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THE HULL OF A CURVE IN c*!

BY JOHN WERMER

(Received June 18, 1957)

1. Let S be a compact set in the space C* of n complex variables. We
define the Aull of S, A(S), as follows :

DEFINITION 1.1. A(S) is the set of points « in C™ such that if P is any
polynomial ©n n variables

| P(x) | = max,es| P(y) | .

It is easily seen that A(S) is again compact and S < A(S). Silov has
shown in [5, § 5] that if S is connected, then 4(S) is connected. The gen-
eral problem concerning hulls is the following : Given a set, S, to describe
the nature of the point set 4(S). In particular, to decide when A(S)=S.

DeLeeuw has considered these questions in [1] for the case of circular
sets S, i.e., sets S such that (x,---,2,)in Sand |y, |=|a|, ¢=1,+--,%
implies (yy, -+~ , ¥,) in S.

We shall here consider the case when S is a simple closed Jordan curve
admitting an analytic parametrization or an arc which admits an analytic
parametrization. We shall make essential use of the author’s results on
function rings on the circle given in [6] and [8].

Let I be a curve in C" given parametrically by the equations

(1'1) ztzgpi(u)’ i=1,---,n, lul=1°

Assume that
(1.2) Each ¢, is analytic in an annulus containing the unit circle.

(1.3) The ¢, together separate points on |« | = 1.
(1.4) ¢i(w) # 0 for |[u | = 1. (Here the prime denotes differentiation).

It follows from (1.3) that I' is a simple closed curve.

DEFINITION 1.2. Let p be a point in C*. An element through p is a set
E in C* which is the homeomorphic image of a disk | A | <7 in the 2-plane
under a map

21— Y(2)
such that the coordinates of Y(2) in C~” are analytic functions of A for
[2] < r, and Y(0) = p.
DEFINITION 1.3. A set = in C” is an analytic surface if each point p on

1 This research was supported by the United States Air Force, through the Air Force
Office of Scientific Research of the Air Research and Development Command under Contract
No. AF 18(600)-1109.
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2, except perhaps for points in a discrete subset =,, has a neighborhood
U in C™ such that U N X is an element through p, while each p, in 3, has
a neighborhood U, in C”, such that U, N = is the union of a finite set of
elements through p. A point in 3 is called a multiple point of 3.

THEOREM 1.1. Let I be a curve given by (1.1). Assume (1.2), (1.3), (1.4).
Then either KI') =1, or MI') — I' is an analytic surface containing at
most finitely many multiple points.

THEOREM 1.2. M(I') # I if and only if for all n-tuples (m,, --- , m,) of
non-negative integers we have

(15 [ o ) - o) - gl du = 0

where the ¢, are the functions of (1.1).
Let _# be an arc in C” given by equations

(1.6) zo=¢,0), i=1,---,m, 0t<1.
Assume

(1.7) There is a rectangle: —d<t<1+4+d, —d<oc<d,d>0, in
the complex ¢ + io-plane such that each ¢, is analytic in this rectangle.

(1.8) The ¢, together separate points on 0 < ¢ < 1.

(1.9) ¢it)=0for0<¢<1.

THEOREM 1.8. Let_£be an arc given by (1.6). Assume (1.7), (1.8)
and (1.9). Then every continuous function on ~ is the uniform limit of
polynomials on 2 Hence l(_g) = %

This result should be contrasted with the fact that there exists an arc

_% in C*® such that #(_%) #_%. Such an arc was constructed in [7].
See also [3].

2. We shall need the following definitions and results.

DEFINITION 2.1. Let A be any compact space. Then C(A) is the space
of all continuous complex-valued functions on A.

DEFINITION 2.2. Let A be as above and let g,, ¢,,- -+, ¢,, be elements of
C(A). Then [g,, g, + -, 9n] is the subring of C(A) consisting of all poly-
nomials in the g,, including constants.

DEFINITION 2.3. K][g,,---, g,] is the closure of [g,,-- -, ¢,.] in the space
C(a).

