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Resonance mode expansions and exact solutions for nonuniform gratings
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Resonance modes play an important part in understanding linear nonuniform gratings, analogous to the role
played by waveguide modes in waveguide theory. Using resonance mode expansions, exact expressions are
obtained for the fields, the grating profile, and the reflection and transmission spectra for a large class of
nonuniform linear gratings. The method can deal with linear gratings that couple a pair of either copropagating
or contrapropagating modes. The formalism covers the effects of gain anghltiss small signal limix, chirp,
taper, and birefringence. The exact solutions can be used to investigate designs for grating structures. Two
detailed example applications of the technique are presented here: an exact solution for a grating that supports
only a single resonance mode, and an exact solution for a grating that has nonreciprocal reflective properties
from its two ends[S1063-651X96)04909-4

PACS numbeps): 42.81.Wg, 42.82.Gw, 78.66w

I. INTRODUCTION tween the grating profile and its response and will be of
benefit in grating analysis and design.

The central role that waveguide modes and modal analy- The formalism presented here is based on the following
sis play in the theoretical analysis of linear waveguides witHfive important concepts(l) Linear gratings support reso-
a variety of cross sections is well established. In this paper, Bance modes2) The general solution for propagation in the
different type of mode relevant to linear gratings is explored 9rating is represented as a superposition of these m(mes..
These resonance modes play an analogous role in the thebb€ profile of the grating structure is also represented in
retical analysis of linear nonuniform gratings. The generaf€ms of a superposition of these modéd. The response
solution for wave propagation in a linear waveguide can bésPectra(reflection, transmission, and cross coupliing the
expressed as a superposition of its waveguide modes. Sinfifating can be represented in terms of the resonance frequen-
larly, in this paper, the general solution for propagation in a¢ies associated with these modés). A mathematical con-
linear grating is expressed as a superposition of its resonan&iStency relation between different solutions to the same
modes. coupled mode equations is used to deriveear algebraic

The quantity analogous to the propagation constant of gquat?onsfor_the mod_es, and thus obviate the need to solve
waveguide mode is the characteristic or resonant frequencdy differential equations. _
of the grating resonance mode. These resonant frequencies N addition, exag:t_analytlcal results are obtained for grat-
correspond to singularities in the spectral responses, such §9s that have a finite number of nondegenerate resonance
reflectance and transmittance, of the grating. These resonaftodes. The validity of the analysis and the existence of this
frequencies have previously been used to explore propag&lass of gratings is establishedposterioriby explicit con-
tion in gratings using effective medium methddg and to  Struction of such gratings and their fields.

obtain variational and perturbation resyi®3. However, pre- The analysis is based on linear coupled mode theory
viously less attention has been paid to the actual modést.13| and applies to linear structurésicluding chirped, ta-
themselves. pered, and blazed gratings with varying refractive index,

Much of the progress in linear waveguide theory, designgai”: or birefringenc)_ethat couple two discrete modes._The
and application has depended on the availability of a largéoupled mode equations used here, however, do not include
number of exact solutions, both to help with conceptual un£ffects such as nonlinearity, simultaneous coupling between
derstanding and to act as starting points for more detailef0re than two modes, or coupling to radiation mo¢ssce
numerical and experimental work. Presumably, the availabiltheése modes are not discret&he coupled mode equations
ity of a very large(in fact, infinite) class of exact solutions to @S used here are derived in detail in Appendix A and can be
nonuniform linear grating problems will also aid conceptualWritten in the form
understanding and provide starting points for more detailed g 10
investigations. _ o _ _ i(—+———>U(z,t)+q(z)V(z,t)=0, (1a)

Recent advances in the fabrication of fiber gratings now Jz cdt
allow the formation of gratings with quite complicated pro- ) 14
files [3—7]. The nonuniform grating profiles provide extra . — _
degrees of freedom, which can be exploited in the design of '(E_E_ﬁ) V(z)=q(2)U(zH)=0, (1b)
grating-based devicel8—11], and some preliminary work
exists on the relationship between grating profiles and gratwhereU andV are the slowly varying amplitudes of the two
ing response characteristi® 12]. The availability of a class modes being coupled by the grating and the coupling func-
of exact profiles and their corresponding fields will helptions g andq represent the grating structure and are related
deepen knowledge and understanding of the relationship bée the amplitudes and phases of periodically varying quanti-
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ties such as the index, the gain, or the birefringence. The
precise relationship between the profilgsand q and the (a)
physical parameters of the grating are given in Appendix A.

For monochromatic or cw solutions with

¢ Bn? NS

U(z,t)=u(z)e (@@t (2a ®) ¢

V(z,t)=v(z)e (@ @t (2b) FIG. 1. Schematic of resonance modes for linear gratitaysA
gain resonance for contrapropagating modbsA gain resonance
the coupled mode equations take on the much simpler fornfor copropagating modes. Note that the expressions given are for
the amplitudesu andv of the coupled modes, and therefore the
+iu’(z)+du(z)+q(z)v(z)=0, (39 signs of the exponents are not related to the direction of propagation
of the underlying modes.
—iv'(2)+ 6v(z2)+9(2)u(z)=0, (3b) ] )
The fields are chosen to be normalized such thd0)=1.
where 5= (w— wp)/c is the detuningw is the frequency of ~The external fields associated with this resonance mode are

the incident wavepw, is the frequency at which the waves then
are phase matched to the grating, ase w,. Alternatively,
Egs. (3) can be viewed as the Fourier transform in time of
the time-dependent system in Eqg).

