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Dislocations in diamond: Dissociation into partials and their glide motion
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The dissociation of 60° and screw dislocations in diamond is modeled in an approach combining isotropic
elasticity theory withab initio–based tight-binding total-energy calculations. Both dislocations are found to
dissociate with a substantial lowering of their line energies. For the 60° dislocation, however, an energy barrier
to dissociation is found. We investigate the core structure of a screw dislocation distinguishing ‘‘shuffle,’’
‘‘mixed,’’ and ‘‘glide’’ cores. The latter is found to be the most stable undissociated screw dislocation. Further,
the glide motion of 90° and 30° partials is discussed in terms of a process involving the thermal formation and
subsequent migration of kinks along the dislocation line. The calculated activation barriers to dislocation
motion show that the 30° partial is less mobile than the 90° partial. Finally, high-resolution electron micros-
copy is performed on high-temperature, high-pressure annealed natural brown diamond, allowing the core
regions of 60° dislocations to be imaged. The majority of dislocations are found to be dissociated. However, in
some cases, undissociated 60° dislocations were also observed.

DOI: 10.1103/PhysRevB.68.014115 PACS number~s!: 61.72.2y, 61.72.Lk, 61.72.Bb, 68.37.Lp
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I. INTRODUCTION

Dislocations are very common defects in both natural
well as chemical vapor deposition~CVD!–grown diamond:
Natural gem-quality type Ia diamond is almo
dislocation-free1 but type II usually contains a considerab
amount of dislocations. For type IIa, for example, densit
as high as 107 cm22 have been reported.2–4 CVD-grown
polycrystalline diamond has been found to contain very h
dislocation densities of 1012 cm22. Some of these disloca
tions lie at or near grain boundaries5 while others originate a
the substrate interface and propagate through the thin fil6

The main slip system in diamond has been experiment
confirmed to be the$111% ^110& type,7–10 where dislocations
lie on $111% planes and possess^110& Burgers vectors. Fur-
ther, weak-beam electron microscopy revealed that dislo
tions in type IIa diamond were dissociated into1

2 @11̄0# glide
partials separated by an intrinsic stacking fault of wid
25–42 Å. Also, many extended dislocation nodes a
dipoles consisting of edge and 60° dislocations were
served.

While earlierab initio studies of dislocations in diamon
were limited to the analysis of the structure and energetic
90° partial glide dislocations,11–13 we recently presented
systematic study of the low-energy core structures of per
and partial dislocations in the$111% ^110& slip system.14
0163-1829/2003/68~1!/014115~9!/$20.00 68 0141
s

s

h

.
ly

a-

d
-

of

ct

Moreover, the electronic structures of these dislocations w
found and compared with experimental electron energy-l
spectra.15 Glide partial dislocations were generally found
be electrically inactive. However, shuffle dislocations, or
ternatively point-defects, which possess states in the e
tronic band gap, might be responsible for the band-A cathod-
oluminescence linked to dislocations in natural type
diamond at 2.8–2.9 eV2,3,16,17or even for the brown coloring
common to many natural diamonds.18

The remaining question revolves around the dissocia
of perfect dislocations in diamond and the movement of d
locations. In our previous study we calculated the dissoc
tion widths of screw and 60° dislocations, finding valu
around 30 and 35 Å, respectively. It was also possible to r
out certain dissociation reactions by just comparing the c
energies of isolated dislocations.14 However, the full energet-
ics could not be described in that simple approach and
Sec. III, we reexamine the dissociation of the screw and
60° glide dislocation. In this context a more detailed inve
tigation of the 1

2 @11̄0# screw became necessary, which h
only been discussed in its shuffle structure.14 This is
followed by a discussion on the movement of the par
dislocations and calculate both the formation energies
kinks and their migration barriers. Finally, in Sec. IV w
present the first, to the best of our knowledge, hig
resolution electron microscopy images of dislocation core
©2003 The American Physical Society15-1
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diamond. The lattice images reveal dissociation of both
and screw dislocations, although some of the latter rem
undissociated.

