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Abstract

We use a variational procedure to study finite density QCD in an approximation in which the interaction between quarks
is modelled by that induced by instantons. We find that uniform states with conventional chiral symmetry breaking have
negative pressure with respect to empty space at all but the lowest densities, and are therefore unstable. This is a precisely
defined phenomenon which motivates the basic picture of hadrons assumed in the MIT bag model, with nucleons as droplets
of chiral symmetry restored phase. At all densities high enough that the chirally symmetric phase fills space, we find that

² :color symmetry is broken by the formation of a qq condensate of quark Cooper pairs. A plausible ordering scheme leads
to a substantial gap in a Lorentz scalar channel involving quarks of two colors, and a much smaller gap in an axial vector
channel involving quarks of the third color. q 1998 Elsevier Science B.V.

1. Introduction

The behavior of QCD at high density is of funda-
mental interest and has potential applications to cos-
mology, to the astrophysics of neutron stars, and to
heavy ion collisions. One can make a heuristic, but
we think extremely plausible, case that essentially
new forms of ordering will emerge in this regime.

Motivated by asymptotic freedom, let us suppose
as a starting point that at high density quarks behave

w xnearly freely and form large Fermi surfaces 1 . As
we turn on the interactions, we notice that most of
the important interquark scattering processes allowed
by the conservation laws and Fermi statistics involve
large momentum transfer and are therefore weak at
asymptotically high density. No matter how weak the

attraction, pairing of the BCS type can be expected if
w xthere is an attractive channel 2 . Pairs of quarks

² :cannot be color singlets, and so a qq condensate
inevitably breaks color symmetry. This breaking is
analogous to the breaking of electromagnetic gauge
invariance in superconductivity, and might be called
‘color superconductivity’. In this phase, the Higgs

Ž .mechanism operates and some gluons become mas-
sive. The proposed symmetry breaking in diquark
channels is of course quite different from chiral
symmetry breaking in QCD at zero density, which
occurs in color singlet quark-antiquark channels.

Our goal here is to explore such new forms of
ordering in a context that is definite, qualitatively
reasonable, and yet sufficiently tractable that likely
patterns of symmetry breaking and rough magnitudes
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of their effects can be identified concretely. In the
course of looking for new patterns we will need to
discuss the fate of the old one, and here a surprise
emerges: we find that the uniform phase with broken
chiral symmetry is unstable at any nonzero density.
At all but the lowest densities, this instability is
signalled by negative pressure, which presumably
triggers the break-up of the uniform state into re-
gions of high density separated by empty space.

2. Model

Several of the methods that are used to good
effect, either quantitatively or qualitatively, in ana-
lyzing nonperturbative QCD at zero density, do not
seem well adapted to finite density. Lattice gauge
theory simulations have given very limited results,
fundamentally because all known methods having
acceptable efficiency rely on importance sampling
by Monte Carlo techniques which require positivity
of the action configuration by configuration, and this

Ž .positivity fails at nonzero real chemical potential.
Extrapolation from supersymmetric models seems
hopeless, simply because the nuclear world would be

Ža very different place if one had bosonic quarks or
.even baryons . Large N methods are suspect, firstc

because one expects even-odd effects depending on
the baryon statistics and furthermore because we
shall see concrete effects that depend critically on
the precise value N s3.c

We already briefly alluded to the fact that asymp-
totic freedom suggests qualitatively new types of
order at very high density. This regime has been

w xstudied 3 by approximating the interquark interac-
tions by one gluon exchange, which is in fact attrac-
tive in the color antitriplet channel. Perturbative
treatments cannot, by their nature, do full justice to a
problem whose main physical interest arises at mod-
erate densities. To get more insight into the phenom-
ena, and in particular to make quantitative estimates,
it seems appropriate to analyze a tractable, physically
motivated model.

