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Resonance modes play an important part in understanding linear nonuniform gratings, analogous to the role
played by waveguide modes in waveguide theory. Using resonance mode expansions, exact expressions are
obtained for the fields, the grating profile, and the reflection and transmission spectra for a large class of
nonuniform linear gratings. The method can deal with linear gratings that couple a pair of either copropagating
or contrapropagating modes. The formalism covers the effects of gain and loss~in the small signal limit!, chirp,
taper, and birefringence. The exact solutions can be used to investigate designs for grating structures. Two
detailed example applications of the technique are presented here: an exact solution for a grating that supports
only a single resonance mode, and an exact solution for a grating that has nonreciprocal reflective properties
from its two ends.@S1063-651X~96!04909-4#

PACS number~s!: 42.81.Wg, 42.82.Gw, 78.66.2w

I. INTRODUCTION

The central role that waveguide modes and modal analy-
sis play in the theoretical analysis of linear waveguides with
a variety of cross sections is well established. In this paper, a
different type of mode relevant to linear gratings is explored.
These resonance modes play an analogous role in the theo-
retical analysis of linear nonuniform gratings. The general
solution for wave propagation in a linear waveguide can be
expressed as a superposition of its waveguide modes. Simi-
larly, in this paper, the general solution for propagation in a
linear grating is expressed as a superposition of its resonance
modes.

The quantity analogous to the propagation constant of a
waveguide mode is the characteristic or resonant frequency
of the grating resonance mode. These resonant frequencies
correspond to singularities in the spectral responses, such as
reflectance and transmittance, of the grating. These resonant
frequencies have previously been used to explore propaga-
tion in gratings using effective medium methods@1# and to
obtain variational and perturbation results@2#. However, pre-
viously less attention has been paid to the actual modes
themselves.

Much of the progress in linear waveguide theory, design,
and application has depended on the availability of a large
number of exact solutions, both to help with conceptual un-
derstanding and to act as starting points for more detailed
numerical and experimental work. Presumably, the availabil-
ity of a very large~in fact, infinite! class of exact solutions to
nonuniform linear grating problems will also aid conceptual
understanding and provide starting points for more detailed
investigations.

Recent advances in the fabrication of fiber gratings now
allow the formation of gratings with quite complicated pro-
files @3–7#. The nonuniform grating profiles provide extra
degrees of freedom, which can be exploited in the design of
grating-based devices@8–11#, and some preliminary work
exists on the relationship between grating profiles and grat-
ing response characteristics@3,12#. The availability of a class
of exact profiles and their corresponding fields will help
deepen knowledge and understanding of the relationship be-

tween the grating profile and its response and will be of
benefit in grating analysis and design.

The formalism presented here is based on the following
five important concepts.~1! Linear gratings support reso-
nance modes.~2! The general solution for propagation in the
grating is represented as a superposition of these modes.~3!
The profile of the grating structure is also represented in
terms of a superposition of these modes.~4! The response
spectra~reflection, transmission, and cross coupling! of the
grating can be represented in terms of the resonance frequen-
cies associated with these modes.~5! A mathematical con-
sistency relation between different solutions to the same
coupled mode equations is used to derivelinear algebraic
equationsfor the modes, and thus obviate the need to solve
any differential equations.

In addition, exact analytical results are obtained for grat-
ings that have a finite number of nondegenerate resonance
modes. The validity of the analysis and the existence of this
class of gratings is establisheda posterioriby explicit con-
struction of such gratings and their fields.

The analysis is based on linear coupled mode theory
@1,13# and applies to linear structures~including chirped, ta-
pered, and blazed gratings with varying refractive index,
gain, or birefringence! that couple two discrete modes. The
coupled mode equations used here, however, do not include
effects such as nonlinearity, simultaneous coupling between
more than two modes, or coupling to radiation modes~since
these modes are not discrete!. The coupled mode equations
as used here are derived in detail in Appendix A and can be
written in the form

i S ]

]z
1
1

c̄

]

]t DU~z,t !1q~z!V~z,t !50, ~1a!

i S ]

]z
2
1

c̄

]

]t DV~z,t !2q̄~z!U~z,t !50, ~1b!

whereU andV are the slowly varying amplitudes of the two
modes being coupled by the grating and the coupling func-
tions q and q̄ represent the grating structure and are related
to the amplitudes and phases of periodically varying quanti-
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ties such as the index, the gain, or the birefringence. The
precise relationship between the profilesq and q̄ and the
physical parameters of the grating are given in Appendix A.

For monochromatic or cw solutions with

U~z,t !5u~z!e2 i ~v2v0!t, ~2a!

