randomness, here the randomness emerges
with quantum tunneling and interference in describing thefrom the energy distributiotsee below. This allows us to
critical behavior of the QHT. In addition to providing an study the effect of interference on the critical behavior.
estimate of the critical exponent and the fixed-point conduc- The saddle points, which are mapped onto links in the
tance distribution at the critical point, it explains the appeardattice, have random energies sampled from some distri-
ance(in some experimentsof the critical exponent associ- bution G(¢g). The transmission of electrons at energy
ated with classical percolation in the QHRef. 4. Further  through a link at energy, > € is given by

1098-0121/2005/7112)/1253114)/$23.00 125311-1 ©2005 The American Physical Society



DUBI, MEIR, AND AVISHAI PHYSICAL REVIEW B 71, 125311(2005

N L] L]
1 ¥
: i o (a) D D (b)
L : \ D D
™™™ {1 R
© FIG. 2. The scattering matrix approach: each link carries two

counterpropagating edge mod@s. A nonzero transmissiofbro-

ken lineg allows electrons to tunnel between adjacent Sipesen-

tial valleys. When the transmission is unifipold lines in(a)], these

two valleys merge, and an edge state can freely propagate from one
to another. A percolation of these perfect transmission litiks
correspond to an edge state propagating through the system without
backscattering.

T=1, otherwise the transmission probability through the link
is given by Eq.(1). The allowed phases of the matrix ele-
ments are chosen randomly from a uniform distribution be-
tween 0 and z. For perfect links(T=1), the electron fol-
lows these edge states from one valley to another. It is easily
seenFig. 2(b)] that when these percolate, we have two edge
FIG. 1. Mapping of the quantum Hall system onto a lattice States propagating through the system in opposite directions,
model. (a) Equipotential lines for five different Fermi energies. At without scattering between left-going and right-going chan-
low e electron trajectories are confined to potential valleys. Eacmels. Consequently, the percolation point corresponds to the
such valley is denoted by a point in the discrete madgHf). In QHT.
order to move from one such valley to another, the electron has to We evaluate the logarithm-averaged transmission

tunnel through a saddle point—dotted links (ip—(f). As e ex- T ) = _
ceeds the saddle-point energy these valleys are joined and the ele-E(.L) exp(log T)), through a system of the geometry de

tron can move perfectly from one valley to another—solid links in picted in Fig. 2, of linear size=10,15,...,50, averaged

(b)—(f). Figures(b)—(f) correspond to a system with values up to Ov.e.r 500(.) real_lzatlons, .for different values gf near the
the equipotential line marked by the appropriate lettefajn Note critical point. Figure 3 displays the raw data. (& we plot

that in (d) the solid links percolate, meaning that at this Fermi the dependence of the transmissionear(in terms of prob-
energy an electron can traverse the whole system on an equipoten-
tial line, corresponding to the quantum Hall transition.

probability L
03 035 04 10 20 30 40 50

T(er) = expi~ ale ~ )], (1) a6
T 04
describing tunneling through a parabolic barrier. Epr €, 02

on the other hand, the transmission through the link is perfeci
[i.e., T(er)=1] and the link is considered to be SC. Accord-
ingly, the concentration of SC links is then given by ¢

p(er) =S G(e)de. Percolation of the SC linkghat is, occur- T 01 !‘ 0.2 T
rence of the QHT is associated with diverging localization ) :

length or, equivalently, with a length-independent transmis- 0 e

sion. The critical threshold is model dependent, but the criti- 0 2 4 6 2 4 6 8 0
cal exponent is universal. Our attention is then focused on L/ L/