In this letter we present results obtained from a
variational treatment of a two-parameter class of
models having two flavors and three colors of mass-
less quarks. We leave details of the calculations to a
longer paper in preparation. The kinetic part of the

Hamiltonian is that for free quarks, while the interac-
tion Hamiltonian is a slight idealization of the instan-

w xton vertex 4 from QCD, explicitly:

3 g d k lH syK d x c c c c ´HI R1a Lk R2 b Ll

= 3d ad b yd ad b q h.c. , 2.1Ž .Ž .g d d g

where 1,2,k,l are flavor indices, a ,b ,g ,d are color
indices, repeated indices are summed, and the spinor
indices are not shown. The overall sign is chosen
negative for later convenience, so that K)0 results
in chiral symmetry breaking. H is not yet a goodI

representation of the instanton interaction in QCD: in
order to mimic the effects of asymptotic freedom, we
must modify it in such a way that the interaction
decreases with increasing momentum. We write HI

as a mode expansion in momentum space involving
creation and annihilation operators and spinors, and
multiply the result by a product of form factors each
of the form

n2L
F p s , 2.2Ž . Ž .2 2ž /p qL

one for each of the momenta of the four fermions.
This factorized form is taken for later convenience,
and is an idealization. L, of course, is some effective
QCD cutoff scale, which one might anticipate should
be in the range 300–1000 MeV. n parametrizes the
shape of the form factor; we consider ns1r2 and
ns1. Since the interaction we have chosen is not
necessarily an accurate rendering of QCD, 1 we will
have faith only in conclusions that are robust with
respect to the parameter choices.

The color, flavor, and Lorentz structure of our
interaction has been taken over directly from the
instanton vertex for two-flavor QCD. For our pur-
poses it is very important that this interaction prop-
erly reflect the chiral symmetry of QCD: axial baryon

Ž .number symmetry is broken, while chiral SU 2 =
Ž . Ž .SU 2 is respected. Color but not axial color is

realized as a global symmetry. There are other four-
fermion interactions in addition to H which respectI

the unbroken symmetries of QCD; using H alone isI

1 For example, one could use a four-fermion interaction based
w xon one gluon exchange 5
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the simplest way of breaking all symmetries broken
by QCD, and is therefore a good starting point. This
model of fermions interacting via a four-fermion
interaction is one in the long line of such models
inspired by the work of BCS as adapted to particle

w xphysics, starting with Vaks and Larkin 6 and Nambu
w xand Jona-Lasinio 7 and studied subsequently by

w xmany others 8 . There is also a tradition, going back
more than twenty years and flourishing now perhaps
as never before, to model the low-energy dynamics
of QCD, and specifically the dynamics of chiral
symmetry breaking, with instanton interactions

w xamong quarks derived semi-microscopically 9 . This
approach cannot explain the other main qualitative
aspect of low-energy QCD dynamics, that is strict
confinement of quarks, but it is adequate for many
purposes and is generating an impressive phe-
nomenology both of real and of numerical experi-
ments.

3. Chiral symmetry breaking and restoration

We will first consider symmetry breaking in the
familiar pattern known for QCD at zero density.
Working first at zero density, we choose a varia-
tional wave function of the form

< : Lc s cos u pŽ .Ž .ŽŁ
p , i ,a

qe ij LŽ p.sin u L p a† p b† ypŽ . Ž . Ž .Ž . .L i a R i a

= cos u R p qe ij RŽ p.Ž .Ž .Ž
= R † † < :sin u p a p b yp 0 ,Ž . Ž . Ž .Ž . .R i a L ia

3.1Ž .

with variational parameters u and j depending on
the modes. a† and b† create particles and antiparti-i a i a

cles respectively, with flavor i and color a . This
standard pairing form preserves the normalization of
the wave function. The pairing occurs between parti-
cles and antiparticles with the same flavor and color
but opposite helicity and opposite 3-momentum. It is
in a Lorentz scalar, isospin singlet component of the

Ž .chiral 2,2 representation, i.e. has the s-field quan-
tum numbers standard in this context. Following a

well-trodden path we find that the energy is mini-
mized when

F 2 p DŽ .
L Rtan 2u p s tan 2u p s ;Ž . Ž .Ž . Ž .

p

j L p qj R p sp . 3.2Ž . Ž . Ž .
The full specification of j R and j L depends on
spinor conventions. The gap parameter D is momen-
tum independent and is defined by

`
2p dp

D'16K F p sin u p cos u p .Ž . Ž . Ž .Ž . Ž .H 22p0

3.3Ž .
Ž . Ž .3.2 and 3.3 are consistent only if Ds0 or if D

satisfies the gap equation

`
2 4p dp F pŽ .