II. COMPUTATIONAL METHOD

Continuum elasticity theory supposes that atomic d
placements vary slowly over the dimensions of a defect
thus fails to address properly the properties of the disloca
core, where the atomic displacements are considerable
model this region, and remove the uncertainty implicit in t
use of empirical potentials, a first-principles electronic str
ture method is to be preferred. In this work we use adensity-
functional-basedtight-binding approach~DFTB!. Here the
electronic wave functions are approximated by a linear co
bination of atomic orbitals involving a minimal basis set os
andp orbitals. The two center Hamiltonian and overlap m
trix elements result from atom-centered valence electron
bitals and the atomic potentials from single-atom calcu
tions in density functional theory ~DFT!. Exchange and
correlation contributions in the total energy as well as
ionic core-core repulsion are taken into account by a rep
sive pair potential. The latter is obtained by comparison w
DFT calculations. Thus the DFTB method can be seen a
approximate density functional scheme.19,20 In this work, the
structures are geometrically optimized using a conjugate
dient algorithm until all forces are well below 5
31023 eV/Å.

Recently, the DFTB method has been applied to mo
dislocation core structures and energies in diamond14,15 and
was found to give results in good agreement with D
pseudopotential calculations~AIMPRO21,22!. Also, excellent
agreement was found with other DFT calculations13 carried
out on the 90° glide partial dislocation in diamond.

As stated in Ref. 14, DFTB overestimates the elastic c
stants when compared with experimental values. Apply
the Voigt averaging procedure9 results in a shear modulus o
m5554 GPa~3% too large! and a Poisson’s ration50.088
~29% too large!. The gross error in the latter is not regard
as a serious objection to DFTB as expressions for the en
usually involve 16nn where n is 1 or 2 ~see Hirth and
Lothe9 for expressions for dislocation energy factors and
teraction forces between dislocations and between kin!.
Consequently, the large error for the Poisson’s ratio has
appreciable effect on the energies of defects reported he

III. THEORETICAL RESULTS AND DISCUSSION

We previously14 investigated the structure and the en
getics of the shuffle screw dislocation. However, the shu
screw dislocation is a metastable defect and cannot disso
without overcoming an energy barrier. It is apparent t
there is more than one type of screw dislocation and be
discussing the energetics for dissociation in greater detai
is necessary to describe the different structures and ene
of the undissociated screw dislocation.

A. The 1
2 †11̄0‡ screw dislocation

To analyze the isolated straight screw dislocation in d
mond, the supercell-cluster hybrid model, as described
01411
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Ref. 14 is used. The model contains a single dislocation s
ment which is repeated periodically along the dislocat
line. Surrounding the core is a cylinder of bulk diamon
terminated by hydrogenated surfaces. This hydrogena
does not represent a real physical presence, but is mea
suppress reconstruction and electrical activity of the surfa
hence giving a better approximation to bulk material. W
showed previously that clusters containing around 600 ato
with single or double periodicity along the dislocation lin
were sufficiently large to reproduce the asymptotic strain
ergy given by elasticity theory.

To obtain an initial structure for the screw dislocation, t
atoms of a hybrid model, as described above, are displa
with respect to their positions in a perfect lattice.33 However,
several structures are possible, depending on the origin o
radial symmetric displacement field. All of these repres
different screw dislocations which can transform into ea
other without the need of vacancies or interstitials. One
distinguish between shuffle and glide in a similar way as

the case of the perfect 60° dislocation. For a1
2 @11̄0# screw

dislocation there are two sets of$111% planes containing its
line direction. Hence, in terms of shuffle and glide, there
three possible unique types as illustrated in Fig. 1~left!:
Shuffle, glide, and mixed. The first two have shuffle, or
spectively, glide character with respect to both the horizon
and the inclined set of$111% planes, whereas the mixed typ
has shuffle character with respect to one and glide chara
with respect to the other set of$111% planes.

a. Core structures.The relaxed structures of the thre
types of the screw dislocation can be found in Fig. 2. T
bond angles and lengths near the core of the shuffle struc
are stretched but all bonds are bulklike and all atoms rem
fourfold coordinated. This is a result of the origin of th
displacement field avoiding any bonds or atoms. The sit
tion is very different for the glide screw and for the mixe
screw, where the origins lie exactly on a row of bonds@see
Fig. 1 ~left!#. As a result, the two neighboring atoms (A and
B in Fig. 2! connected by one of those bonds are displa
with respect to each other by half the Burgers vector alo

@11̄0#.