THEOREM 2.1. Let ¢, f be a pair of functions in C(S,), where S, is the
unit-circle in the u-plane. Assume

(2.1) ¢ and f are analytic in an annulus containing S, and together
separate points on S,.
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2.2) ¢ +0onS,.

(2.3) ¢ takes only finitely values more than once on S,.

(2.4) Klo, 11+ C(Sy).
Then there exists o Riemann surface 7 and on .7 a region D bounded by
an analytic simple closed curve 7 with D U # compact, and there ewists a
one-one conformal map y of & neighborhood of Tt on a neighborhood of
S,, carrying 7 on S, such that if we define ¢, Fforpin 7by:

(2.5) #(p) = ¢(x(®)) » F(0) =F (D)) ,
then ¢, f have extensions to D U # which are analytic on D and continuous
on DU 7.

Proor. This result is essentially contained in [6], where, however,
only the existence of a homeomorphism y of 7 on S, is proved. We must
now show that this y is extendable to a one-one conformal map of a neigh-
borhood of 7.

The surface .# is defined in [6, Definition 1.1], as the Riemann surface
of the function f(¢~'). For each u on S,, there exists a neighborhood of
u in the plane such that the restriction of ¢ to that neighborhood has a
single-valued inverse ¢;! defined in a neighborhood of ¢(x). In [6], fol-
lowing Definition 1.1, there is defined a map : « — p, from S, onto § such
that p, is the place (¢(u), f(¢;')) on #. The correspondence y between 7
and S, appearing in [6, Theorem 1] is then the map assigning u to p, for
each p, on 7.

Fix p on 7 with y(p) = % and choose a neighborhood //o/“(p) of pon %,
such that if _s(p) is the projection of L//:’"(p), then ¢3! is single-valued
in _#"(p). Define for ¢ in _4"(p),

x1(a) = ¢3'(2)
where z is the projection of q. Clearly this is an analytic extension of y

to _4(p) from J}(p) N 7. Since we can do this for each p € 7, we get an
extension of y to be analytic in a neighborhood of 7 on & Finally, since
¥ is one-one on 7 and locally one-one at each point of 7, we can find a
suitable neighborhood of 7 in which y remains one-one. Then also 7is an
analytic curve, being related to the unit circle by the analytic map y.
Theorem 2.1 is thus proved.—The following result was proved in [8,
Theorem 1.2].

THEOREM 2.2. Let D be a region on a Riemann surface # whose bound-
ary 18 a simple closed analytic curve 7 with D U # compact. Let @, Fbe
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pasr of functions analytic on Dy T with

(2.6) d® +0o0n 7.

(2.7) @ and F separate points on 7.

Then there ewists a finite set T of points on D U 7 and an integer n, such
that of g is analytic on Dy 7 and vanishes at each point of T to an order
> 71, then g belongs to K[®, Flon D U .

THEOREM 2.3. Let D, 7 be as in the last theorem. Let A(7) be the sub-
algebra of C(7) consisting of all functions extendable to D to be analytic on
D and continuous on D U 7. Let B be any proper closed subalgebra of C(F)
which contains A(7). Then B = A(7).

This theorem was given in [9, Theorem 2].

THEOREM 2.4. Let 15, 7 be as in the last theorem. Let g be a function
continuous in D U T, analytic in D. Then 9 can be approximated uniform-
ly on ¥ by functions analytic on D U 7.

This theorem is due to Sakakihara, [4, Theorem 4].

THEOREM 2.5. Let D, i and A(F) be as in Theorem 2.3. Let m be a

linear multiplicative functional on A(7). Then there is some q in Dy 7
with m(f) = f(q) for all f in A(F).
This theorem was given in [9, § 4, Lemma following Theorem 3].

THEOREM 2.6. Let D, 7, ®, F be as in Theorem 2.2. Then there ewist

only finitely many pairs p, q of distinct points in D U § with D(p) = P(q)
and F(p) = F(q).

This theorem is a special case of [8, Lemma 1.1].

THEOREM 2.7. Let S be a differentiable arc or a differentiable closed
curve in C" such that W(S) = S. Let 2, - - -, 2, denote the coordinate func-
tions in C™ restricted to S. Then K[z, --- , 2,] = C(S).