If the frequencyw is generalized to complex values then
the imaginary part of the frequency will describe signal\yheret, s identified as the transmission coefficient associ-
growth and attenuatiofin the small signal and undepleted gieq with this resonance mode. For a semi-infinite grating the
pump limit) and a positive imaginary part corresponds t0 10Ssorresponding boundary conditions and transmission coeffi-

vm(z)=e 4 7<0, (5a)

Um(2)=tye'*m, z=L, (5b)

and a negative imaginary part corresponds to gain. cient are
In this paper both finite length and semi-infinite gratings
are considered. Finite length gratings are assumed to be lo- Un(0) = limv (z)e*4m?=0, 4
cated over the region<Qz<L and the semi-infinite expo- 2o
nentially tapering gratings over the region<@<ow. The _
grating profiles,q andq, are zero outside these grating re- tm= limup(z)e™ "4, (5b")

Z—®©

gions or decay exponentially as— .
The definition of resonance modes and their properties is

discussed in Sec. Il. The general solutions for the fields in ase of contrapropagating modes and correspond to lasers at
the grating for different boundary conditions are represente propagating P

by a superposition of the resonance modes in Sec. Ill. Ex. reshold: there are no incident waves on either end of the

pressions for the various response spectra, such as reflecti d?]t;n[%‘egngi W%%S '?Lee (znr:gtred ?g gr]:’i tq[rha;glg vlvna\t/)g;ha?ilégg-
transmission, and cross-coupling spectra are also given | : 9. & 9y :
rom gain. For this reason, these resonances will be referred

that section. The representation of the grating profiles as 8 as gain resonances and the imaginary part of the detunin
superposition of resonance modes and the mathematical con- 9 gihary p 9

sistency relations that lead to the exact solutions are derive agiit Sﬁgsgelgég ml)ffh?a. Trg(teir:e?tls%?frthggnr; IoS rzilgfﬂ;%;hfhen
and presented in Sec. IV. gireq Y. grating g ,

Some examples and simple applications of these result%1e imaginary part oAy, is related to the threshold gain

are presented in Sec. V. The derivation of the coupled mod([-:eq_ﬁ']r:d ;?nizglgr\:gr:gzlsn%éve a different phvsical interoreta-
equations is given in Appendix A, additional mathematical 9 phy P

results and special cases are given in Appendices B, C, arﬂ?n when the modes are copropagating. In that §|tuat|on, the
D. résonances correspond to complete cross coupling of energy

from one mode to the other, with no energy remaining be-
hind in the original incident modgsee Fig. 1b)]. Of course,
Il. RESONANCE MODES the mathematical properties of these resonance modes are
A. Gain resonances independent of the physical interpretation.

These resonance modes have a simple interpretation in the

The first type of resonance mode is shown schematically

in Fig. 1 and is denoted by B. Loss resonances

The second type of resonance is shown schematically in

Um(2) Fig. 2 and is denoted b
Um(2) Un(2)
- m
where u,(z) andv,(z) are the coupled mode amplitudes m(2)= v_m(z)}'

satisfying Egs.(3) with the detuningé=A,,. For a finite _
grating the fields satisfy the boundary conditions If the corresponding resonance detuningjsthen the fields
satisfy boundary conditions analogous to those for gain reso-
Un(0)=vy(L)=0. (4)  nances, but with the roles of the two modes interchanged:
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FIG. 3. Boundary conditions and response coefficients for the
standard contrapropagating solution with a single incident wave.

waves emerging from the grating correspond to reflected and
transmitted waves.
This solution will be denoted by

FIG. 2. Schematic of resonance modes for linear grati@s
loss resonance for contrapropagating modbsA loss resonance
for copropagating modes.

- 5 u(z, )
vm(0)=uy(L)=0. (6) W(z,6)= v(z,5)
The corresponding normalization condition ig,(0)=1. and satisfies
The external fields have the form
L _ u(z,8)=€e'%, z=<0, (8a)
Um(z)=e€""m?,  7z<0, (74
o v(z,6)=0, z=L, (8h)
vm(Z)=te Am z=L 7b .
Uro(2) =t (70) v(z,8)=r(8)e”"?, z=<0, (80)
and the corresponding results for a semi-infinite grating are .
B u(z,8)=t(8)e*'%?, z=L. (8d)
- — lim1 —1Anz— ’
vm(0) Zli‘rlum(z)e O, ©) The first two equations correspond to the boundary condi-
tions, the last two equations identify§) andt(5) as reflec-
t—m= limo(2)eiine, (70) tion and transmission coefficients, respectively.

For a semi-infinite grating the corresponding results for
largez are

Again the physical interpretation is simpler for contra-

Z— >

— i + /
propagating modes: there are no waves emitted from either O—zl|rrlu(z,5)e 7 (80")
end of the grating, and the incident waves are completely -
absorbed by the gratingsee Fig. 2a)]. These resonances t(8)=limu(z,8)e"* @8d)
will_be referred to as loss resonances and satisfy r '
Im(A,)>0.

The interpretation for copropagating modes is identical to  The standard problem connected with the corresponding
that for the gain resonances, except that the roles of the twidme-dependent coupled mode equations corresponds to a
modes have been interchandegée Fig. 2b)]. o-function pulse incident on the grating from the left. The

solution satisfies the following initial condition in time:

IIl. RESONANCE MODE EXPANSIONS 1

Y(z,t)= 0

8(z—ct), t<0, 9

In this section various solutions of the coupled mode
equations will be represented by superpositions of the reso- - .
ngnce modes presepnted in Secy I pExSressions will be o where the incident pulse reaches the front of the grating at
tained for the solutions of both the time-dependent couple(]Ii'Tedtt:O' Tf;]e ;?Iutlt;.)nslféz,t). antd ¢(2f1 9) are directly re-
mode equationgl) and the monochromatic or cw equations ated o each other by a Fourier transtorm.

(3). Different solutions of the coupled mode equations are The grating will respond to the incident pulse by resonat-

obtained by applying different boundary conditions. Four of "9 in e}superposition Of. its natural resonance modes. Simple
these solutions play an important role in the analysis thacEausahty arguments using the characteristics of the coupled

follows. The solutions correspond to the canonical boundary&nOde equations also indicate that the solution is nonzero

conditions applied when solving problems involving eitheronly whené>|z|/c. Thus, ;hf] c$mplete solution has a reso-
copropagating or contrapropagating modes. These solutiofiénce mode expansion of the form

are not all independent and the relationships between them 1 M
allow the calculation of exact expressions for the resonanceqy z t)E[ 8(z—ct)+H(t— |z|/c_)2 an i (z)e 1 nt
modes. ’ 0 m=1 ’

(10

A. Standard contrapropagating solution whereH is the Heaviside or unit-step functiof),,=AC is

The standard problem usually connected with contrathe frequency difference associated with the resonance de-
propagating modes in a grating corresponds to a monochrduningA ,,, and the coefficienta,, correspond to the relative
matic wave of unit amplitude and detunidgincident from  contribution from each resonance. To obtain gratings and
the left, and no incident wave from the rigisee Fig. 3 The fields that have exact expressions the discussion is restricted



2966 L. POLADIAN 54

to those gratings that havefiaite numberM of resonances. o\ ibs
Since the expansion contains only a finite number of terms, T(6)e"” \rr

the validity of this expansiortand subsequent expansipns e’ e
can be establishea posterioriby explicit construction of the
corresponding gratings and their solutions. FIG. 4. Boundary conditions and response coefficients for the

The corresponding monochromatic or cw solution is ob-alternate contrapropagating solution.
tained by a Fourier transform of the above expansion and
gives Analogous results are obtained for the transmitted pulse
using the transmission spectrum.