FIG. 1. The three types of the12 @11̄0# screw dislocation:
Shuffle, glide and mixed~labeledS, G, andM , respectively!. Left:

The core positions projected into the (110̄) plane. The two sets o
$111% planes containing the line direction are indicated.Right:
Relative core energies of the three different types and barriers
tween them. Thex axis gives a parameter for transformationG
→S→M ~see text for further details!.
5-2
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DISLOCATIONS IN DIAMOND: DISSOCIATION INTO . . . PHYSICAL REVIEW B68, 014115 ~2003!
In case of the glide screw this leads to a planarsp2 bond-
ing situation for both atomsA andB which are separated b
0.90 Å. Subsequent structural relaxation pushes the two
oms apart, resulting in an appreciable C-C bond len
of 1.33 Å. The relaxed structure is basically that of two 3
partial glide dislocations in the same Peierls valley. Ho
ever, there is no bond reconstruction along the disloca
line.

For the mixed-type screw dislocation, the two atoms cl
est to the origin of the displacement (A andB in Fig. 2! are
widely separated in the@11̄0# projection. Thus, after dis
placement, their distance is large enough to break the c
necting bond. Subsequent relaxation doesnot lead to a bond
reconstruction. The mixed structure was suggested by K

FIG. 2. The relaxed core structures of the three basic type
1
2 @11̄0# screw dislocations~compare with Fig. 1!. For each struc-

ture theleft figure gives the projection into the (110̄) plane and the
right figure the projection into the (111) plane.Upper panel:The
shuffle screw. In the@111# projection~right! two ~111! planes are
shown, the lower one is drawn in light gray.Middle panel: The

glide screw. AtomsA and B ~and equivalent atoms along@11̄0#)
are only threefold coordinated.Lower panel:The mixed-type screw.
Again, in the@111# projection~right! two ~111! planes are shown
the lower one is drawn in light gray. The distance between AtomA
andB ~and equivalent atoms along@11̄0#) is too large for bonds to
be formed.
01411
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zumi et al.,23 and for III-V compound semiconductors th
same authors claim it to be more stable than the shuffle st
ture.

b. Energetics and stability.To model the transformation
from M→S and G→S and to scan for barriers betwee
them, the two atoms adjacent toM , or respectively,G are

constrained parallel to the (110̄) plane, preventing relax
ation to a stable or metastable position. In Fig. 2 these at
are labeledA andB, a different pair forM→S andG→S,

respectively. The@11̄0# projected distance betweenA andB
defines the configuration coordinate used in Fig. 1~right!.
The curve represents about 20 grid points forG→S and 10
grid points forS→M , interpolated by a spline. When mod
eling transformationM→S and G→S, the surface of the
supercell-cluster hybrid is maintained. Hence, if in structu
S the dislocation core is centered with respect to the surfa
then inM it will be slightly off center. Fortunately, this sym
metry breaking has only a small effect on the total ener
Test calculations give an energy lowering of,80 meV/Å if
a screw dislocation is displaced along a full lattice translat
away from the center. As both transformationsM→S and
G→S involve only half a lattice translation, the effect on th
energy will be much smaller.

The glide screw appears to be the lowest-energy struc
and is chosen as energy zero in Fig. 1. The shuffle screw
a ;860 meV/Å higher core energy, which is, however
least metastable with a barrier of;180 meV/Å. Finally the
mixed type exceeds the shuffle type by;560 meV/Å. The
latter structure is unstable and represents a saddle poin
tween two adjacent sites of the shuffle core.

B. Dissociation into 30° and 90° partials

As discussed in Ref. 14, the screw dislocation can dis
ciate into two 30° glide partial dislocations and the 60° gli
dislocation can dissociate into a 30° and a 90° glide part
In both cases the pair of partials is separated by an intrin
stacking fault. Since the structures and core energies of
60° glide and of the partial dislocations have been presen
in detail previously, they will not be repeated here. It h
only to be noted that the 90° glide partial exists in both
single-period and double-period core reconstruction, with
latter possessing a lower energy. For reasons of simplic
however, in this work we will only consider the single-perio
core structure explicitly and then extrapolate for the doub
period core whenever possible.

a. The dissociation energy in the elastic limit.When it
comes to the dissociation of perfect dislocations into Sho
ley partials, the two competing energy contributions in t
elastic limit are the stacking fault energy and the elas
partial-partial interaction energy. The former grows prop
tionally with partial-partial separationR: EISF/L5g R gives
the energy per unit length. In an infinite and isotropic crys
the interaction energy of two straight and parallel disloc
tionsA andB of arbitrary Burgers vectorsbA andbB and line
directionø is given as:

of
5-3
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A. T. BLUMENAU et al. PHYSICAL REVIEW B 68, 014115 ~2003!
Eint~R!

L
52

m

2p H ~bA•ø!~bB•ø!1
~bA3ø!•~bB3ø!