This result was proved by Helson and Quigley in [2, Corollary of Theo-
rem 1].

3. Let ¢, --+, ¢, be the functions defining our curve I' and assume
(1.2), (1.8) and (1.4).

LEMMA 38.1. Let A be a set, 7 an algebra of functions on A which sepa-
rates points on A. Then if p, +--, py are distinct points in A, there is
some g in 7 with g(p;) + 9(p,) if i +j fori,j=1,---, N.

PROOF. For each pair (3, j), ¢ # j, there is some g,, in . with g,,(p;) #
9:5(py). Set
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by = va-z (915 — 915(P))) -

Then A.(p,) # 0 and A,(p,) = 0 for = 2. Define A,, - - -, hy similarly such
that 2y(p.) # 0, and h(p,) = 0, § +# i. Set

g = Ef;l W(hi(D:)) R -
Then ¢ satisfies the requirements of our Lemma.

LEMMA 3.2. There exist functions ¢, f in [¢., -+ , ¢.] such that ¢ and
f together separate points on |u | = 1 and such that

3.1) ¢m)#0on|u|=1.

(3.2) ¢ takes only finitely many values more than once on |u| = 1.

Proor. Fix u, |u,| =1. Let ¢, ---,¢t, be the set of all points on
|#| =1 where ¢(u) = ¢.(u,). By Lemma 3.1, there is some g in [¢,,- -+, ¢,]
with g(¢,) # g(¢,) if 2 # 5. Choose r > 0 such that if [e| < r, ¢, + g has
a non-zero derivative on [% | = 1. This is possible by (1.4). Set

_ ot) — eu(uo)
¢ 9(8) — g(us)
Then ¢ is meromorphic on | £|=1 and hence there is some ¢ = 0, |e| < r
with ¢(¢) = —cif |£]| = 1.

Set ¢ = ¢, + ¢g. We assert that ¢ takes the value ¢(u,) at no other
point on the unit-circle. For suppose ¢(%) = ¢(u,), |#]| =1 and @ + u_.
Then

o) + eg(u) = ¢i(u,) + eg(u,) ,

whence ¢,(u) — ¢(u,) = —&(g() — 9(w)).

If ¢,(w) = ¢.(u,), then @ =t,, u,=¢, for some distinct ¢, 7 and so g(&) =
9(u,), which is impossible. Hence ¢,(u) + ¢.(u,), whence g(%) # g(u,) and
80 {(u) = —e. This contradicts the choice of ¢. Hence our assertion about
¢ must hold. Also ¢’ = 0 on |« | = 1 by choice of ¢. Now a function an-
alytic on the circle which takes some value exactly once and has non-
vanishing derivative can take only finitely many values more than once on
the circle. Let M be the set of values which ¢ takes on more than once
on|u|=1, and let ¢~}(M) be its counter-image on the circle. Then M
and ¢~Y(M) are finite sets. By Lemma 3.1 we can then find f in [¢,,-- -, ¢,]
with f(p) # f(q) if p, ¢ are distinct points in ¢-(M). Let now u,, u, be
any two distinct points on the circle. If ¢(u,) = ¢(u,), then u,, u, lie in
oY (M) and so f(u,) + f(4,). Hence together ¢ and f separate points on
the unit circle. Also (3.1) and (3.2) hold for ¢ and the Lemma is thus
proved.

For the next three Lemmas we assume :
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(3.3) OE

LEMMA 3.3. There exists a complex measure dp % 0 on |t| =1, such
that

(3.4) | o®amn=0,  allgine, -, g,

ProoF. Choose « in 2(I') — I'. For each polynomial P, set
L{P(gply ctcy ﬂpn)} = P(x) 2

Then L is a linear functional on [¢,,- - -, ¢,]. Also, since xe A(T), | P(x)| <
maX,er | P(y) |, whence | P(x)| < max,_, | F(¢.(u), « -+, a(w)) |. It follows
by the Riesz representation theorem that for some measure dv on | ¢ |=1

(3.5) P@ = P, -, o) 0

for all polynomials P. Let ¢, be a point in the carrier of the measure dy
on the circle. Since & & I', & # (¢y(t,), + -+ , a(t;)). Hence there is a poly-
nomial P, with P (x) = 0 such that P(¢, ---, ¢,) does not vanish at ¢,.
Then the measure dy = P(¢, -+, ¢,) - dv does not vanish identically.
Also because of (3.5) we get for all polynomials P:

12l

0=F@P@ = Pl -, ) dutt)
and so the Lemma is proved.