M .
¥(z,8)=| |€'%+ 21%¢m(z)ei<5-Am>\zl. (11)

0 C. Alternate contrapropagating solution

, L _ o The standard contrapropagating solution presented above
Using the definitions of the reflection and transmission;g only one solution to the coupled mode equations. The

coefficients from Eqs(8), and the properties of the reso- gysiem of coupled mode equations has two degrees of free-
nance modes from Eqe5) yields dom (corresponding to the number of modes being coupled

Mo and therefore, to obtain the general solution to the equations,
()= 2 18m (129 a second independent solution is required: together, these
m=1 6— Ay’ two solutions will provide a complete description. The alter-

nate contrapropagating solution satisfies analogous boundary
Mo conditions to the standard solution, but with the roles of the

t(o)=1+ > amtm. (12p  two modes interchange@ee Fig. 4.
m=16—An The alternate contrapropagating solution is denoted by
Note that the gain resonance detunidgs correspond to the — u(z,6)
singularities(poleg of the reflection and transmission coef- ¥(z,0)= 22.6)
ficients. '
In general, the monochromatic or cw solution is a steady- -
state solution and only represents that part of the physicaﬁnd satisfies
solution which is oscillating at the same frequency as the — —ise
incident wave corresponding to the detunifidgf the gain in v(z,8)=e %, 2z=0, (153
the grating is above the threshold for any of the resonant L
modes, there may be additional terms oscillating at the cor- u(z,6)=0, z=L, (15b
responding resonant frequenciesmd not at the incident fre-
guency and exponentially growing in magnitude. If the gain u(z,8)=r(d)e"'%? z<0, (150
is below the threshold of all resonant modes, these additional
terms are transient and do not contribute to the cw solution. 2(2.8)=1(d)e % z=L, (150)
B. Response to an incident pulse where the coefficients(5) andt(8) are analogous to the
The response to an incident pulse can be obtained frorreflection and transmission coefficients for the standard so-
the Fourier transfornG(t) of the reflection spectrum(s),  lution. Similarly, results for a semi-infinite grating are
and is given by o _
" 0=limu(z 8)e %, (15b)
. z—%
G(t)=H(t) Zl aye Ont, (13)
m= JR— .
t(8)=limuv(z 6)e"' . (15d)
Note that the response is caufiad., G(t)=0 for t<0]. =

The shape of the reflected pulse is then given by a con- . )
volution of the incident pulse with the above response func- 1he alternate solutions are analogously expanded in reso-
tion. For example, for an incident Gaussian-shaped pulsBance modes, and this time only the loss resonances appear.

exp(—t2/T?) the reflected pulse has the shape The expansion of the time-dependent solution is
” ’ 12172\~ +! -— 0 ﬁ — L
J_wG“‘t Jexp(— T edt W(z.t)EL 8(z+ ) +H(~t=[2/C) X Anpin(2)e O,

M (16)
m__ . t 1
:gCTE ameIth(1/4)Qr2nT2erfc<_T+§iQmT), o
m=1 where ), =Ac is the frequency difference corresponding
(14)  to the loss resonance detunidg,. The expansion of the
monochromatic or cw solution is again found by a Fourier

where erfcg) is the complementary error function. transform and is
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W(z,6)=

0 Y ia L=
eioz_ m Z)e " i(6=Am)lz]
1 Pl atm(?) @
17)

Likewise, the alternate reflection and transmission coeffi- (b)
cients have the expansions

™ — FIG. 5. Boundary conditions and response coefficients for the
r_(5) __ 1am (183 (a) standard andb) alternate copropagating solutions. Note that the
m=1 6—An, signs of the exponents are not related to the direction of propagation
of the underlying modes.
M —
t(é)zl—Z |amtm. (18b) T C(5)2U(L,5_)v(L,c‘)‘)—u(L,5)v(L,5)eﬂ(SL (210
m=1 6= Am trun u(L,&)r(8)—u(L,s) '

Note that the loss resonance detunidgscorrespond to the _ )

singularities(poles of the alternate reflection and transmis- E. Copropagating solutions

sion coefficients. Further, the numbler of loss resonances Even though the mathematical form of the coupled mode

need not necessarily equal the numbEpf gain resonances. equations is the same for problems involving both contra-
Similar to the case for the standard solution, the cw solupropagating or copropagating modes, the boundary condi-

tion in Eq.(17) corresponds only to that part of the physical tions normally used are different. The standard and alternate

solution which oscillates at the frequency corresponding tesolutions for copropagating modes are shown schematically

the detuning. In general, there will also be non-steady-statein Fig. 5. At the incident end of the grating, one mode has

contributions oscillating at the resonant frequencies of theinit amplitude and the other mode is absent. At the far end of

loss resonances. the grating some of the incident energy remains in the same
mode and emerges as the transmitted wave. Some of the
D. Contrapropagating solutions for finite gratings energy is coupled to the other mode and emerges as the