12n J lnS R

R0
D

2
m

2p ~12n! R2
@~bA3ø!•R#@~bB3ø!•R#. ~1!

HereR is the distance vector between the two dislocatio
Equation~1!, which was first developed by Nabarro,24 allows
the calculation of the interaction energy except for an ene
shift } ln(R0 /Å). This shift cannot be determined in linea
elasticity theory.

When a perfect dislocation dissociates, the two part
usually reside in the same glide plane and the term pro
tional toR22 in Eq. ~1! vanishes. The interaction energy the
simply varies logarithmically withR.

b. Atomistic modeling.Dissociation of a perfect disloca
tion into two partials bordering a stacking fault creates
defect whose core is considerably extended within the g
plane. It is not possible to describe this structure as a sin
defect without constraining the stacking fault ribbon. He
we use hybrid cluster models with about 700 atoms cont
ing the two partials separated by up to 8.75 Å correspond
to four lattice translations along@ 1̄1̄2#. The distances be
tween the surface H atoms and the cores is then 9.5 Å. Fi
3 shows the relaxed geometries for the undissociated sc
and 60° glide dislocation, as well as the second and also
fourth dissociation step leading to wider stacking faults. T
corresponding relative energies are given in Fig. 4.

Now, with the atomistic results at hand, the unknown e
ergy offset} ln(R0 /Å) of elastic interaction energyEint /L in
Eq. ~1! can be found easily by adjustingEint /L1EISF/L to
the atomistic DFTB energy at the fourth dissociation step

FIG. 3. The first stages of dissociation of the glide screw and

60° glide dislocation. The view is projected into the (110̄) plane.
The top structure labeled (0) shows the respective undissociat
perfect dislocation. The stacking fault in the second (2) and fourth
(4) dissociation step is shaded.Left: The dissociation of the
1
2 @11̄0# glide screw into two 30° glide partials.Right: The disso-
ciation of the 60° glide dislocation into a single-period 90° gli
and a 30° glide partial.
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this calculation, we take shear modulusm, Poisson’s ration,
and stacking fault energyg to be 554 GPa, 0.088, an
293 mJ/m2, respectively. These are the values found with
DFTB method.14 This procedure yieldsR051.7 and 4.4 Å
for the screw and 60° dislocation, respectively. In Fig. 4,
resulting energies deduced from Eq.~1! and the stacking
fault energy are drawn as solid lines for both dislocati
types and allow an extrapolation to larger stacking fa
widths. One can observe that the atomistic calculation
continuum theory still agree well for the third stage of d
sociation. For smaller stacking fault widths lying in the r
gion of overlapping dislocation core radii, however, the d
viation becomes obvious and finally, asR→0, the
continuum result diverges.

Both for the screw and 60° dislocation, the final dissoc
tion energy at equilibrium separation between the partial
clearly below the energy of the undissociated dislocat
(21.06 eV/Å and20.680 eV/Å, respectively!. Hence, dis-
sociation into partial dislocations is strongly favored on e
ergetic grounds.

A striking difference between the dissociation of the tw
types of dislocations is the presence of an energy barrie
;180 meV/Å to initiate dissociation of the 60° dislocatio
whereas for the screw there is no such barrier. It should
noted, however, that barriers, which are not shown in Fig
must separate each structure denoted by (0), (1) to (4), else
these structures would be unstable. In fact, the energies g
refer to structures corresponding to local minima where
dislocations occupy Peierls valleys. Each dissociation s
requires a barrier to be overcome and a high tempera
and/or high stress is then required to move the partial di
cation. This thermal motion of the glide partials will be co
sidered in the following section.

Finally, in the case of the dissociation of the 60° glid
dislocation, only the single-period 90° partial was cons
ered. The energy of the respective systems containin

e

FIG. 4. The dissociation energy of the glide screw and the 6
glide dislocation. The relative atomistic density-functional-bas
tight-binding energies of the first four dissociation steps and of
undissociated dislocation are labeled (1) to (4) and (0), respec-
tively. Zero energy is set to the undissociated dislocations. The s
lines represent the sum of the stacking fault energy and the el
interaction energy as given in continuum theory@Eq. ~1!#. The
shaded region,;6 Å, indicates where the two core radii of th
respective partial dislocations overlap—the region where c
tinuum elasticity theory fails.
5-4



7
s.