LEMMA 3.4. There exists a Riemann surface 7, and on F~ a region D
bounded by a simple closed analytic curve 7 with D U § compact, and there
exists a homeomorphism y of T on the unit circle such that if we put for
pin ¥
(3.6) Di(p) = ¢:(x(P)) » t=1---,mn
then each ®, has an extension to D U 7 which is analytic on Dy 7. We
shall denote this extension again ;.

PROOF. Let ¢, f be the functions constructed in Lemma 3.2. Then ¢
and f satisfy conditions (2.1), (2.2) and (2.8) of Theorem 2.1. Because of
Lemma 3.3, and the fact that [¢, /] S [¢),- - -, ¢.], we also get K[g, f]+
C(lu | = 1), whence (2.4) holds. We may then apply Theorem 2.1, and

conclude the existence of a Riemann surface & and a region D on .7
having the following properties : D is bounded by a simple closed analytic
curve 7 with DU 7 compact and there exists a one-one analytic map y of

2 If P, @ are two polynomials such that P(gy, - - - , ¢,) and Q(¢1, - - - , ¢5) coincides as ele-
ments of [¢y, -+, ¢n], then P — Q = 0 on I', whence P(x) = Q(x) since x € h(I").
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a neighborhood of 7 onto a neighborhood of | | = 1 such that y maps 7
on |% | = 1 and such that, if

@(p) = ¢(x(p)), F(®) = f(xp)), per,

then ®, F have extensions to D to be analytic in D and continuous in
DU . Since y is analytic on 7, and ¢ and f are analyticon |u | =1, ®
and F' are analytic on 7.

Because of Lemma 3.2, d® #= 0 on 7 and ® and F' together separate
points on 7. Hence Theorem 2.2 is applicable. It yields the existence of
a finite subset T of D U 7 and of an integer 7 such that if G is analytic
on DU #, and G vanishes at each point of 7' to an order =, then
Ge K[®, Flon 7.

Fix now g, € [®, F'] with g, # 0 and g, vanishing at each point of T' to
an order =%. Denote by A(F) the clags of functions on ¥ which are ex-
tendable to D U 7 to be continuous on D U 7 and analytic on D. Choose
H in A(7). By Theorem 2.4, there exist functions H, analytic on Duy
and converging uniformly to Hon 7. For each n, H,-g, € K[®, F] and
hence H,-g, € K[®,, ---, ®,], where the @, are defined in (3.6). Hence
for each m = 0, H,-9,-®™ € K[®,, --- , D,]. From Lemma 8.3 we can
deduce the existence of a non-null measure du* on § such that

3.7) [, 90 dw) =0

for each g in [®,, --- , ®,]. Hence also

(3.8) S H,g,®"dp* =0, all n, m,
Y

and hence

(3.9) S Hdrg, dp* =0, m=0.
Y

Now g,dg* is not the null-measure on 7. For g, is analytic on 7, and is
not identically zero. Hence g, vanishes only finitely often on 7. If now
godp* =0, then dg* is a finite sum of point-masses. It then follows from
(3.7) and (1.3) that each of these point-masses is zero, whence dg* = 0.
This is false, and so g,d¢* # 0.

Let B denote the closed subalgebra of C(7) generated by A(7) and ..
Because of (3.9), B # C(7). Hence by Theorem 2.3, B = A(7}), whence
®, € A(7). Because of (3.6), @, is analytic on 7. Hence ®, has an exten-

sion to D U # which is analyticon DU 7. A parallel argument applies to
®,, O,, etc. The Lemma is thus proved.
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DEFINITION 8.1. X is the map from D U 7 to C* defined by X(p) =
(q)l(p)’ ctcy q)n(p))'

LEMMA 3.5. X(7) = I and X(D U §) = K(T).