1s8 K , 3.4Ž .H 2 4 2 22p0 (F p D qpŽ .

Note that, unlike for standard pairing at a Fermi
surface, this equation does not have solutions for
arbitrarily weak coupling, but only for couplings
above a certain threshold value. Also note that al-
though it is common to refer to D as the gap
parameter, it is best thought of as inducing an effec-

2Ž .tive quark mass, which takes the form DF p . In
the interests of simplicity of presentation, we quote
all results in this paper for Ds400 MeV; we have
verified that the picture we present is qualitatively
unchanged for 300 MeV -D- 500 MeV. Fixing

Ž .D fixes the magnitude and sign of the coupling K
for each L and n .

We now generalize this calculation to nonzero
quark number density n. It is most favorable energet-
ically to fill the particle states up to some Fermi
momentum p , while leaving the corresponding an-F

< :tiparticle states empty. That is, we replace 0 on the
Ž . < :right hand side of 3.1 by p , in which all particleF

< <states with p -p are occupied. The quark numberF

density,

2
3ns p , 3.5Ž .F2p

is determined by p but as we shall see p is notF F

equal to the chemical potential m. The creation
Ž .operators in 3.1 for modes below the Fermi surface

< :annihilate p , and so for these modes effectivelyF
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Ž .u p s0. On the other hand for the unoccupied
< <states, with p )p , the variational scheme is un-F

modified. Note that the condensate does not affect n.
Thus we arrive at a very simple modification of the

Ž .gap equation: the lower limit of the integral in 3.4
is p , rather than 0. Since the interaction is everF

more effectively quenched as p increases, the gapF
Ž . Ž .parameter D p arising as the solution of 3.4 willF

shrink monotonically and eventually vanish as pF

increases. Let us define n to be the critical densityc

at which D vanishes.
Having obtained a definite wave function, we can

evaluate the energy density in terms of the gap
parameter. Relative to the energy of the naive vac-

< : Ž .uum state 0 , the energy density ´ n is given by

1 p4
F

´ n sŽ . 224 16p

`
2p dp p p

q 1yH 2 2 4 2ž /22pp (D F p qpŽ .F

D2

y , 3.6Ž .
32 K

Ž . Ž .where p n is to be obtained from 3.5 . The firstF

and second terms are the kinetic energies of the
modes respectively below and above the nominal
Fermi surface, while the third term is the interaction
energy. It is startling, perhaps, that in the first term
the bare energy occurs, with no effective mass, but
this is a direct reflection of the situation discussed in
the previous paragraph. For a proper interpretation,
however, it is important to note that adding a particle
at the Fermi surface modifies both the kinetic and
the interaction term, and that these conspire to give a

Ž .2gap or effective mass F p D for the physicalF

excitations there. The chemical potential m, the min-
imum energy required to add one more quark to the
state, is given by msE´rE n at fixed volume. We

2 2 2 4Ž .have verified that m sp qD F p . Note thatF F
Ž .´ 0 -0, reflecting the fact that the physical vacuum

state with its chiral condensate has a lower energy
< :than the state 0 . Measured relative to the physical

Ž .vacuum, the energy density at nonzero n is e n '
Ž . Ž .´ n y´ 0 .