na
ro
he
nk
cu
on
y i
r-
on
ch
ho
io

en
gy

ic
x

d-

i-
st
n
tio
te
an
t-

u

e
in
r

f t

gy
n
th
a

a

n

-

ti-
the

pa-
om
rier
d in
h
ds

eir
ial,
le

p
two
ect-

l.
tep

ate

ding
e

DISLOCATIONS IN DIAMOND: DISSOCIATION INTO . . . PHYSICAL REVIEW B68, 014115 ~2003!
double-period 90° instead would be approximately 1
meV/Å lower, as given by the differences in core energie14

C. Dislocation glide motion

Dislocation glide arises from stress derived from exter
forces on the crystal or, as discussed in the last section, f
the interaction with neighboring dislocations. When t
stress is insufficient to overcome the Peierls barrier, ki
must be generated by a thermal process and motion oc
by their migration along the dislocation line. Since kinks
a dislocation line can only be created in pairs, their densit
thermodynamic equilibrium is controlled by double-kink fo
mation energy 2Ef , whereas their rate of motion depends
kink migration barrierWm. In the case when obstacles su
as point defects and impurities are not present, and for s
dislocation segments, the activation energy for glide mot
Q is then given as the sum of 2Ef andWm. One obtains for
the glide velocity:9

vdisl}e2Q/(kT) with Q52Ef1Wm. ~2!

For long dislocation segments, however, the activation
ergy is controlled by the sum of single-kink formation ener
Ef and kink migration barrier.9

In the following, the two crucial parametersEf and Wm
for the 30° and the 90° partial will be found. The energet
of reconstruction phase defects, as discussed in the conte
dislocation glide in silicon in Refs. 25,26 will not be consi
ered.

1. Kink formation and migration at the 90° partial

a. Kink formation.The analysis of the formation and m
gration of kinks was carried out using a hydrogenated clu
C420H214. This avoids the effect of kink-kink interaction i
periodic cells although, of course, there is then an interac
with the cluster surface. For the 90° glide partial, this clus
extends six lattice translations along the dislocation line
allows double kinks with a kink-kink separation of two la
tice translations~A2 a0 with a0 as the lattice parameter! to be
investigated. The nearest distance of the kink with the s
face is thenA2 a0.

Figure 5~top left! shows projection onto a section of th
~111! glide plane containing a relaxed and reconstructed k
at the single-period 90° partial. All atoms are fourfold coo
dinated and the stacking fault is shaded. The structures o
left kink ~LK ! and the right kink~RK! are identical. The
formation energy of the kink pair, with separationL
5A2 a0, is obtained as the difference in total DFTB ener
between the fully relaxed model containing the kinked a
one of the same stoichiometry and geometry containing
unkinked dislocation segment. No surface constraints
used. The calculation yields a formation energy ofEpair(L
5A2 a0)51.0 eV.

Assuming the formation energy of a single left kink and
single right kink to be the sameEf , and including the energy
of the faulted region generated together with the kinks, o
obtains:

2Ef5Epair~L !2EKK~L !2aLg. ~3!
01411
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Herea is the kink height andEKK(L) the elastic kink-kink
interaction energy given as:9

EKK~L !52
m a2

8p L ~12n!
$ub•øu2~11n!1ub3øu2~122n!%.

~4!

For the 90° partial, one obtains:

EKK~L !52
m a2

8p L

122 n

12n
ub90u2. ~5!

With a kink heighta5A3/8a0 corresponding to the separa
tion of Peierls valleys, the single-kink formation energyEf is
520 meV. For the particular kink-kink separation inves
gated, the elastic interaction and the contribution of
stacking fault nearly cancel each other.

b. Kink migration.To model kink migration along the
dislocation line, the elementary migration step has to be
rametrized so that the minimum-energy path leading fr
the starting to the final structure can be found and the bar
determined. Fortunately, all kink migration steps discusse
this work involve mainly the motion of two atoms whic
break bonds with neighboring atoms and form new bon
in the migration process. All other atoms remain at th
respective lattice sites. For a right kink at the 90° part
this is illustrated in Fig. 5. To find the intermediate sadd
point structure S, the elementary kink migration ste
was parametrized by the coordinates of each of the
core atoms at the end of the kink projected onto the conn

