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A model consisting of a mixture of superconducting and quantum links is proposed to describe the integer
quantum Hall transition. The quantum links correspond to tunneling of electrons between trajectories trapped
in adjacent potential valleys, while the superconducting links mimic the merging of these trajectories once the
Fermi energy exceeds the saddle point energy separating the two valleys. The quantum Hall transition in this
model corresponds to percolation of the superconducting links. Numerical calculations and scaling analysis
using two different approaches yield the critical exponentn<2.4 and a two-peak conductance distribution at
the critical point. The role of quantum coherence is discussed, allowing an interpretation ofn<1.3, found in
some experiments, in terms of the percolation critical exponent. The model suggests that the critical behavior
of the superconductor-insulator transitionson the insulating sided is in the same universality class as the
quantum Hall transition.

DOI: 10.1103/PhysRevB.71.125311 PACS numberssd: 73.43.Nq, 71.30.1h, 74.20.Mn

The integer quantum HallsQHd effect is one of the most
studied manifestations of a second order quantum phase
transition.1 As such it is characterized by a length scalej,
which controls the decay of wave functionssand conduc-
tanced with system size and diverges at a critical point with a
universal powerscritical exponentd n. Most numerical inves-
tigations in various models yieldn.2.4.2 Experiments, how-
ever, disagree on the critical behavior. While some indeed
yield an exponent close to the theoretical prediction,3 others
yield an exponentn.1.3, close to the classical percolation
critical exponent,np=4/3.4 This points toward the important
role of percolation in the QH transitionsQHTd, as has been
indeed experimentally demonstrated.5 At the same time,
other experiments claim that there is no critical behavior at
all.6

A similar lack of clarity prevails with the critical exponent
describing the two-dimensional superconducting-insulator
transitionsSITd, which can be induced either by a continuous
change of film thickness or by a magnetic field. While some
experimentsson the insulating sided report an exponent
n.1.3, sRef. 7d others yieldn.2.8 sRef. 8d. On the super-
conducting side only the valuen.1.4 has been reported.8

Similar to the QH case, some experiments present evidence
that there is no critical behavior at all.9 The relevance of the
percolation of superconducting islands to the SIT has been
pointed out as well10 and has been experimentally substanti-
ated both in granular11 and in amorphous systems.12 Recent
scanning tunneling measurements13 have directly demon-
strated the separation of these systems into superconducting
areas and metallic or insulating ones.

In this work we develop a model to describe the QHT
with direct relation to SIT and to quantum percolation. It
enables us to clarify the interplay of classical percolation
with quantum tunneling and interference in describing the
critical behavior of the QHT. In addition to providing an
estimate of the critical exponent and the fixed-point conduc-
tance distribution at the critical point, it explains the appear-
ancesin some experimentsd of the critical exponent associ-
ated with classical percolation in the QHTsRef. 4d. Further

analysis leads us to conjecture that, as viewed from the in-
sulating side, the SIT belongs to the same universality class
as the QHT, thereby explaining why theoretical and experi-
mental estimates yield similar exponents for the two seem-
ingly distinct transitions.

The model is based on the following picture. In strong
magnetic fields, electrons with Fermi energyeF perform
small oscillations around equipotential lines. WheneF is
small, their trajectories are trapped inside potential valleys,
with weak quantum tunneling occurring between adjacent
valleys. We associate each such potential valley with a site in
a lattice. Nearest neighbor valleysstrapped orbitsd are con-
nected by links representing random tunneling between them
ssee Fig. 1d. As eF increases and crosses the saddle-point
energy separating two neighboring valleys, the two isolated
trajectories coalesce, the electron can freely move from one
valley to its neighbor, and the link connecting them becomes
perfect or “superconducting”sSCd. Here the phrase super-
conducting refers purely to perfect transmission. The QHT
occurs when there is an “infinite” cluster of SC links con-
necting the two sides of the system. The critical behavior is
determined by quantum mechanical transport of an electron
from one side of the system to the other, namely, tunneling
and interference. The main difference between the present
model and previous models is the emergence of two length
scales, the localization length and the percolation coherence
length, both diverging at the critical point. The interplay of
these scales with system size may lead to different apparent
critical behaviors. Additionally, unlike, e.g., the Chalker-
CoddingtonsCCd model,14 where the random phases are the
only source of randomness, here the randomness emerges
from the energy distributionssee belowd. This allows us to
study the effect of interference on the critical behavior.

The saddle points, which are mapped onto links in the
lattice, have random energiesei, sampled from some distri-
bution Gseid. The transmission of electrons at energyeF

through a link at energyei .eF is given by
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TseFd = expf− asei − eFdg, s1d

describing tunneling through a parabolic barrier. ForeF.ei,
on the other hand, the transmission through the link is perfect
fi.e., TseFd=1g and the link is considered to be SC. Accord-
ingly, the concentration of SC links is then given by
pseFd=e−`

eF Gsedde. Percolation of the SC linkssthat is, occur-
rence of the QHTd is associated with diverging localization
length or, equivalently, with a length-independent transmis-
sion. The critical threshold is model dependent, but the criti-
cal exponent is universal. Our attention is then focused on
the critical behavior near this phase transition point.15 For the
sake of computational simplicity we deal henceforth with a
square lattice.