ProoF. From (3.6) and the definition of I" we get that X(7) = T.

Fix ¢ in D and let P be any polynomial. Set P*(¢) = P(X(q)). Since
the ®; are all analytic on DU 7, the same is true of P*. By the maximum
principle, then,

| P*(q) | = max,e;| PX(y)| .
Thus | P(X(¢))| < max,er | P(x) | and so X(q) € A(I"). Thus X(i) U 7)) Er(I).

Fix now z, = (2}, - -, 23) in A(I'). We assert there exists a multiplicative
linear functional m on K[®,, --- , ®,] such that

(3.10) m(P(Py, « -+, D)) = P(x,)

for every polynomial P. We define m on [®,, ---, ®,] by (3.10).* Since
@ € ML), |m(P(Dy, -+, ,)) | < maxyer | P(y) | = max; | P(®,, ---, D,) |.
Because of this inequality we have an extension of m to K[®,, - , @, 1.

Because of (3.10) m is linear and multiplicative, and this property must
then also hold for the extension.

Let now T, 7 be as in the proof of Lemma 38.4. Either z, € X(T), and
hence z,€ X(D U ), or we can find a polynomial @ with Q(x,) # 0, Q(x)=0
if z e X(T). Set g, = (Q(®,, -+, D,))*. Thenif pe T, g, has at p a zero
of order >%. Hence by choice of T and 7% and using Theorem 2.4, we

have for every function F which is continuous on D U 7 and analytic on
D, that F- 9:€ K[®,, -+, ®,]. Also m(g,) = (Q(x,))* # 0. Define

m*(F) = m(Fg,)[m(g,)
for all F'in A(7), where this is the space of functions on 7 which are ex-

tendable to D to be analytic in D and continuous on D U7. Now if F,,
F, are in A(7), then

m(Eng) = m((EFzgl) cg) = m(EEgl)m(gl)
since FFg, and g, both lie in K[®,, ---, ®,] and m is multiplicative.
Similarly

m(EEg) = m(Fg,) - m(Eg,) ,
whence

m(FEg)[m(g,) = (m(Fg,)/m(g,))(m(Fg,)|m(g,))

m*(BE) = m*(Eym*(E) .

3 Recall the footnote to the proof of Lemma 3.3.

or
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Thus m* is multiplicative on A(7). Clearly also m™* is linear on A(7).
By Theorem 2.5, there is some ¢ in D U 7 with m*(F') = F(q) for all F'in
A(7). Choose now 4, 1 <4 < n. Then

D(q) = m*(D;) = m(Pyg)/m(g,) = m(D;) = 2
because @, € [Py, ---,D,] and (3.10) holds. Hence X(q) = z,. Thus
) = X(b U 7). Hence X(i) U 1) = /(T), and the Lemma is proved.
PrOOF OF THEOREM 1.1. Assume A(T") # I'. Let S be the set of points

pin D U 7, such that there exists gin D U #, with ¢ #p and X(q) = X(p).
By Theorem 2.6, there are only finitely many pairs p, ¢ of distinct points

in DU 7 with ®(p) = ®(q) and F(p) = F(¢). Now ® and F are in
[®,, ---, D,] and X(p) = X(q) is equivalent to ®,(p) = ®,(¢) for all 4.
Hence S is a finite set.

Let us write 3 for A(I') — I'. Choose @, = (2, --- , 2%) in . We shall
construct a neighborhood U of 2, in C” such that = N U is the union of
finitely many elements through x,, in the sense of Definition 1.2.

Because of Lemma 3.5, x, lies in X(i) U 7). Since the ®, are analytic on
D U #, only finitely many points ¢,,- - -, g, in D U # ean map into «, under
X and since x, ¢ T', all these ¢, lie in D.