FIG. 5. Kink migration at the single-period 90° glide partia
The three main stages of one elementary kink migration s
are illustrated: The relaxed structures of starting kinkK , saddle
point S, and migrated kinkK 8 are shown projected into the
glide plane. The faulted region is shaded and arrows indic
the motion of the two involved atoms.Lower left panel: The
parameterized energy surface of the corresponding process lea
from K via S to K 8. The two parameters are defined via th
projected coordinates of the two involved moving atoms~see
text!.
5-5
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A. T. BLUMENAU et al. PHYSICAL REVIEW B 68, 014115 ~2003!
ing line between their initial and final positions. Varyin
these two parameters independently yields a tw
dimensional energy surface, as shown in Fig. 5~lower left
panel!.34

This procedure was applied to a cluster containing a
location segment with a single right kink, as well to one w
a single left kink. The migration barrier appears to beWm
52.5 eV for both.

c. Glide motion of the 90° partial.With the kink migration
barrier as well as the formation energy now at hand,
activation energy in the kink migration process evaluates
Q90'3.5 eV for short dislocation segments, following E
~2!, and 3.0 eV for long segments. The energy correspond

FIG. 6. Schematic representation of the energy of the glide p
cess for the single-period 90° glide partial: A kink pair is form
and subsequent migration of the two kinks enlarges their separa
K , S, andK 8 are labeled for an arbitrary migration step. The dash
line connecting the minima represents the formation energy of
kink pair. The energy contribution of the expanding stacking faul
not included in the graph.
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to the whole glide process of the single-period 90° gli
partial is schematically shown in Fig. 6. The first few minim
are considerably lower due to the attractive kink-kink inte
action.

Since the elementary processes are the same for kink
gration along the double-period 90° glide partial, a simi
barrier and formation energy can be expected.

2. Kink formation and migration at the 30° partial

This partial adopts a double-period reconstruction14

Hence, the situation is more complex and several differ
kink structures are involved.

a. Kink formation.Depending on the kink position rela
tive to the reconstructed bonds along the core of the
partial, two different structures for the left kink as well as f
the right kink are possible. These different structures will
labeled LK1 and LK2 and RK1 and RK2, respectively. Fi
ure 7 shows sections of the~111! glide plane containing the
relaxed and the reconstructed kink structures. As in the c
of the 90° partial, for each kink all atoms are fourfold coo
dinated. To obtain the kink formation energies, clust
similar to those for the 90° partial are used. However, unl
the 90° partial, the structures of left and right kinks a
very different and therefore, a similar formation energy ca
not be expected. Now, in a cluster the formation ene
of a single kink cannot be determined and it is only possi
to obtain the sum of the two formation energies simi
to Eq. ~3!:

Ef~LKX!1Ef~RKY!5Epair~X,Y,L !2EKK~L !2aLg.
~6!

-

n.
d
e

s

e.
s.

wo kinks
re shown
he energy
FIG. 7. Kink migration at the 30° glide partial.Upper panel:The elementary kink migration steps of the left kink LK2→LK1
→LK2 8. The relaxed structures of a starting kinkLK2 , and the subsequent kinksLK1 andLK2 8 are shown projected into the glide plan
The saddle point structures are not given. The faulted region is shaded and arrows indicate the motion of the two involved atomLower
panel: The elementary kink migration steps of the right kink RK2→RK1→RK28. Right upper and lower panels:On the far right a
schematic representation of the energy of the glide process is given: A kink pair is formed and subsequent migration of the t
enlarges their separation. Since for the 30° partial the migration barriers differ for left and right kinks, the corresponding processes a
separately. The dashed line connecting the minima represents the formation energy of the respective lowest energy kink pair. T
contribution of the expanding stacking fault is not included.
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X andY can be 1 or 2~compare Fig. 7!. For the 30° partial
the elastic kink-kink interaction energy evaluates as@Eq.
~4!#:

EKK~L !52
m a2

32p L

41n

12n
ub30u2. ~7!

The formation energies of all possible four combinatio
(LKX,RKY) yields:

~1! Ef(LK1) 1Ef(RK1)53.0 eV.
~2! Ef(LK2) 5Ef(LK1) 12.2 eV.
~3! Ef(RK2)5Ef(RK1)10.8 eV.