Ž .The equation for D p can be solved numeri-F

cally, and the resulting energy evaluated. Great phys-
ical interest attaches to the pressure

E e E e
2P n sn yesn 3.7Ž . Ž .ž /E n E n n

of a region with density n, where the pressure of the
physical vacuum is by definition zero. For all values
of the parameters that we consider reasonable, we
find that after a tiny interval of very low densities at
which the pressure is positive, the pressure becomes
negatiÕe, and continues to decrease until the critical
density n at which chiral symmetry is restored. Atc

that point we switch over to an essentially free quark
phase, in which the energy density relative to the

4 Ž 2 . Ž .physical vacuum is 3 p r 2p y´ 0 , and the pres-F
4 Ž 2 . Ž .sure is given by p r 2p q´ 0 . At nsn , whereF c

these phases join, the pressure function is continu-
ous, with a finite negative value, but it has a cusp.
As density increases in the free-quark phase, the
pressure increases monotonically, and passes through
zero again at some density n )n . At nsn , the0 c 0

energy per quark ern is minimized and this phase is
stable at zero pressure. Representative results are
recorded in Table 1, and D and P are shown for one
set of parameters in Fig. 1.

ŽEvidently, at all but the lowest densities which
.we discuss below in the presence of a chiral con-

densate the negative pressure associated with in-
creasing vacuum energy overcompensates the in-
creasing Fermi pressure. This negative pressure sig-
nals mechanical instability of the uniform chiral
symmetry broken phase. There is an attractive physi-

Table 1
Comparison of the Fermi momenta corresponding to the density
n at which the chiral gap vanishes, the density n at which therec 0

Ž .is a stable zero pressure phase, and the energy density ´ 0 of the
vacuum phase, for six choices of parameters. In each case the
coupling is fixed by requiring Ds0.4 GeV at ns0. All numbers
are in GeV

Ž . Ž . Ž .n L p n p n ´ 0F c F 0

4Ž .1 0.6 0.212 0.268 y 0.127
4Ž .1 0.8 0.246 0.298 y 0.141
4Ž .1 1.0 0.274 0.321 y 0.152

4Ž .0.5 0.6 0.262 0.310 y 0.147
4Ž .0.5 0.8 0.298 0.340 y 0.161
4Ž .0.5 1.0 0.328 0.362 y 0.172
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Ž . Ž 4 . Ž 2 .1r3Fig. 1. Chiral gap in GeV and the pressure in GeV as a function of p s np r2 in GeV. The pressure is positive at Õery smallF

p ; it becomes negative at a p which is less than 0.001. At nsn , the gap vanishes and the pressure, which is still negative, has a cusp.F F c

At nsn )n , the pressure crosses zero and becomes positive.0 c

cal interpretation of this phenomenon. The uniform
nonzero density phase will break up into stable
droplets of high density nsn in which the pressure0

is zero and chiral symmetry is restored, surrounded
by empty space with nsPs0. There are prelimi-
nary indications of this behavior in numerical simu-

w xlations of a model similar to ours 11 . Although our
simple calculations do not allow us to follow the
evolution and eventual stabilization of the original
quark cloud, it is hard to avoid identifying the
droplets of chiral symmetric phase into which it
condenses with physical nucleons. Nothing within
the model tells us that the stable droplets have quark
number 3; nucleons are simply the only candidates in
nature which can be identified with droplets within
which the quark density is nonzero and the chiral
condensate is zero. If correct, this identification is
very reminiscent of the MIT bag philosophy, here
arising in the description of a sharply defined physi-
cal phenomenon. 2 It seems quite different, at least
superficially, from the Skyrme model, where the
chiral symmetry order parameter changes in direc-
tion but not in magnitude within the nucleon.

What, then, of the positive pressure phase at very
low density? Without external pressure, this dilute

Ž .gas of quarks with mass D 0 would expand and
dissipate. Even if some external pressure prevents

2 Considerations similar to those we describe also lead Buballa
w x10 to conclude that in a Nambu Jona-Lasinio model with an
interaction which differs from the one we use, matter with broken
chiral symmetry is unstable and nucleons can therefore only be
viewed as bags within which chiral symmetry is restored.

expansion, however, this phase is only metastable:
Ž .its energy per quark ern;D 0 is greater than that

in the stable phase at nsn , which satisfies0

e nŽ .0
sp n 3.8Ž . Ž .F 0n0

and can therefore be read off Table 1. When fluctua-
tions in this dilute gas increase the density in a
region enough that the pressure becomes negative,
this region can collapse to density n . In this way,0

the metastable phase converts to regions of the stable
Žphase at nsn , surrounded by vacuum. Note that0

at the density at which the pressure first becomes
negative, ern is at a local maximum and so this zero