V~z,t !5v~z!e2 i ~v2v0!t, ~2b!

the coupled mode equations take on the much simpler form

1 iu8~z!1du~z!1q~z!v~z!50, ~3a!

2 iv8~z!1dv~z!1q̄~z!u~z!50, ~3b!

whered5(v2v0)/ c̄ is the detuning,v is the frequency of
the incident wave,v0 is the frequency at which the waves
are phase matched to the grating, andv'v0. Alternatively,
Eqs. ~3! can be viewed as the Fourier transform in time of
the time-dependent system in Eqs.~1!.

If the frequencyv is generalized to complex values then
the imaginary part of the frequency will describe signal
growth and attenuation~in the small signal and undepleted
pump limit! and a positive imaginary part corresponds to loss
and a negative imaginary part corresponds to gain.

In this paper both finite length and semi-infinite gratings
are considered. Finite length gratings are assumed to be lo-
cated over the region 0,z,L and the semi-infinite expo-
nentially tapering gratings over the region 0,z,`. The
grating profiles,q and q̄, are zero outside these grating re-
gions or decay exponentially asz→`.

The definition of resonance modes and their properties is
discussed in Sec. II. The general solutions for the fields in
the grating for different boundary conditions are represented
by a superposition of the resonance modes in Sec. III. Ex-
pressions for the various response spectra, such as reflection,
transmission, and cross-coupling spectra are also given in
that section. The representation of the grating profiles as a
superposition of resonance modes and the mathematical con-
sistency relations that lead to the exact solutions are derived
and presented in Sec. IV.

Some examples and simple applications of these results
are presented in Sec. V. The derivation of the coupled mode
equations is given in Appendix A, additional mathematical
results and special cases are given in Appendices B, C, and
D.

II. RESONANCE MODES

A. Gain resonances

The first type of resonance mode is shown schematically
in Fig. 1 and is denoted by

cm~z![Fum~z!

vm~z!
G ,

where um(z) and vm(z) are the coupled mode amplitudes
satisfying Eqs.~3! with the detuningd5Dm . For a finite
grating the fields satisfy the boundary conditions

um~0!5vm~L !50. ~4!

The fields are chosen to be normalized such thatvm(0)51.
The external fields associated with this resonance mode are
then

vm~z!5e2 iDmz, z<0, ~5a!

um~z!5tme
iDmz, z>L, ~5b!

wheretm is identified as the transmission coefficient associ-
ated with this resonance mode. For a semi-infinite grating the
corresponding boundary conditions and transmission coeffi-
cient are

um~0!5 lim
z→`

vm~z!e1 iDmz50, ~48!

tm5 lim
z→`

um~z!e2 iDmz. ~5b8!

These resonance modes have a simple interpretation in the
case of contrapropagating modes and correspond to lasers at
threshold: there are no incident waves on either end of the
grating, and waves are emitted by the grating in both direc-
tions @see Fig. 1~a!#. The energy to emit these waves arises
from gain. For this reason, these resonances will be referred
to as gain resonances and the imaginary part of the detuning
must satisfy Im(Dm),0. The real part ofDm is related to the
lasing frequency. If the grating itself has no gain or loss, then
the imaginary part ofDm is related to the threshold gain
required to achieve lasing.

The gain resonances have a different physical interpreta-
tion when the modes are copropagating. In that situation, the
resonances correspond to complete cross coupling of energy
from one mode to the other, with no energy remaining be-
hind in the original incident mode@see Fig. 1~b!#. Of course,
the mathematical properties of these resonance modes are
independent of the physical interpretation.

B. Loss resonances

The second type of resonance is shown schematically in
Fig. 2 and is denoted by

c̄m~z![F ūm~z!

v̄m~z!
G .

If the corresponding resonance detuning isD̄m then the fields
satisfy boundary conditions analogous to those for gain reso-
nances, but with the roles of the two modes interchanged:

FIG. 1. Schematic of resonance modes for linear gratings.~a! A
gain resonance for contrapropagating modes.~b! A gain resonance
for copropagating modes. Note that the expressions given are for
the amplitudesu and v of the coupled modes, and therefore the
signs of the exponents are not related to the direction of propagation
of the underlying modes.
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v̄m~0!5ūm~L !50. ~6!

The corresponding normalization condition isūm(0)51.
The external fields have the form

ūm~z!5ei D̄mz, z<0, ~7a!

v̄m~z!5 t̄me
2 i D̄mz, z>L ~7b!

and the corresponding results for a semi-infinite grating are

v̄m~0!5 lim
z→`

ūm~z!e2 i D̄mz50, ~68!

t̄m5 lim
z→`

v̄m~z!ei D̄mz. ~7b8!