) cross-coupled wave.
The solutions and resonance modes that emerge naturally The standard copropagating solution in Figa)Sis de-
from the above mathematical framework correspond to semingted by

infinite exponentially tapered gratings. Exact solutions for

the correspondingruncatedfinite gratings can be easily con- u(z,6)
structed by the appropriate superposition of the two contra- #(z,6)= ”(2,5)
propagating solutions defined earlier. '
In particular if the truncated grating is of lendththen the 59 satisfies
exact solution for the truncated grating is a superposition of
W(z,8) andy(z,8) given by w(z,8)=¢e%  z<0, (229
(L, 8)¢(2,6)—v(L,8) ¥(z,9) uz,8)=0, z=<0, (22b)
Vund 200 = TR S e o) |
. m(z,8)=1(8)e"%  z=L, (229
wherev andv are the solutions for the ideal semi-infinite _
grating. Similarly, v(z,8)=x(8)e”'%,  z=L, (220
_ u(L,d) y(z, 6)—u(L,5)ﬁz, 5) where the coefficientsy(d) and 7(5) are identified as the
Yund Z,0) = UL () —u(L.5) , (200 cross-coupling and transmission coefficients, respectively.
' ' The alternate copropagating solution in Figb)5is de-
whereu andu are the solutions for the ideal semi-infinite noted by
grating. (2.5
The corresponding spectral coefficients for the truncated &z 8)= '“_(Z’ )}
grating are ’ v(z,6)
() v(L,8)r(8)—v(L,d) 219 and satisfies
Itrun == — — .
v(L,8)—v(L,8)r(d) 2(2,6)=0, =0, (233
U_(L,a)U(L,g)_U(L,a)U_(L,é) isL e —iéz
= _ _ - v(z,6)=e ', z=<0, 23b
tiund 6) (L5 o(L.5 (D) e ot (21b (z,0) (23b)
w(z,8)=x(8)e"” z=L, (239

_ (L, 8)—u(L,8jr(d)
Found 0) = G 5)r(8) = u(L. )"

(2190 Wz, 8)=1(8)e %%, =L, (230
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where the coefficienty(5) and 7(5) are identified as the of the modes is apparently traveling backwards in time with
alternate cross-coupling and transmission coefficients, rerespect to this transformed coordinate.
spectively.
For semi-infinite tapered gratings the coefficients are cor- IV. CONSISTENCY EQUATIONS
respondingly defined by
In the previous sections, the resonance modes have been

7(8)=lim u(z,8)e™"*, (22¢)  defined, and resonance mode expansions have been given for
e two independent solutiongs and ¢ of the coupled mode
(&)= lim v(z,6)e" 1% (22d) equations. From these two solutions, the solution to any

problem for the coupled mode equations can be found by
forming the appropriate linear superpositions. Substituting

Z—®

x(6)=lim u(z,6)e™'%, (23¢)  the resonance mode expansionsgoandy directly into the

z—® coupled mode equatiort8), using the fact that the resonance
. o _ modes are solutions of the coupled mode equations for their
(&)= limv(z,6)e"'* (23d)  characteristic detunings, and requiring that the solutions sat-

Z—

isfy the equations for all detunings gives the following con-

Of course, since the coupled mode equations ha\@onlf'/'StenCy conditions:

two degrees of freedom, the four solutios ¢, ¢, and ¢ ™
are not all independent but satisfy q(2)=2i 2 M(z)em_mz, (27
— m=1
(2,0)= ¢(2,6) +1(0) $(z,6), (249
P — M
¥(2,8)=p(2,8)+1(8) (2,9, (24h) a(2)=-2i 21 Ay m(2)e A, (27b

or, equivalently
_ These conditions represegactresonance mode expansions
_ P(2,6)—1(8)¥(z,0) for the coupling functiongy and q that define the grating

$(z,9) 1-r(8)r(d) ' (253 profiles. Thus, not only do the resonance modes provide a
representation for the fields, they simultaneously provide a

— ﬁZ, 8)—r(d)Y(z,6) simple and exact representation for the grating profiles.

¢(z,8)= 1=1(8)7(0) . (25b) Thus, if we know in advance the grating profiles

andq we can find the resonance detunings and resonance

These interrelationships are used in Sec. IV to derive resghodes by solving the coupled mode equations with the ap-
nance mode expansions for the copropagating solutions. TrRYopriate boundary _cond|t|ons. Alternatively, if we knew th_e
resonance mode expansions for the copropagating solutioh§S0nance modes in advance, we could obtain the grating
are given in Egs(D1) and (D2). The above equations also profiles using the above result. In this section a method for
imply various relations between the different reflection,finding both the modes and the profilesmultaneouslyis
transmission, and cross-coupling coefficients and these aRf€Sented and the only information required in advance is the
given in Appendix B. resonance detunings and their relative strengths. Further-
The corresponding solutions connected with the timeMOre, the method does not require solving differential equa-

dependent coupled mode equations for copropagating mod&§ns and is purely algebraic. This is possible because the
represent a-function pulse incident on the grating from the family of gratings and modes described has the important

left. Specifically, property that all the resonances are discrete and finite in
number.
1 L In the previous sections, resonance mode expansions were
‘I’(th):[o é(z—ct), z<0, (268 obtained for¥ and¥. Using Eqs(25) and an inverse Fou-

rier transform, resonance mode expansions can also be ob-

— 0 o tained for® and ®:
(I)(z,t)={1 8(z+ct), z<O, (26b) L
o= [ 32 i@ eIz
where the incident pulse reaches the front of the grating at ' 2T 1-r(6r(d) '
time t=0. Note that the boundary conditions are initial con-
ditions in space applying fcz<_0; this differ_s from the con- _ = ds —Hzﬁ) T ¥(z,9)
trapropagating solutions, which are defined by boundary <1>(z,t)=J_ocze‘”"‘Ct 1=1(o)7 (9 (28h)

conditions on the time variable. Simple arguments using the
appropriate characteristics of the coupled mode equations in- ) ) )
dicate that the responses are nonzero only wher]t|. These integrals will be evaluated using the resonance
Note that the time parameter appearing in the coupled mode expansions foy and ¢ and contour integration. Ex-
mode equations is not the physical time, but a transforme@mining the integrands carefully reveals that there are no
time [see Eq(A10)] and thus for copropagating modes one poles at either the resonanckg, or A,, (the singularities in
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the numerator are always balanced by singularities in the ds
denominator. Thus all the poles of the integrands occur at <I>(z,t)=f o
the detunings where r

45 stz 8)—~1(8)(2,6)
1=r(&)r(o)

=i§+ Anl (2, 8,) =1 (8,) (2, 6,) Je~ e,

r(o)r(s)=1. (29

(329
From the representations forandr, Eq. (29) is seen to be L S 2.8 —T(S S
equivalent to a polynomial equation fo6 of degree @(z,t):f d_ —iset P20 I Lw(z’ )
N=M+M the sum of the number of gain and loss reso- r2 1=r(9)r(4)
nances. The solutions of ER9) will be denoted bys,, for —_— — - B
n=1,... N. The following useful representation is intro- =i, AL(z,6,)—T(8)¥(z,8,)]e nt,
duced: A