.pressure phase is unstable, unlike that at nsn . We0

see that the fate of the low density positive pressure
phase is the same as that of the negative pressure
phase. Any uniform phase with chiral symmetry
broken evolves into an inhomogenous mixture of
droplets within which nsn and chiral symmetry is0

restored, surrounded by regions of vacuum.
The satisfying picture just discussed is not ob-

tained for all parameter values, however. For exam-
ple, for ns1 and 2.2-L-3.2 the phase at nsn0

has higher ern than that of a dilute gas of quarks
Ž .with mass D 0 . For L)3.2 GeV, the pressure is

Žpositive for all n. In these fortunately, unreason-
.able parameter ranges, the model, without further

modification, has no reasonable physical interpreta-
tion.

At a quantitative level, a naive implementation of
our proposed identification of droplets of nsn0

matter with nucleons works surprisingly well. One
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might want to identify n with the quark density at0

the center of baryons. Taking this to be three times
Ž .nuclear matter density yields p n ;0.39 GeV.F 0

Ž .On the other hand, requiring e n rn to be one0 0
Ž .third the nucleon mass yields p n ;0.31 GeV.F 0

Our toy model treatment cannot meet both criteria
simultaneously, which is not surprising, but we see

Ž .from Table 1 that the magnitude of p n is veryF 0

reasonable. The vacuum energy, which becomes the
bag constant, is also of the correct order of magni-
tude. Adding further interactions to H would obvi-I

ously make a quantitative difference, but there is no
reason to expect the qualitative picture to change.

In any case, the physical picture suggested here
has significant implications for the phase transition,
as a function of density, to restored chiral symmetry.
Since the nucleons are regions where the symmetry
is already restored, the transition should occur by a
mechanism analogous to percolation as nucleons

w xmerge 12 . This transition should be complete once
a density characteristic of the center of nucleons is
achieved. The fact that some external pressure must
be imposed in order to induce the nucleons to merge
Že.g. the fact that in nuclear matter at zero pressure

.the nucleon droplets remain unmerged must reflect
interactions between droplets, which we have not
treated here. The mechanism of chiral symmetry
restoration at finite density but zero temperature is
quite different from the one we expect at finite
temperature and zero density: it occurs by percola-
tion among pre-formed bags of symmetric phase. Of
course, this is no contradiction, because the finite
temperature transition occurs at such a low tempera-
ture that few baryons are present.

4. Color superconductivity

At high density, pairing of particles near the
w xFermi surface as in the original BCS scheme 2

becomes more favorable. Our Hamiltonian supports
condensation in quark-quark channels. The conden-
sation is now between identical fermions with the
same helicity, and the Hamiltonian selects chiral
isosinglets — that is, antisymmetry in flavor. One
can therefore have spin 0 — antisymmetric in spin
and therefore in color, forming a 3, or spin 1 —

symmetric in spin and therefore in color, forming a
6.

We first consider the former. A suitable trial wave
function is

< : † † < :c sG G p 4.1Ž .L R F

where

G† s cos u L p q´ ab 3e ij L
A Ž p.Ž .Ž .Ł žL A

a ,b , p

=sin u L p a† p a† ypŽ . Ž . Ž .Ž . /A L 1a L 2 b

= cos u R p q´ ab 3e ij R
B Ž p.Ž .Ž .ž B

=sin u R p b† p b† ypŽ . Ž . Ž .Ž . /B R 1a R 2 b

= cos u R p q´ ab 3e ij R
C Ž p.Ž .Ž .ž C

=sin u R p a p a ypŽ . Ž . Ž .Ž . /C R 1a R 2 b

G† ssame, with RlL. 4.2Ž .R

Here, a and b are color indices, and we have
chosen to pair quarks of the first two colors. 1 and 2

Ž .are flavor indices. The first term in 4.2 creates
particles above the Fermi surface; the second creates
antiparticles; the third creates holes below the Fermi
surface. In this state, the Lorentz scalar
² ia 5 j b :q Cg q ´ ´ is nonzero. This singles out ai j a b 3

preferred direction in color space and breaks color
Ž . Ž . Ž .SU 3 ™SU 2 . The U 1 of electromagnetism is

spontaneously broken but there is a linear combina-
tion of electric charge and color hypercharge under
which the condensate is neutral, and which therefore

Ž .generates an unbroken U 1 gauge symmetry. No
flavor symmetries, not even the chiral ones, are
broken.