the critical behavior near this phase transition pétrfor the
sake of computational simplicity we deal henceforth with a FIG. 3. (Color onling Numerical results of the scattering matrix
square lattice. approach forw=12[See Eq(1)]. (a) The logarithm-averaged trans-
Two different approaches for implementing this quantummission coefficientT as a function ofer for system lengths
mechanical problem are presented. The first employs a scat=10 . 50.(b) T as a function ol for different concentrations,
tering matrix formalism. Each link in the lattice carries two p=0.41,0.4,..,0.3. Inset: the same data on a semi logarithmic plot
edge states from neighboring valleys, moving in oppositejemonstrating an ekpL/é(er)] dependence of the transmission.
_dlrectlon.[see Fig. 28)]. The Scatterlr_lg _matrlx for each link (c) The raw data curves for [Fig. 3(b)] are collapsed onto a single
is characterized by complex transmission and reflection ameyne by scaling each curve by an energy-dependent localization
plitudes associated with electron tunneling between adjacedngth, diverging at the critical energy with an exponent 2.34+0.10.
valleys. The tunneling probability is determined as follows: () Scaling of the data obtained by the tight-binding approach. For
for each link, a saddle-point energy is randomly chosen energiese=-0.050,-0.055.,.,-0.1 the data collapse yields the ex-
from a uniform distributionG(e;) on [—%;%]. If e¢>¢€,then  ponenty=2.43+0.1.
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FG.4.(0 The dependenceo e cicl pn on e paametoff 99 e (0] re e i o e st n e e
a in Eg. (1). Bold points are raw data and the solid line is the g g

analytic curve.(See texd. (b) The fixed distribution ofT at the binding Hamiltonian(2).

critical point, calculated using the scattering-matrix approach. . . Lo
of the lattice, and calculating the transmission through the

. . . . . system for an electron at the Fermi energy. This calculation
at.)'!'ty of .SC links for different sizes. The eX|stenc¢ O.f & involves two stagegsee Fig. 5. (a) identifying clusters of
critical point, where the curves cross and the transmission iSites connected by SC links as a single site, @naalculat-

independent of Iength, i.s evident. () we ShOW the depen- ing T by solving the tight-binding equations in the reduced
dence of the transmission on length for different concentra—spacen

tions. The inset depicts the log of the transmission as a func- Data are generated for lattice lendt6,10...,34, and

tion of length. The straight lines demonstrate that indeed,, o aqed over 1500 realizations. Following the same scaling
T(L)=exd-L/&(er)]. All these curves coalesd€ig. 3¢)],  procedure as described above, the curves collapse onto a
after scaling the system length by the energy-dependent IGsingle curve, a procedure that yields the critical exponent
calization lengthé(er). &(ep) is found to diverge at the criti-  ,=2.43+0.1[Fig. 3(d)]. We also calculate the conductance
cal point with an exponent 2.34+0.1, in agreement with predistribution at the critical point and find that it shows a two-
vious numerical approaches. The exponeiig found to be peak structure, similar to that of ti®matrix approach. Both
independent of the value af in Eq. (1). The critical prob-  the critical exponent and the critical poiqt,=1/2 areinde-
ability, i.e., the probability(or Fermi energy at which the  pendent of the parameter; for a broad range of valués.
transmission is length independent, on the other hand, does We also checked the dependence of the critical exponent
depend onw. This dependence can be understood as followsy for different functional forms of the tunneling probability
The transmission through the system at the critical pdigt, T(e) in addition to that described by E¢fL). The functional

is independent of length and of the valuecofnd is given by form suggested by Fertig and Halpetth, T=2/{1+exp

an average over the fixed point distributi¢fig. 4b)].  X[-m(e-ep)]}, yields very similar results, with a value
The critical Fermi energy for a givem, €(a), is determined ;=2 49+0.1. A similar value is obtained when the link trans-
by the value ofe at which the transmission becomes mission coefficients are taken from a uniform distribution.
equal toTo. One then findse(a)=l0g(To)/@ [Eq. (1)], or  Thus, the physics does not depend on the exact functional
pc(a)=%+log(T0)/a. This function agrees excellently with form of T(e) or on its distribution. The change in the critical
our numerical datdsee Fig. 4a)], with a fitting parameter exponent from its classical value can be traced to the fact
To=0.4, in rough agreement with the valdg=0.32, ob- that aseq, or p(e) are varied, the transmission amplitude
tained by logarithm averaging the fixed distribution at thethrough the quantum insulator is modified as the bottle-neck
critical point. Figure 4b) displays the distribution of trans- link changes. We also note that repeating the same calcula-
missions at the critical point. The double peak structuretions without random phases does not yield any reasonable
agrees with previous numerical calculations for the integegcaling of the data. Thus interference effects are crucial in