(32b

1 N A, where the sum oven is restricted to thosé,, which lie in
=1+ E (30)  the upper half of the complex plane.

1=r(&)r(d) =1 6= However, from the arguments following Eq&6) both

® and ® are identically zero in both these regions. This

The detunings’, also have a simple interpretation related mplies that
to the spectral response coefficients. Using the relations be- —
tween the various coefficients given in E&la) and Egs. ¥(2,60) =1(80)¥(2, ) (33
(B2) the 5, are the singularitiegpoles of the copropagating foralln=1,... N and allz.
transmission coefficients(s) and 7(5), or equivalently, the The system of equations represented by B8) is a sys-
zeros of the contrapropagating transmission coeff|C|ents
£(5) andt(é) m of N=M+M simultaneous linear equations for the
The evaluation of the integrals by contour integration de- M +M unknown quantitieg/,(z) andym(2), and provides a
pends on the relative sizes pfandt and two different con- completely algebraic procedure for obtaining the resonance
tours are required. LeF* represent the counterclockwise Modes. Explicitly, the system is
contour obtained by closing the above integrals with a semi-
circle of arbitrarily large radius in the upper half of the com-
plex plane, and lef’~ represent the clockwise contour ob-
tained by closing the above integrals with a semicircle of

ane —iApz

+|215 5 U@

arbitrarily large radius in the lower half of the complex ™ ,Amz
plane. _ _ =r(sy)e ?? H ] 2 Yl z)} (34
In the regiont>|z|/c the integrals for® and ® can be m= _Am
evaluated as
forn=1,... N. o
. Thus, given the resonant frequenci&s,, A,, and their
®(z t):j Eefiﬁﬁ ¢(z,6)—r(§i¢(z, %) relative strengths,,, anda,,, the detuningss, can be ob-
’ r-2 1-r(o)r (o) tained by solving the polynomial equati¢®9) and the reso-
nance modes can be obtained completely algebraically from
=—iY, A[¥(z,8,)—r(8,)(z,5,)]e "t the system of linear equatioli34).
n

The representations fab, @, ¢, and¢> are given in Ap-
(319  Pendix D. Additional representations using the detunings
6, for some of the spectral coefficients are given in Appen-
dix B. Since the most common structures usually investi-
— ds —iﬁaﬁz‘ 8)—1(8)(z,6) ga}ted are pure index Bragg gratings, the simplified results for
®(z,t) J 1=r(o)r(9) this special case are given in Appendix C.

_ —IE An[llf(Z 5T iz 8,)]e 1o, V. EXAMPLE RESULTS AND ANALYSES

In this section two different applications of the resonance
(31b mode method are presented. The first is the design and analy-
sis of a grating structure, which possesses only a single gain

o resonance. This grating profile might be achieved by varying

where w,= §,¢c and the sum oven is restricted to those any or all of the linear properties of the waveguide. How-
on Which lie in the lower half of the complex plane. ever, only pure index or pure gain gratings are considered for

Similarly, if t< —|z|/c then the integrals fo® and® can  this example.
be evaluated as The second example involves nonreciprocal gratings.
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Nonreciprocal contrapropagating gratings have different re- 1(2)=|uy(2)|?+]|v1(2)|?

flection spectra when viewed from opposite ends. In particu- )

lar, a grating is designed that has a single reflection peak __29200SNZ/ L tape) — G SINN(Z/L tpe) 39
when used from one end, but is transparent when used from -° COSHZ/L iaped + G SINN(Z/ L igpe) -

the other end. However, note that in the absence of magnetic

effects thetransmissionthrough the structure must be the Note that ifG<1 then the intensity distribution(z)~1 and
same from both sides. Thus, devices such as optical isolatoi® uniform along the length of the grating.

cannot be designed without using either some magnetic ef- The response to an incident pulse can also be calculated.
fect or some nonlinear optical property. However, a structurd=or an incident Gaussian shaped pulse exfi?) the re-

with different reflective properties at either end might haveflected pulse has the shape

interesting applications. The nonreciprocal grating profile is

' i ' i i i T — t 1 __
achieved by using a hybrid of index and gain gratings. TCT 1-2g Ltapeegm(l"")gz?Tzerfc( _ T+ EgcT).

A. Single resonance grating (39

The gain resonance is chosen to occur at a detuning cor- For a specific physical implementation of this grating,
responding ta\, = —ig, whereg is a positive quantity Cor- - ¢onsider a single mode waveguide with the gain grating con-
responding to the gain threshold for the resonance mode. e to the core and assumed to be uniform across the core,
particular, 8.68§ is the threshold gain of the lasing mode in and coupling occurs between the fundamental forward and
dB tpeg;) unit length(and is uniformly applied throughout the packward modes. Then, the variation in the core is given by
grating.

The reciprocity properties of pure index or pure gain grat- — N Npode
ings Egs. (C1) imply A;=A¥=ig and thus &, Neo(2) =Neot — e q(z)cos2mz/A), (40)
=+ Jasa; —g° where the produca,a, is real. This is suf-
ficient information to calculate the resonance fields exactlywvhereA is the grating periody, is the unperturbed index of

and, in particular, the core, A\=2n.,,A is the laser resonance wavelength,
oz NmodeiS the effective modal index of the coupled modgss
vi(2)= 5,8 . _ (35) the fraction of modal power in the core, angz) is the
61€0926,2) +gsin(26,2) grating profile obtained above. Note that sirpez) is an

. imaginary quantity, the above index profile corresponds to a

The boundary condition that; (z)e'*1” vanishes at infinity periodic grating with alternating regions of gain and loss.
implies thats, is pure imaginary and In;) >g. Thisresult,  The gain profile is given by
in turn, implies that the produ@;a, is negative, which us-
ing the reciprocity results from EgéC1) cannot occur for a 2
pure index grating, but is always true for a pure gain grating 8.686 dB’<T|m[”co(Z)]- (41)
with a;=—aJ .