Ž .Note that n is now not given by 3.5 because the
Ž .operators in 4.2 can change particle number. Vary-

ing the expectation value of HymN in this state
with respect to p yields p sm, unlike in the caseF F

of the chiral condensate. This difference reflects the
² :fact that a gap in a qq channel does not act as an

effective mass term in the way that a chiral gap does.
Upon adding a quark, the condensate can adjust in
such a way that the energy cost is only p . D is,F

however, a true gap in the sense of condensed matter
physics: the energy cost of making a particle-hole
excitation is 2 D at minimum. Varying with respect
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to all the other variational parameters yields j R qA, B,C

j L sp , u R su L , andA, B,C A, B,C A, B,C

F 2 p DŽ .
Ltan 2u p s ,Ž .Ž .A pym

F 2 p DŽ .
Ltan 2u p s ,Ž .Ž .B pqm

F 2 p DŽ .
Ltan 2u p s . 4.3Ž . Ž .Ž .C

myp

Here, the gap D satisfies a self-consistency equation
of the form

`
2 4p dp F pŽ .

1s2 K H 2 2½ 4 22pm (F p D q pymŽ . Ž .

`
2 4p dp F pŽ .

qH 2 24 22p0 (F p D q pqmŽ . Ž .

m
2 4p dp F pŽ .

q . 4.4Ž .H 2 2 54 22p0 (F p D q mypŽ . Ž .

The three terms in this equation arise respectively
from particles above the Fermi surface, antiparticles,
and particles below the Fermi surface. For m)0 the
particle and hole integrals diverge logarithmically at
the Fermi surface as D™0, which signals the possi-
bility of condensation for arbitrarily weak attraction.

The numerical coefficient in this color supercon-
ducting gap equation is smaller than the correspond-
ing coefficient in the chiral symmetry breaking case.
The exact factor follows from the precise form of the
Hamiltonian, but part of the explanation is simple
and robust: chiral condensation makes good use of
all three colors coherently, but the color supercon-
ducting condensation, which breaks color symmetry,
cannot.

One can form reasonable qualitative expectations
for the solution of the gap equation without detailed
calculations. Because the numerical coefficient in the
gap equation is smaller than the threshold value at
which one would have a nonzero D at ms0, D

would be zero were it not for the logarithmically
divergent contribution to the integral from the region
near m. This means that at small m, the gap must be
small because the density of states at the Fermi

Fig. 2. Gap created by the Lorentz scalar color superconductor
Žcondensate, as a function of ms p for n s1 and from left toF

.right Ls0.4,0.8 GeV. Each curve begins where n is given by
the appropriate n .0

surface is small. This has only formal significance,
because the only densities of physical relevance are
ns0 and nGn . At intermediate densities, matter0

is in an inhomogeneous mixture of the ns0 and
Žnsn phases. We are assuming that the color0

breaking condensate does not significantly affect n ;0
.this will be discussed below. As m increases, the

density of states at the Fermi surface increases and
the gap parameter grows. Finally, at large m the
effect of the form factor F is felt, the effective
coupling decreases, and the gap parameter goes back
down. For the parameter ranges we have examined
the gap parameter is quite substantial: ;50–150
MeV at n , and peaking at 100–200 MeV at a0

density somewhat higher. We plot D for two sets of
parameters in Fig. 2. The density at which the gap
peaks depends on L; the shape of the curve depends
on n ; the height of the curve is almost independent
of both.