QHT® obtaining the correct critical behavior.
To complement the above study, we develop a second If one tries to employ the scaling analysis described
approach, employing a tight-binding Hamiltonian above, including energies that are not too close to the critical
: T one, the collapse of the data becomes worse and in fact can
H =2 vclej+H.e. (2 be better fitted with the classical exponemtd/3[Figs. Ga)

ap and Gb)]. This is consistent with the above picture as the
Determination of the parametets; follows the procedure difference between the classical and the quantum exponents
described above for determining the scattering matrix paramarise due to the additional dependence of the tunneling am-
eters. We associate a random saddle-point enefgwith plitude one—e., a dependence that becomes less relevant
each link joining lattice sites andj. Whene; > €¢ the hop-  away from the critical point. In other words, the system size
ping matrix elemenv;; for that link is chosen such that it becomes smaller than the localization length, but is still
will give the transmission coefficien{l). When; <ee the  larger than the percolation coherence length, and the critical
link is considered perfect, or SC. When two sites are joinedehavior of the latter dominates. This observation may also
by such an SC link, they are merged into a single site. Thigxplain why some experiments report a classical percolation
guarantees that only when the SC links percolate, the corexponent for the QHTREf. 4.
ductance of the system will not decay with length, so that So far the term “SC links” was used to describe
will be independent of. The conductance is now calculated perfect links in the QH regime. The model, however,
numerically, by attaching a single-channel wire to both sidesuggests a further correspondence between the QH critical
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herence length and the localization length, has been demon-

N \ §~(i'3c—£)_7/3 \\ 13“‘(&—8)_4/3 strated experimentalff. Moreover, the SIT is not symmetric
T 03 x“& - around the critical point, which is similar to the model de-
\\\\x\ \ scribed here. In addition, this relation between these two ap-
0.1} () \;;.h ® e parently different transitions also explains the fact that the
0 5 10 15 20 25 10 20 30 40 50 critical resistance observed at the SIT seems to be distributed

L/E L/E

around values somewhat larger tharde?, expected from
duality?* This relation can be further investigated experi-
mentally by studying the full resistance distribution at the Sl
threshold, as do such experiments for the GAHWVe predict

a two-peak structure, as for the QH transition. The similarity
behavior and the critical behavior of the SC-insulatorof the QHT and the SIT has already been pointed out in Ref.
transition on the insulating side. In the latter case the con23, which emphasized the noncritical behavior and the role
ductance is dominated by the nonsuperconducting regiongf decoherence. In fact, the model introduced in this work
Superconductivity-related effects, such as Josephson coutlows the introduction of dephasing in a straightforward
pling between different islands and the proximity effect, de-way, by attaching current-conserving, phase-breaking reser-
fine the extent and the geometry of the SC regions, and,oirs to some fraction of the link¥. The interplay between

consequently, that of the non-SC ones. Classical percolatiofephasing and classical-quantum crossover will be explored
has already been invoked in this context to explain the oby, 5 fyture papet®

served critical exponent=1.3 Here we claim that the

guantum coherent processes may explain the experimental We acknowledge fruitful discussions with A. Aharony
observations of’=2.8. The relation between the critical be- and O. Entin-Wohlman. This research has been funded by
havior and two competing length scales, namely the SC cathe ISF.

FIG. 6. (Color online (a) Same as in Fig. @), including a
larger range of energies=-0.01,-0.02,..,-0.2. These data can
be better fitted with an exponent4/3 (b).
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