Introducing two new parameters defined Hy...er The average gain in the grating is zero. The maximum value
=—1i/(261) andG=2gL4pen €Xact expressions for the grat- of the gain is
ing profiles and resonance modes are

2n
 1=G2IL 8.686 dBX —="*/T— GZ/L taper 42
a(z)=a(z2)= 22 (363 7o
COSHZ/ L tape) + G SINN(Z/ L 5p¢)

For a typical value ofp=~0.8, Npoge~Neo, G<1, and

—egz~/1—GZSinf(Z/Ltape9 Liape~3 Cm the maximum gain required is 7 dB/cm. Ex-
ui(z)= COSHZI L ye) + G SINMZ/ L g’ (36 amples of the grating profile and intensity distribution of the
tape tape laser mode for these typical values are shown in Fig. 6.
92 The above results are for an infinitely long grating. Re-
v(2)= , , (3860 sults for a truncated version of the above grating with length
COSHZ/L tape) + G SINN(Z/ L tape) L are obtained using the results of Sec. Il D.
with G<<1. Note thatl e, can be identified as the typical Ji-c?
length scale over which the grating is tapered: small values Fyund A) = —i . 1— } (43
of Liapercorrespond to strongly tapered gratings, large values A+iG f(A,L)
correspond to weakly tapered or almost uniform gratings. h
The reflection spectrum is given by where
1-G? A%+G? L :
J1—-G2 _ - —iAL/L
r(A)=—i%, (37) fAL)= 132" 1742 “osr{ Ltape,)e o
. . ) (A+iG)(AG—i) . L .
whereA =251 ¢ is @ Nnormalized detuning. + > S ?—( )e 1AL/ Ltaper
1+A L tape

The intensity distribution for the resonance mode is given
by (44
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10 - ships between the different coefficients in E(B2) the ex-
=T pression for the back-incident reflection coefficient is
gla_. == _
- [ """ r(o)t(é
: (8= ") 46)
36 t(5)
3

and have the property
2 Ir(aP=Ir" (8 (47)

Y(z)

0 2 4 6 8 10 12 flection spectrum is identical when the grating is used from
z (cm) either end.

Pure index and pure gain gratings are reciprocal gratings

That is, apart from the phase of the reflected wave, the re-

_ _ _ _ A nonreciprocal grating can be obtained by using a com-
FIG. 6. Gain profiley(z) in dB/cm (shown by the solid curye  pination of a gain and an index grating. The simplest nonre-
and the resonance mode intensity profile in arbitrary ufsk®wn ciprocal structure to formulate using the resonance mode

by the dashed curydor a single resonance grating with parameters

G=0.1, Lypo=3 cm. analysis hasM=1 andM =0 and corresponds to the most

Note that as —c the f#nctiﬁnf(fA,Lr)]jzo ard the lreffle_c- other end. The equations imply;=A; and choosing
tion spectrum approaches that for the ideal semi-infinite tay —_jo"anda, —ir oq gives

pered grating.

For the finite grating, the gain resonances satisfy the equa- —Tog
tion f(A,L)=0. One of these resonances corresponds to the r(o)= 51ig’ (483
original gain resonanca, but is perturbed slightly from its
value for the ideal semi-infinite grating. For long gratings r=(8)=0 (48b)
L> L aperthe original resonance is shifted to the new detun- '
ing: t(o) =t (8)=1. (480

L 2(1-G) _a-e)L, The peak reflectance from the front endrigl?> and the half-
o~—ig| 1+ (1+6)G° e (49 \idth at half maximum of the reflection peakds

The standard solutions for the fields are given by
Thus, the gain threshold has increased by a small amount

— aldz
exponentially dependent on the actual length of the grating. u(z)=e, (493
The remaining solutions of(A,L)=0 correspond to addi- rog
tional resonances, but all of these have gain thresholds in v(2)= 0 e 20%gioz (49b)
excess Of 8.686/(24pe). Thus the gain margin for the o+ig
lasing modes of the truncated grating is at least _
8.686(1~ G)/(2Lape). Thus increasing the gain margin cor- u(2)=0, (499
responds to decreasing the rate at which the grating tapers. _ s
As the lengthL of the truncated grating is increased the gain v(z)=e (490

margin does not vary much, but the relative amplitudes ofand the profiles are aiven b
the additional resonances decay to zero. P 9 y

q(2)=0, (509

q(z)=2ryge 292 (50b)

B. Nonreciprocal grating

Figure 7 shows the boundary conditions appropriate for a
contrapropagating problem where the incoming wave is in-
cident on the grating from the back. As with all solutions,
this solution can be constructed from a superposition of th
standard solutions. In fact, although it is interpreted differ-%ec' D and are

ently, this solution is proportional to the solution shown in —1og _
Fig. 5(b) and is given by (z, 8)/x(8). Using the relation- rund 0) = 5+ig[1—62'5Le’sz], (513
0—> Wr_(é) ' I rund 6) =0, (51b)
t—(é)efzéz .Y, VY, 67162 -
tirund 0) = tyund ) = 1. (510

FIG. 7. Boundary conditions and response coefficients for the

extreme example of nonreciprocity: when the grating reflects
from one end, but is totally transparent when used from the

The results for a truncated version of the above structure
with lengthL are also easily obtained using the results from

contrapropagating solution with a wave incident from the back ofNote that even the truncated grating remains totally transpar-

the grating. ent(i.e.,r ~=0 andt”=e€'%") in the reverse direction.
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2

AQma=8.686 dBX AN, (54)

VI. DISCUSSION

The two examples presented here and analyzed in detalil
are the simplest possible structures for which exact solutions
can be obtained using resonance mode analysis. More com-
plicated structures can also be analyzed completely algebra-
ically and thus although the complexity of the calculation
will increase there is still no need to resort to numerically
integrating the coupled mode differential equations, which

FIG. 8. Reflection spectra corresponding to E®) with pa- a0 be a tedious process when investigating large families of

rametersr,=0.99 andg=0.1 cm L. The dashed curve represents grating strqcturgs. ) )
the spectra in the limit of a semi-infinite grating. The solid curve is 1 he availability of exact expressions for both the field and

for a truncated grating of length=12 cm. the grating allows the use of perturbation theory to examine
the sensitivity of the grating response to perturbations in the

Figure 8 shows typical examples of the reflection spectrétr“Ct“Te- Here, we have_ looked ata particular perturbation,
for the semi-infinite and truncated gratings. The most obvifruncating the grating tails, for which exact results can be
ous effect of truncating the grating is to reduce the peatbtained. More general perturbations can be analyzed ap-
reflectivity. In addition, the truncated grating also exhibitsProximately (and again without recourse to numerical inte-

slight sidelobes. gration.
Assuming a uniform gain and index change across the R€sonance modes appear to be a very natural way to de-

core, the grating can be implemented with the following hy_scribe the fields in nonuniform grating structures and should
brid structure: provide a strong framework for obtaining a rich variety of

results about different families of grating structures. Future

X n 27 work in this area will look at extending resonance mode
n(z)=n+ 2r°gz_ r%""(.3—292(; 5<_) techniques to solving certain nonlinear grating problems.
™ Mleo
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N Nmode rived. The modes that are coupled are any two discrete
ANma= 2T 085 — (538 modes of the background waveguide.