LK1 and RK1 are the lowest-energy kinks. Thus, in the ki
migration process it is an LK1-RK1 double kink that will b
preferentially formed at the initial stage. However, sub
quent migration inevitably involves the two high-ener
kinks as intermediate structures.

b. Kink migration.As a consequence of four different kin
structures being involved, four migration barriers have to
determined. The corresponding migration steps LK2→LK1
→LK2 8 and RK2→RK1→RK28 are shown in Fig. 7. As
one can see, LK2→ LK1 is just the reverse process o
LK1→LK2 8 since all involved structures are symmetr
within the glide plane if the different stacking on either si
of the dislocation is ignored. The same holds for RK
→RK1 and RK1→RK28. As expected, the two barriers fo
left kink migration are found identical within 1% error an
so are the two right kink barriers:

~1! Wm(LK) 53.5 eV.
~2! Wm(RK)52.7 eV.

b. Glide motion of the 30° partial.Figure 7 shows the
resulting energy of the glide process at the 30° partial for
itinerant right and left kink separately. The physical pictu
mirrors that of the 90° partial. However, the existence of t
different barriers for left and right kink migration results in
modified expression for the partial velocity. Equation~2! is
replaced by:26

vdisl}e2[Ef(LK1) 1Ef(RK1)]/kT@e2[Wm(LK)]/ kT1e2[Wm(RK)]/kT#.
~8!

Due to its lower migration barrier, the right kink i
more mobile than the left kink and dominates the par
velocity. However, unlike in the case of the 90° parti
where the migration barriers clearly control the velocity, he
the rather high kink formation energy plays an almost eq
role.

The arithmetic mean of the activation barriers for rig
and left kink formation and migration evaluates asQ̄30
'6.1 eV for short dislocation segments. The 90° partial
pears to be the by far more mobile partial dislocation. T
stacking fault width will then increase if the mobile parti
leads, increasing the back stress on the leading partial
hence slowing it down. The reverse happens if the mo
partial trails.
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3. Comparison with independent theoretical work

Similar atomistic calculations of kink formation energie
and mobilities have been carried out in Ref. 26 for silic
only, and thus cannot be compared directly. The structu
found for silicon are very similar to those found for diamon
in this work. However, formation energies and barriers a
pear to be considerably lower in silicon than they are
diamond, which reflects the hardness of diamond. Also,
silicon the left kinks appear to be the more mobile specie
the 30° partial.

For the 90° partial in diamond, theoretical results for t
activation barrierQ90 vary between 2.9 eV for a soliton
mechanism as described in Ref. 27 and 3.3 eV in Ref.
both lower than the 3.5 eV found here.

IV. HIGH-RESOLUTION ELECTRON MICROSCOPY

A. Sample preparation and experimental setup

Several samples of brown natural type IIa diamond w
treated at different temperatures with diamond stabiliz
pressures@i.e., high-pressure, high-temperature~HPHT! an-
nealing#. Diamond slabs with dimensions of approximate
2 mm32 mm3100 mm were produced for TEM specimen
by laser cutting and subsequently thinned by ion-beam m
ing to electron transparency.

We applied high-resolution electron microscopy~HREM!
to these samples to resolve the atomic core structures of
locations. For HREM, a JEOL 4000EX microscope with
Scherzer resolution of 0.17 nm was used. All samples w
oriented with thê 011& axis parallel to the electron beam
For the interpretation of HREM observations it is necess
to have the dislocation line as close as possible to the@110#
viewing direction. When the dislocation line lies local
along the@110# direction, the in-plane strain field around th
dislocation line is approximately symmetrical. The contra
produced in these HREM images enables us to resolve
atomic structure of the dislocation core and to compare th
experimental images with the theoretically calculated dis
cation core structures.28

B. Results

Experimental evidence of dissociated 60° dislocations
type IIa diamond has been given earlier by Pirouzet al.10

using weak-beam TEM. In the same work the stacking fa
energy was determined. Previous HREM work mainly f
cused on various defect structures such as dislocati
stacking faults, and twins and grain boundaries in thin fil
of synthetic diamonds.29–32In this context, the stacking faul
energy was determined by deducing the ribbon width fr
HREM observations of dissociated 60° and screw dislo
tions in synthetic diamond.28

Our plan-view HREM images show 60° dislocations
plastically deformed natural type IIa brown diamonds af
HPHT annealing. With our investigation limited to line d
rections alonĝ110&, mainly dissociated 60° dislocations a
observed.

Figure 8 depicts a HREM image of a 60° dislocation d
sociated into a 90° and 30° partial. The two partials bor
5-7
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the same stacking fault which is marked by an arrow in b
figures. A Burgers circuit is drawn around each partial. T
yields Burgers vectors projected into the (110̄) plane of
1
6 @ 1̄1̄2# @Fig. 8~a!# and 1

12 @ 1̄1̄2# @Fig. 8~b!#. Assuming dis-
locations with minimal line energies, which implies minim
Burgers vectors, together with the position of the stack
fault, allows us to identify the two Burgers vectors to beb1

5 1
6 @ 1̄1̄2# and b25 1

6 @12̄1# ~or b25 1
6 @ 2̄11#), respectively.