Two different approaches for implementing this quantum
mechanical problem are presented. The first employs a scat-
tering matrix formalism. Each link in the lattice carries two
edge states from neighboring valleys, moving in opposite
direction.fsee Fig. 2sadg. The scattering matrix for each link
is characterized by complex transmission and reflection am-
plitudes associated with electron tunneling between adjacent
valleys. The tunneling probability is determined as follows:
for each link, a saddle-point energyei is randomly chosen
from a uniform distributionGseid on f−1

2 ; 1
2
g. If eF.ei, then

T=1, otherwise the transmission probability through the link
is given by Eq.s1d. The allowed phases of the matrix ele-
ments are chosen randomly from a uniform distribution be-
tween 0 and 2p. For perfect linkssT=1d, the electron fol-
lows these edge states from one valley to another. It is easily
seenfFig. 2sbdg that when these percolate, we have two edge
states propagating through the system in opposite directions,
without scattering between left-going and right-going chan-
nels. Consequently, the percolation point corresponds to the
QHT.

We evaluate the logarithm-averaged transmission

T̄sLd;expsklog Tld, through a system of the geometry de-
picted in Fig. 2, of linear sizesL=10,15,… ,50, averaged
over 5000 realizations, for different values ofeF near the
critical point. Figure 3 displays the raw data. Insad we plot
the dependence of the transmission oneF sin terms of prob-

FIG. 1. Mapping of the quantum Hall system onto a lattice
model. sad Equipotential lines for five different Fermi energies. At
low eF electron trajectories are confined to potential valleys. Each
such valley is denoted by a point in the discrete modelsbd–sfd. In
order to move from one such valley to another, the electron has to
tunnel through a saddle point—dotted links insbd–sfd. As eF ex-
ceeds the saddle-point energy these valleys are joined and the elec-
tron can move perfectly from one valley to another—solid links in
sbd–sfd. Figuressbd–sfd correspond to a system witheF values up to
the equipotential line marked by the appropriate letter insad. Note
that in sdd the solid links percolate, meaning that at this Fermi
energy an electron can traverse the whole system on an equipoten-
tial line, corresponding to the quantum Hall transition.

FIG. 2. The scattering matrix approach: each link carries two
counterpropagating edge modessad. A nonzero transmissionsbro-
ken linesd allows electrons to tunnel between adjacent sitesspoten-
tial valleysd. When the transmission is unityfbold lines insadg, these
two valleys merge, and an edge state can freely propagate from one
to another. A percolation of these perfect transmission linkssbd
correspond to an edge state propagating through the system without
backscattering.

FIG. 3. sColor onlined Numerical results of the scattering matrix
approach fora=12 fSee Eq.s1dg. sad The logarithm-averaged trans-

mission coefficientT̄ as a function ofeF for system lengths

L=10,… ,50. sbd T̄ as a function ofL for different concentrations,
p=0.41,0.4,… ,0.3. Inset: the same data on a semi logarithmic plot
demonstrating an expf−L /jseFdg dependence of the transmission.

scd The raw data curves forT̄ fFig. 3sbdg are collapsed onto a single
curve by scaling each curve by an energy-dependent localization
length, diverging at the critical energy with an exponent 2.34±0.10.
sdd Scaling of the data obtained by the tight-binding approach. For
energiese=−0.050,−0.055,… ,−0.1 the data collapse yields the ex-
ponentn=2.43±0.1.
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ability of SC linksd for different sizes. The existence of a
critical point, where the curves cross and the transmission is
independent of length, is evident. Insbd we show the depen-
dence of the transmission on length for different concentra-
tions. The inset depicts the log of the transmission as a func-
tion of length. The straight lines demonstrate that indeed,

T̄sLd~expf−L /jseFdg. All these curves coalescefFig. 3scdg,
after scaling the system length by the energy-dependent lo-
calization lengthjseFd. jseFd is found to diverge at the criti-
cal point with an exponent 2.34±0.1, in agreement with pre-
vious numerical approaches. The exponentn is found to be
independent of the value ofa in Eq. s1d. The critical prob-
ability, i.e., the probabilitysor Fermi energyd at which the
transmission is length independent, on the other hand, does
depend ona. This dependence can be understood as follows:
The transmission through the system at the critical point,T0,
is independent of length and of the value ofa and is given by
an average over the fixed point distributionfFig. 4sbdg.
The critical Fermi energy for a givena ,ecsad, is determined
by the value of eF at which the transmission becomes
equal toT0. One then findsecsad=logsT0d /a fEq. s1dg, or
pcsad= 1

2 +logsT0d /a. This function agrees excellently with
our numerical datafsee Fig. 4sadg, with a fitting parameter
T0=0.4, in rough agreement with the valueT0=0.32, ob-
tained by logarithm averaging the fixed distribution at the
critical point. Figure 4sbd displays the distribution of trans-
missions at the critical point. The double peak structure
agrees with previous numerical calculations for the integer
QHT.16