APPENDIX A: DERIVATION OF COUPLED
MODE EQUATIONS

Ne,
7eo The starting point is the following wave equation for the
electric field:
AGy—8.686 dBX 2r gumee (53b)
ma 0 Meo 1 PE

V2E— Z6(xy.2) =7 =0, (A1)
For typical values corresponding to Fig. 8 and a wavelength -

of 1.5 um, 71”:%’3 and Nmoge=Neo the maximum index  \yherec is the speed of light in vacuum, are(x,y,z) is the

change is & 10 > and the maximum gain is 2 dB/cm. yelative dielectric permittivity representing the grating struc-
The above result is not limited to the specific profile in yre The double underline indicates that, in general, the di-

Eg. (52). In fact, whenever identical index and gain gratingsg|ectric function is a tensor to include the effects of birefrin-

(with any profile are out of phase by 90°, the reflection fromfgence. The wave equation in EGA1) is valid within the
one end will be identically zero. This is because for one ofyeak-guidance approximatida4].

the modes the contributions from the index and the gain The structure is represented by
grating cancel, and it propagates totally unchanged through

the structure, but the other mode is coupled to the first and _= ) + i
undergoes both phase and amplitude modulation. For these Z,(x,y,z) Z’(X'yHZ(X’y’ZHi (xy;z)e
particular hybrid gratings the maximum index change and + K (x,y;z)e" 2T (A2)
maximum gain(in dB per unit length are always related by = 7 ’

2imwz/ A
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where e_r(x,y) is the unperturbed background waveguide. wé

—t o L - k1(2)= 55— | F1-k"-Fydxdy, (A8c)
The coefficients describing the grating «™, and«™~ are all 1 23,C 1K '
slowly varying functions ofz and are small compared to

2

€,. They are all tensorial in nature to allow for birefringence. g B
= . : ko(2)= === | F} k™ -Fydxdy. (A8d)
The waveguide modeB,(x,y) and F,(x,y) satisfy the 2 2B,c?) 2 - 1
equations
The coefficients,, are recognizable as the group velocities
, . wi— , of the modes.
ViFit zea(Xy)Fi—BiFi=0, (A3) It is convenient to make the following mathematical trans-

formations to put the coupled mode equations in E43)
into the simplest canonical form.

New amplitudedJ(z,t) andV(z,t) are introduced and are
related to the field amplitudes by

where B; are the propagation constants of each mdue
convention the sign oB is negative for backward propagat-
ing mode$. In general, the propagation constants vary with

frequency andv is the frequency for which the modes are 2
phase matched to the grating; i.e., the propagation constants U(z,t):El(z,t)exp{ —if o(2")dZ' |, (A9a)
satisfy the resonance condition 0
277 — 3 z ! !
,31—32=T- (Ad) V(z,t) Ez(z,t)ex;{ |f0 o,(Z2')dZ |. (A9b)
By convention, the first mode is the one with the larger The time coordinate is also transformed
propagation constant. The modes also satisfy the orthonor- 171
malization conditions t'=t— | —+— (A10)
2 U1 U2
J FiT' Fydx dy=45;;, (A5) so that the apparent group velc_)cities of the two ques with
respect to this new time coordinate are the same in magni-

o _ tude but opposite in sign and given by
where the normalization integral extends over the entire

transverse cross section of the waveguide. The funcfgns
are the adjoint modes and satisfy the wave equation for the T
transpose of the dielectric tensor. For a lossless waveguide,
the adjoint modes are just the complex conjugates of thé&or copropagating modes this transformation makes one of
modes. the two modesppearto travel backwards in time.

In the presence of the grating the waveguide modes are The coupled mode equations in their final form are then
coupled together and the electric field has the form

1 1

U1 U2

1
> . (A11)

Jd 1 9
. , i| =4 == ")+ V(z,t')= Al2
E:El(z,t)Fl(xyy)el(ﬁlszot)_f_EZ(Z,t)FZ(X’y)el(ﬁzszot) | 0z C 0—,tr>U(Zat ) Q(Z) (Z,t ) 01 ( a)
+c.c., (A6) (o 19 —
oo V(z,t')—q(z)U(z,t')=0, (Al12b
where the amplitudek,; and E, are assumed to be slowly
varying functions ofz andt. where
Substituting the above electric field into the wave equa-

tion (Al) and ignoring rapidly oscillating terms the follow- B [? , , ,
ing coupled mode equations can be derived: a(2) = ka(z)exp —i 0{‘71(2 )~ 05(2')}dZ' |, (A133)

9 _ z

Nzt orat E1+01(2)E1+k1(2)E;=0, (A73) q(z):—Kz(z)exp[HJo{al(z’)—az(z')}dz’ . (A13Db)

lo 19

i| —+ — —|Ey+ 0x(2)Eprt+ ko(Z)E;=0  (AT7b) APPENDIX B: SOME MATHEMATICAL PROPERTIES

9z v, ot OF THE SOLUTIONS

and the coefficients are given by the following expressions: If {u;,v;} and{u,,v,} are two different solutions of the
same coupled mode equations then the combination