As in the previous section, one can obtain expres-
sions for the energy and the density, and thus derive
the equation of state. We find that the equation of
state is hardly modified from the free-quark values
— the pressures, at equal density, are equal to within
a few per cent. This makes it very plausible that, as
we assume, the color condensation makes only a
small change in the density n at which a stable0

phase exists at zero pressure. To make the argument
rigorous, we must do a calculation in which we
consider chiral and color condensation simultane-
ously; we should form a trial wave function that
allows for both possibilities and allows them to
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compete. We have begun this calculation, but will
not report on it here other than to note that since the
two condensates compete for the same quarks the
bigger of the two tends to suppress the smaller. This
is further evidence that the potential for the forma-
tion of a color breaking gap does not affect the result
that n )n . For practical purposes, it appears to be0 c

a very good approximation to treat the condensations
separately, as we do here, because where one is large
the other is small, even before they compete.

The third color has so far been left out in the cold,
but we can gain energy by allowing it too to con-
dense. The available channel is the color 6. We find
that there is attraction in this channel, for a pairing
that is a spatial axial vector. Thus we predict that not
only color, but also rotation invariance, is sponta-
neously broken by QCD at high density. Axial vector
quantum numbers, of course, are characteristic of
spin alignment. The appropriate trial wave function

< :for this condensation is obtained by acting on pF

by a product of operators analogous to the product in
Ž .4.2 except that they now involve only the third
color and depend on the direction in momentum
space. The particle pair creation operator, for exam-
ple, can be written

1

2A < < < <(1q u p p r pŽ .L z

=
p LzL ij Ž p. † †A< <1qu p e a p a yp .Ž . Ž .Ž .A L 13 L 23ž /< <p

4.5Ž .

In this state, the nonzero condensate is
² i3 j3 : Ž .w xq Cs q ´ , where s s ir2 g ,g . This is03 i j mn m n

an axial vector pointing in the z-direction, manifestly
breaking rotation invariance. It does not change sign

Ž .under spatial inversion. It breaks the gauged U 1
symmetry left unbroken by the scalar superconductor

Ž .condensate, but does not affect the unbroken SU 2
Ž .subgroup of color SU 3 .

Finding the self-consistent solution to the varia-
tional problem for the axial condensate is somewhat
involved, because of the expressions which arise

² :when the angular integrals in H are performed.
Ž . Ž .The expression analogous to tan 2u of 3.2 cannot

explicitly be inverted, so it is not possible to reduce
Ž . Ž .the two equations analogous to 3.2 and 3.3 to a

single gap equation. The results are nevertheless
easily described. We define a momentum indepen-
dent parameter D which can be viewed as the aver-
age of the gap over the Fermi surface, and which
satisfies self-consistency relations. The effective cou-
pling is smaller than in the scalar channel for two
reasons. First, only one color participates. Second,
most regions of the Fermi surface do not participate
fully. We find that the gap must be pushed to very
small values. Because of the logarithmic singularity
in the integrals, the resulting gap is exponentially
sensitive to parameter choices. We find D of order a
few keV at most, but this should not be considered a
robust result. It is worth exploring whether plausible
interactions can be added to H which have theI

effect of strengthening the axial vector condensate,
particularly as such a condensate could lead to signa-
tures in heavy ion collisions. The existence of a
preferred direction for spins could be observable, if it
were reasonably efficiently handed down to L

baryons, as it would lead to correlation between the
polarization of different L’s in a single event. With-
out modification, our model suggests that this axial
vector condensate is much smaller than the scalar
color breaking condensate. A gap this small is surely
irrelevant in heavy ion collisions, but has both for-
mal consequences and implications for neutron star
physics. It is striking that a single interaction gener-
ates coexisting condensates with scales which differ
by five orders of magnitude.

In our model as it stands, color is realized as a
global symmetry. Breaking of this symmetry gener-
ates Nambu-Goldstone bosons, formally. However,
in reality color is of course a gauge symmetry, and
the true spectrum does not contain massless scalars,
but rather massive vectors. Aside from a node along
the equator of the Fermi surface for one color, there
is a gap everywhere on the quark Fermi surfaces. To
this point, we have described the color superconduct-
ing phase as a Higgs phase. One expects, however,
that there is a complementary description in which
this is a confining phase, albeit one with two vastly
different confinement lengths, neither of which is
related to the confinement length at zero density. As
a formal matter, it is of some interest that the color
superconducting phase can be considered a realiza-
tion of confinement without chiral symmetry break-
ing.