The geometry around the dislocation cores is resolved to
extent where it is possible to identify the partial dislocatio
Hence, the line direction and projected Burgers vectors
known and the two dislocations are identified as 90° and
partial, respectively. The corresponding atomic structure
shown in Fig. 3@(4), right panel#, however, with a smaller
stacking fault width.

From the contrast it was not possible to determ
the exact position of the two core lines of the dislocatio
probably since they are slightly kinked. Neverthele
the stacking fault width could be estimated. For all inves
gated dislocations we find an estimated width
3.1060.21 nm. This is very close to the results of t
calculations presented in Sec. III, where 3.50 nm w
predicted.

FIG. 8. Plan-view high-resolution electron microscopy image
a dissociated 60° dislocation into a 90°~a! and a 30° partial~b! in
plastically deformed type IIa diamond after high-pressure, hi
temperature annealing. The Burgers circuits are drawn for both
tial dislocations. The glide partials border the same stacking f
ribbon, whose plane is marked by an arrow and a thin white l
Burgers vectors of the glide partials are also indicated near
Burgers circuits.
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Although most 60° dislocations are found to be disso
ated, some appear to be undissociated, as shown in Fi
The closure failure of the Burgers circuit in the HREM im
age determines the projected Burgers vector at1

4 @ 1̄1̄2#
which corresponds to a perfect 60° dislocation. The atom
core structure of the undissociated 60° glide dislocation
shown in Fig. 3@(0), right panel#. The observation of undis
sociated dislocations in plastically deformed diamonds
consistent with a barrier to dissociation as found above
Sec. III, or alternatively, to an impurity effect. No scre
dislocations could be identified. However one has to keep
mind that in HREM only a small region of a sample can
imaged. Thus, the absence of screw dislocations in our
ages doesnot imply they do not exist in the investigate
samples.

V. SUMMARY AND CONCLUSIONS

We have shown that dissociation of the 60° dislocat
into a 30° and a 90° Shockley partial separated by a stac
fault is strongly favored from an energetic point of view
The dissociation, leading to a stacking fault width
35 Å, produces an overall energy lowering of arou
680 meV/Å. However, the first stages to the dissociat
process reveal an energy barrier around 180 meV/Å. Su
barrier might explain the observation of some undissocia
60° dislocations in the HREM images. Most 60° dislocatio
are, however, dissociated with a stacking fault width arou
30 Å.

These findings match well with our HREM experimen
on natural brown diamond, where we find a majority of 6
dislocations dissociated into 30° and 90° Shockley parti
but some remaining undissociated.

Several possible core structures are examined for
screw 1

2 @11̄0# dislocation. The three types: glide, shuffl
and mixed can be transformed into each other by the m
breaking and forming of bonds. The shuffle screw is found
be metastable, and around 860 meV/Å higher in energy t
the glide structure. The latter resembles closely two 3
glide partials occupying the same Peierls valley. Howev
the bonds in the core are not completely reconstructed.
dissociation of this screw yields an energy drop of appro
mately 1 eV/Å. If the barrier to movement between Peie
valleys can be overcome, the screw dislocation will spon
neously dissociate.

Unfortunately, the HREM images failed to locate an

f

-
r-
lt
.
e

FIG. 9. Plan-view high-resolution electron microscopy image
an undissociated 60° dislocation in plastically deformed type
diamond after high-pressure, high-temperature annealing. The
gers circuit is indicated.
5-8



o

d
n
s
rg
a
tia
th
m

e

at
d
-

c.

lo

ler

-
o.

.R

s

en

im
J.E

hy

r.

el,

-
i-

P.R.

A

ater.

J.

ole
ms
ect-
f

DISLOCATIONS IN DIAMOND: DISSOCIATION INTO . . . PHYSICAL REVIEW B68, 014115 ~2003!
~dissociated! screw dislocations although we are unaware
any evidence for undissociated screws.

The glide of 90° and 30° partials has been considere
terms of processes involving kink formation and migratio
Under these assumptions, the 90° glide dislocation prove
be the more mobile species, with a thermal activation ene
of 3.5 eV for short dislocation segments. The migration b
riers are on average 0.5 eV larger for the 30° glide par
while the double-kink formation energy exceeds that of
90° partial even by 2 eV. Thus the resulting average ther
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