1 wg ¢ — Uv,—Uyv4 is constant. This can be verified directly by dif-
v_:/ﬁzf Frm- € Frndxdy, (ABa)  ferentiation and using the coupled mode equations. Using
mom = this result and the four standard solutions defined in Sec. IIl,
w2 the following relations are obtained:
= 0 t . . - _ -
Tm(2) 23mc2f Fm o Fmdxdy, (ABD) Uo—uo=1-r(8r(8)=t((d), (Bla)
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pv—pr="1(8)7(8)— x(8)x(8)=1. (Blb)
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With this requirement the standard cw solutions are valid for

all real detunings, and also for complex detunings provided

Combining these relations with Eq&5) gives the fol-
lowing results for the coefficients:

the gain or loss is not too large, in particular

_ Im(Sy)<Im(8)<Im(Sy). (B9)
7(8)=11(6), (B2a)
Using the above results the asymptotic behavior of Eq.
x(8)=—r(8)/t(5), (B2b)  (34) gives
T(8)=11(5), (B2¢) t(6y)=0, m=1,... M, (B10a
X&) =—T(8)(d). (B2d) W6,)=0, m=1,...M. (B10b)

The above results indicate that the solutigds} to Eq.
(29) are also the zeros af5) andt(d), or equivalently the

These equations also provide a linear system for uniquely
determining the coefficients,, andt,, directly. In addition,

poles7(8) and 7(8). More specific results are obtained be- this gives the following product representations:

low if the solutions are ordered according to
IM(87)<IM(8,)<---<Im(Sy_1)<IM(Sy). (B3)
For convenience the notatie{rz?n} is introduced, defined by

< ON-1=02, ON= 04,
(B4)

5155,\,, 5255N_1, A

which is just the sefs,} ordered backwards.

The asymptotic behavior of the solutions to the linear sys-
tem in Eq.(34) can be obtained by examining the determi-
nant and minors of the corresponding linear matrix of coef-
ficients and isolating the dominant terms. The asymptotic

M

m[[l (6= 8m)
t(6) = , (B11a

ml]l (6—Ap)

Mi E—

m[[l (6= 8m)
1(8)=— (B11b

(6—Am)

m=1

behaviors of the resonance modes are

Um(Z)~ Apetam?, (B5a)
0o(2)~ Bet 1 dnie2iouz, (B5b)
U(2) ~Cme*m_mze+2i?M7, (B5¢)

0(2)~ Dy~ 4. (B5d)

APPENDIX C: RESULTS FOR PURE INDEX
BRAGG GRATINGS

Additional relationships between the solutions exist for
“reciprocal” structures. These are structures with the prop-
erty q(z) = = q(2)*. Pure index gratings and pure gain grat-
ings are always reciprocal structures. In particular, a pure
index (Bragg grating with contrapropagating modes
hasq(z) = +q(z)*; a pure gain grating with contrapropagat-
ing modes hasy(z)=—q(z)*. On the other hand, a pure

From these the asymptotic behaviors of the standard cw sd2dex grating with copropagating modes hag(z)

lutions are

=-q(2)* and a pure gain grating with copropagating
modes hagj(z)=+q(2)*.

u(z)~uUe'?, (B6a) The resonance modes, detunings, and various coefficients
for reciprocal structures are related by the following reci-
v(z)~ Vel %%e210mz, (B6b)  procity relations:
u_(z)Nu_e—iéze-#Zi;,\ﬁ’ (B60) M=M, (Cla
v(2)~Ve 1 (B6d) Un(2)=vm(2)*, (C1b
and the asymptotic behaviors of the profiles are vm(2)=*Uup(2)*, (C1l9
q(2)~ Qe+ 2 ow?, (B73) Ap=A4%, (C1d
q(2)~ Qe %ow?, (B7b) 8 m= 5%, (Cle
Requiring the profiles to decay to zero, gives the condi- ap=*ak. (C1f)
tions
. Relations for any other quantities can be derived from those
Im(Sy)<0<Im(Sy). (B8)  above.
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Reciprocal structures also have simple conservation re-
sults. Ifq(z) = +q(2)* then the coupled mode equations can
be combined to give

J

—(uP=[o[)=-2Im(8)(ul+[v]*),  (C2
which means thafu|?—|v|? is conserved for real detunings,
and that the resonances must satisfy Amf<0 and
Im(A,)>0. For contrapropagating modes, this result corre-

sponds to conservation of the power in gratings with no loss
or gain(i.e., pure index Bragg gratingsFor copropagating

modes, this result corresponds to a constant power difference

between the modes in a pure gain grating with average gain
Zero.

If q(z)=—q(2)* then the coupled mode equations can be
combined to give

RESONANCE MODE EXPANSIONS AND EXACT . ..
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Vi(2)=iamvm(z)e Am?, (C7b

APPENDIX D: RESONANCE EXPANSIONS

If z>cJt| the integrals for® and @ can be evaluated as

—i C_ IJI(Z,ﬁ)
LC W e e ORC)
—f 48 1(9)u(z,9)
27 1-r (o)1 (o)

—i> " A Cly(z,5,)

n

+i> Ae Ctr(8)(z,8,)

n

d N _
U+ o) =-2Im(8)(ul?~[v[?),  (C3 =i 3 A (z,8,), (D1a)
which means thafu|2+ |v|? is conserved for real detunings. _ dé  —  W(z,9)
The interpretation is similar to the one above but with the (I)(z,t)zf —e ot ——
. g . r-2m 1-r(8)r(d)
roles of contrapropagating and copropagating modes inter
changed. . —f ds st (O (z,6)
~ Forapure index Bragg grating the resonance mode analy- 27 1-r(o)r(d)
sis simplifies to the following results:
M - Cs T
— =—j Ane "onCly(z, 5
A =aD* =23 Va(2)", 4 2 Az
+ . _—
and —i2 AT (8 Y(z,8,)
M
. Un(2) N
u(z)=e'% 1+ >, } (C53 J—
m=1 6—An = —ingl A,e” nty(z,8,). (D1b)
M
) \%
v(z)=¢€ 522 ﬁ (C5b The corresponding cw solutions obtained by Fourier
m=1 6—Am transforms are
where 1| N 2 sif(6—6,)z
y y $(2,8)=| €7+ H(2) 3 Az, 6@%,
Un(2) s Vin(@* 0 n=1 ~on
14+ 2~ ==r(8)e Y 5 (CH (D2a)
m=1 5n Am m=1 5n_Am N
— 0| . — 2sif (56— 6,)z]
forn=1,... N and $(z0)=|, e '”+H(2) 21 Anip(z, 5n)5_—5n
. n= n
Um(2)=ianum(z)e "Am?, (C7a (D2b)
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