( )M. Alford et al.rPhysics Letters B 422 1998 247–256 255

In looking for signatures of color superconductiv-
ity in heavy ion physics and in neutron stars, it is
unfortunate that the equation of state is almost equal
to that for a deconfined phase with no diquark
condensate. Superconducting condensates do modify
the gauge interactions and this may have implica-
tions in heavy ion collisions. The scalar condensate
carries electric as well as color charge. It is neutral
under a certain combination of electrodynamic and
color hypercharge, so taken by itself it would leave a
modified massless photon. If densities above n are0

achieved at low enough temperatures that the scalar
condensate forms, there will be a mixture of the
ordinary photon and the color hypercharge gauge

Žboson which is massless. This modified photon
would acquire a small mass from the axial vector
condensate if temperatures were low enough for this

.condensate to be present. There is also a residual
Ž .SU 2 gauge symmetry, presumably deconfined, and

there are five gluons whose mass is set by the scalar
condensate. Either the modification of the photon or
the loss of massless gluons could have consequences,
but dramatic effects do not seem apparent.

Turning to neutron star phenomenology, there is
some indication, from the slowness of observed neu-
tron star cooling rates, that a gap in the excitation

w xspectrum for quark matter might be welcome 13 , as
this suppresses neutrino emission via weak interac-
tion processes involving single thermally excited u

Ž .and d quarks by exp yDrT . A 400 keV gap has
w xdramatic consequences 14 ; the scalar gap is there-

fore enormous in this context, and the axial vector
gap plays a role too, shutting down these direct
neutrino emission processes completely once the core
cools to temperatures at which the axial condensate
forms. It would also be worthwhile to explore the
effects of the presence of macroscopic regions in
which an axial vector condensate is ordered.

5. Discussion

Many things were ignored in this analysis. Most
important, perhaps, is the strange quark. In the spirit
of the analysis, we should consider the modified
instanton vertex including the strange quark as well.
This adds an incoming left-handed and an outgoing
right-handed leg. If the mass of this quark were

large, we could connect these legs with a large
coefficient, and reduce to the previous case, perhaps
with an additional four-fermion vertex involving all
three flavors modelled on one-gluon exchange.

Ž .Whatever the interaction s , color superconductivity
in a three flavor theory necessarily introduces the
new feature of flavor symmetry breaking. Both the
condensates considered in this paper are flavor sin-

² :glets; this is impossible for a qq condensate in a
three flavor theory. One particularly attractive possi-

² a 5 b i j A :bility is condensation in the q Cg q ´ ´i j a b A

channel, with summation over A. This breaks flavor
and color in a coordinated fashion, leaving unbroken

Ž . Ž .the diagonal subgroup of SU 3 =SU 3 .color flavor

Another question concerns the postulated Hamil-
tonian. While there are good reasons to take an
effective interaction of the instanton type as a start-
ing point, there could well be significant corrections
affecting the more delicate consequences such as
axial vector 6 condensation. A specific, important
example is to compare the effective interaction de-
rived from one-gluon exchange. It turns out that this
interaction has a similar pattern, for our purposes, to
the instanton: it is very attractive in the s channel,
attractive in the color antitriplet scalar, and neither
attractive nor repulsive in the color sextet axial
vector. More generally, it would be desirable to use a
renormalization group treatment to find the interac-
tions which are most relevant near the Fermi surface.

The qualitative model we have treated suggests a
compelling picture both for the chiral restoration
transition and for the color superconductivity which
sets in at densities just beyond. It points toward
future work in many directions: the percolation tran-
sition must be characterized; consequences in neu-
tron star and heavy ion physics remain to be eluci-
dated; the superconducting ordering patterns may
hold further surprises, particularly as flavor becomes
important. The whole subject needs more work; the
microscopic phenomenon is so remarkable, that we
suspect our imaginations have failed adequately to
grasp its implications.
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