Since S is a finite set, each ¢; has an open neighborhood _#;in D with
compact closure _;, such that if p € _#;, p # q;, then X(p) # X(q) for all
¢ in D U 7 with p # ¢, and such that q, ¢ 47if j # 4. In particular X is

one-one in _#;. We can choose _#; simply-connected so that, in terms of
a suitable local parameter 2 at ¢,, _#; becomes a disk : |1| <r. Since X is

continuous and one-one on the compact set _#;, X maps _#; homeomor-
phically. Hence X maps . #; homeomorphically on X(_#;). Also each co-

ordinate of X(p) is analytic in p. Hence X(_#;) is an element through
x,, by Definition 1.2.

We fix now y, in U7, X(_#7). Then y, has a neighborhood U(y,) in C*
with
(8.11) =N Uw) s Ui, X(or7) -
For, suppose not. Then there is a sequence {y,} in 3 converging to y,
with y, € X(_#7),1=1, ---, m forall n. Since y, € 3, there exists p, in
DU ¥, with X(9,) = y,. Then p, ¢ U, ;i for each n. Let 7 be a limit
point of {p,} in DU 7. Then pé Ul -#:. Also X(p) = y,. Now for some

4 and 4, in 47, ¥, = X(4,), and so X(p) = X(4,). Since 7 = 4,, this contra-
dicts the choice of _#;. Hence (3.11) holds for some U(y,).
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Let U be the union of the sets U(y,) over all y, in Ul X(_#7). Then
U is an open set in C" containing #,. Also UNS < Ur, X(_#7) be-
cause of (3.11). Also the reverse inclusion clearly holds and so U N S =
Ui., X(_#7). Hence =, has a neighborhood in C* which intersects = in a
finite sum of elements, the number of elements being the same as the
number of points in D which X maps on x,. Since S is a finite set, this
number is 1, except for finitely many points on 3. Thus 3 is an analytic
surface with, at most, a finite number of multiple points, and so Theorem
1.1 is established.

PRrOOF OF THEOREM 1.2. Assume (1.5). Because of (1.4) the measure
¢1(w) du does not vanish identically on |#|=1. Hence K[¢,, ---, ¢,] is
a proper subspace of C(lu|=1). If follows by Theorem 2.7, that
h(I') # I'. Conversely, assume A(I') = I'. We can then apply Lemma 3.4.

Hence by a homeomorphlsm ¥ we can transform the functions ¢,,---, ¢,
into functions ®,,. .., ®, on the curve 7 such that each @, is extendable
to D to be analytic on D U 7. Fix non-negative integers m,, Mgy * ooy My
Then

O D2 DI gD,
is an analytic differential on D U 7. Hence by Cauchy’s theorem
(3.12) S DML M. B ID, = 0 .
Y

Under a change of variable u = y(p), (3.12) becomes :

Slu[=1 SD;nl(u) °ce So;n”(u)sp;(u) du = 0 ,
which is exactly (1.5). Theorem 1.2 is thus proved.

PRroOF oF THEOREM 1.3. Because of (1.7), (1.8) and (1.9), we can find
a region ¢ in the ¢ + io-plane which contains the unit interval : 0 <¢ <1
and such that

(3.13) The ¢; are all analytic in ~»

(3.14) The ¢, together separate points in 7,

(3.15) ¢i+0in -2

We can next find a one-one conformal map « of |z| < 1 into ¢» which if
still analytic on |2| =1 and has 7(2) # 0 on | 2| = 1, such that = maps
|2] =1 on a simple closed curve 8 which contains the unit interval in its
interior. Set

go,(z):gbi(r(z)), 'i=]-,'°° y 1y fOI'lZIél.

Because of (3.13), (3.14), (3.15), the functions ¢, then satisfy (1.2), (1.8),
(1.4), and in addition each ¢, is analytic in |z| < 1 and the ¢, together
separate points in |z | < 1.