To complement the above study, we develop a second
approach, employing a tight-binding Hamiltonian

H = o
ki,jl

vi j ci
†cj + H.c. s2d

Determination of the parametersvi j follows the procedure
described above for determining the scattering matrix param-
eters. We associate a random saddle-point energyei j with
each link joining lattice sitesi and j . Whenei j .eF the hop-
ping matrix elementvi j for that link is chosen such that it
will give the transmission coefficients1d. Whenei j ,eF the
link is considered perfect, or SC. When two sites are joined
by such an SC link, they are merged into a single site. This
guarantees that only when the SC links percolate, the con-
ductance of the system will not decay with length, so thatpc
will be independent ofa. The conductance is now calculated
numerically, by attaching a single-channel wire to both sides

of the lattice, and calculating the transmission through the
system for an electron at the Fermi energy. This calculation
involves two stagesssee Fig. 5d: sad identifying clusters of
sites connected by SC links as a single site, andsbd calculat-
ing T by solving the tight-binding equations in the reduced
space.17

Data are generated for lattice lengthL=6,10,… ,34, and
averaged over 1500 realizations. Following the same scaling
procedure as described above, the curves collapse onto a
single curve, a procedure that yields the critical exponent
n=2.43±0.1fFig. 3sddg. We also calculate the conductance
distribution at the critical point and find that it shows a two-
peak structure, similar to that of theS-matrix approach. Both
the critical exponent and the critical point,pc=1/2 areinde-
pendent of the parametera, for a broad range of values.18

We also checked the dependence of the critical exponent
n for different functional forms of the tunneling probability
Tsed in addition to that described by Eq.s1d. The functional
form suggested by Fertig and Halperin,19 T=2/h1+exp
3f−psei −eFdgj, yields very similar results, with a value
n=2.49±0.1. A similar value is obtained when the link trans-
mission coefficients are taken from a uniform distribution.
Thus, the physics does not depend on the exact functional
form of Tsed or on its distribution. The change in the critical
exponent from its classical value can be traced to the fact
that aseF, or pseFd are varied, the transmission amplitude
through the quantum insulator is modified as the bottle-neck
link changes. We also note that repeating the same calcula-
tions without random phases does not yield any reasonable
scaling of the data. Thus interference effects are crucial in
obtaining the correct critical behavior.

If one tries to employ the scaling analysis described
above, including energies that are not too close to the critical
one, the collapse of the data becomes worse and in fact can
be better fitted with the classical exponentn=4/3 fFigs. 6sad
and 6sbdg. This is consistent with the above picture as the
difference between the classical and the quantum exponents
arise due to the additional dependence of the tunneling am-
plitude on e−ec, a dependence that becomes less relevant
away from the critical point. In other words, the system size
becomes smaller than the localization length, but is still
larger than the percolation coherence length, and the critical
behavior of the latter dominates. This observation may also
explain why some experiments report a classical percolation
exponent for the QHTsRef. 4d.

So far the term “SC links” was used to describe
perfect links in the QH regime. The model, however,
suggests a further correspondence between the QH critical

FIG. 4. sad The dependence of the critical point on the parameter
a in Eq. s1d. Bold points are raw data and the solid line is the
analytic curve.sSee text.d sbd The fixed distribution ofT at the
critical point, calculated using the scattering-matrix approach.

FIG. 5. The tight-binding approach—sites connected by SC
links fwiggly lines in sadg are merged into a single site and then the
transmission of the modified latticesbd is calculated using the tight-
binding Hamiltonians2d.
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behavior and the critical behavior of the SC-insulator
transition on the insulating side. In the latter case the con-
ductance is dominated by the nonsuperconducting regions.
Superconductivity-related effects, such as Josephson cou-
pling between different islands and the proximity effect, de-
fine the extent and the geometry of the SC regions, and,
consequently, that of the non-SC ones. Classical percolation
has already been invoked in this context to explain the ob-
served critical exponentn.1.3.7 Here we claim that the
quantum coherent processes may explain the experimental
observations ofn.2.8. The relation between the critical be-
havior and two competing length scales, namely the SC co-

herence length and the localization length, has been demon-
strated experimentally.20 Moreover, the SIT is not symmetric
around the critical point, which is similar to the model de-
scribed here. In addition, this relation between these two ap-
parently different transitions also explains the fact that the
critical resistance observed at the SIT seems to be distributed
around values somewhat larger thanh/4e2, expected from
duality.21 This relation can be further investigated experi-
mentally by studying the full resistance distribution at the SI
threshold, as do such experiments for the QHT.22 We predict
a two-peak structure, as for the QH transition. The similarity
of the QHT and the SIT has already been pointed out in Ref.
23, which emphasized the noncritical behavior and the role
of decoherence. In fact, the model introduced in this work
allows the introduction of dephasing in a straightforward
way, by attaching current-conserving, phase-breaking reser-
voirs to some fraction of the links.24 The interplay between
dephasing and classical-quantum crossover will be explored
in a future paper.25
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