560 JOHN WERMER

We may apply Lemma 3.2 to conclude that [¢;, --+, ¢,] on | 2| =1 con-
tains a pair of functions ¢, f which together separate points on |z| =1
and with ¢’(z) # Oon |2| = 1. We can then apply Theorem 2.2 to the

pair ¢, f with D and 7 being, respectively, the interior and the boundary
of the unit circle. Because of Theorem 2.2, we can now find some g in
[¢, «+- , ¢,] such that the functions 2*.g belong to K[¢, f] and hence to
K[¢y, +++ ,¢adon|z| <1fork=0,1,2,---, with g # 0.

Assume that not every continuous function on_# is uniformly approxi-
mable by polynomials. Then K[¢;, -++, ¢.] # C(0<t=<1). Let « be the
arc in | z| < 1 which is the inverse image of 0 <t <1 under z. Then
K¢y, +++ , ¢a] #+ C(a). Hence there is some non-zero measure do on «
with

(3.16) [, @@ =0, heKlgy, -, el
In particular
(3.17) S 29(2) do(z) = 0, E=0.

Now it is well-known that every continuous function on an arc in the
z-plane is the uniform limit of polynomials in z. Hence g(2)do(2) is the
null-measure on «. But g is analytic on « and g # 0. Hence g has only
finitely many zeros on «, whence do is a finite sum of point-masses.
From (3.16), together with the fact that ¢, ---, ¢, together separate
points on «, it follows that do = 0. This is a contradiction. Hence every
continuous function on_# is uniformly approximable by polynomials. It
follows from this, by a proof like that of Lemma 3.3 that A(_#) = S
Theorem 1.3 is thus proved.

Appendix

One might conjecture that the hull of a simple closed Jordan curve
always is the union of the curve and a (possibly empty) analytic sur-
face, in other words, that the conclusion of Theorem 1.1 is valid even
without the hypothesis of analyticity on the curve. This is false, how-
ever. In the general case the hull may be of dimension higher than two.

ExAMPLE. There exists a simple closed Jordan curve in C°® whose hull
contains a subset homeomorphic to the product of two 2-spheres.

ProOOF.* Let S; and S, be two copies of the Riemann sphere. Let E; be
a compact totally disconnected set of positive two-dimensional measure
on S, and let E, be a similar set on S,. By a construction given in [7]

4 An argument of this type was suggested to me by A. Gleason.
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and [3] we can obtain three continuous functions on S, : f3, g1, %, each of
which is analytic on S; — E,, and which together separate points on S;.
Denote by _# the topological product of S; and S,, and by E the product
of E, and E, considered as a subset of _#. Then E is a compact totally
disconnected set. Define continuous functions F;, ¢ =1,---, 6, on _# as
follows : for (2, 2,) in _# :
Fy(z, z) = filz), Fyz, 2) = fi2), Fiz,2) = 0(z), Fi(z, 2,) = 0:(2),
Fyz, 2,) = (21), Fu(z, ) = hy(z,).

Let = be the map of _# into C°® which takes (z,, 2,) into {F(z,, 2,)}{.,. Then
r is a homeomorphism. Hence =(_»") is topologically the product of two
2-spheres and z(E) is compact and totally disconnected. We claim that
t(_#) is part of the hull of «(E), where hull is defined as in Definition 1.1
(relative to z7(E)). For choose {x;}!in ©(_»). Then there is some a in S;
and b in S,, such that «, = Fi(a, b), =1,---, 6. Let P be any polynomial
in six variables. Set p(w) = P(Fi(a, w),- -+, F*(a, w)). Then p is analytic
on S, — E,, and hence attains its maximum modulus at some point ¢ on
E,. Set next q(z) = P(F\(z,¢), ---, Fi(2, ¢)). Arguing as before we get
that | ¢ | takes its maximum for some d in E,. Hence | P(z,, -+ , @) | =
| p(0) | < |p(c) | =|q(a) | =|q(d)|. On the other hand |¢(d) | = max,y,|P|.
Thus | P(x;, - + -, )| < max,z | P|. Thus each point of #(_#")lies in A(z(E)),
as we asserted. Finally, we thread a simple closed Jordan curve I in C°®
through the totally disconnected set 7(E). (Compare [3]). Then we have

(M) S M=(E)) = M) .
Thus T is the desired curve.
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