Again the physical interpretation is simpler for contra-
propagating modes: there are no waves emitted from either
end of the grating, and the incident waves are completely
absorbed by the grating@see Fig. 2~a!#. These resonances
will be referred to as loss resonances and satisfy
Im(D̄m).0.

The interpretation for copropagating modes is identical to
that for the gain resonances, except that the roles of the two
modes have been interchanged@see Fig. 2~b!#.

III. RESONANCE MODE EXPANSIONS

In this section various solutions of the coupled mode
equations will be represented by superpositions of the reso-
nance modes presented in Sec. II. Expressions will be ob-
tained for the solutions of both the time-dependent coupled
mode equations~1! and the monochromatic or cw equations
~3!. Different solutions of the coupled mode equations are
obtained by applying different boundary conditions. Four of
these solutions play an important role in the analysis that
follows. The solutions correspond to the canonical boundary
conditions applied when solving problems involving either
copropagating or contrapropagating modes. These solutions
are not all independent and the relationships between them
allow the calculation of exact expressions for the resonance
modes.

A. Standard contrapropagating solution

The standard problem usually connected with contra-
propagating modes in a grating corresponds to a monochro-
matic wave of unit amplitude and detuningd incident from
the left, and no incident wave from the right~see Fig. 3!. The

waves emerging from the grating correspond to reflected and
transmitted waves.

This solution will be denoted by

c~z,d!5Fu~z,d!

v~z,d!
G

and satisfies

u~z,d!5eidz, z<0, ~8a!

v~z,d!50, z>L, ~8b!

v~z,d!5r ~d!e2 idz, z<0, ~8c!

u~z,d!5t~d!e1 idz, z>L. ~8d!

The first two equations correspond to the boundary condi-
tions, the last two equations identifyr (d) andt(d) as reflec-
tion and transmission coefficients, respectively.

For a semi-infinite grating the corresponding results for
largez are

05 lim
z→`

v~z,d!e1 idz, ~8b8!

t~d![ lim
z→`

u~z,d!e2 idz. ~8d8!

The standard problem connected with the corresponding
time-dependent coupled mode equations corresponds to a
d-function pulse incident on the grating from the left. The
solution satisfies the following initial condition in time:

C~z,t !5F10Gd~z2 c̄t !, t,0, ~9!

where the incident pulse reaches the front of the grating at
time t50. The solutionsC(z,t) andc(z,d) are directly re-
lated to each other by a Fourier transform.

The grating will respond to the incident pulse by resonat-
ing in a superposition of its natural resonance modes. Simple
causality arguments using the characteristics of the coupled
mode equations also indicate that the solution is nonzero
only whent.uzu/ c̄. Thus, the complete solution has a reso-
nance mode expansion of the form

C~z,t ![F10Gd~z2 c̄t !1H~ t2uzu/ c̄! (
m51

M

amcm~z!e2 iVmt,

~10!

whereH is the Heaviside or unit-step function,Vm5Dmc̄ is
the frequency difference associated with the resonance de-
tuningDm , and the coefficientsam correspond to the relative
contribution from each resonance. To obtain gratings and
fields that have exact expressions the discussion is restricted

FIG. 2. Schematic of resonance modes for linear gratings.~a! A
loss resonance for contrapropagating modes.~b! A loss resonance
for copropagating modes.

FIG. 3. Boundary conditions and response coefficients for the
standard contrapropagating solution with a single incident wave.
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to those gratings that have afinite numberM of resonances.
Since the expansion contains only a finite number of terms,
the validity of this expansion~and subsequent expansions!
can be establisheda posterioriby explicit construction of the
corresponding gratings and their solutions.

The corresponding monochromatic or cw solution is ob-
tained by a Fourier transform of the above expansion and
gives

c~z,d!5F10Geidz1 (
m51

M
iam

d2Dm
cm~z!ei ~d2Dm!uzu. ~11!

Using the definitions of the reflection and transmission
coefficients from Eqs.~8!, and the properties of the reso-
nance modes from Eqs.~5! yields

r ~d!5 (
m51

M
iam

d2Dm
, ~12a!

t~d!511 (
m51

M
iamtm
d2Dm

. ~12b!

Note that the gain resonance detuningsDm correspond to the
singularities~poles! of the reflection and transmission coef-
ficients.

In general, the monochromatic or cw solution is a steady-
state solution and only represents that part of the physical
solution which is oscillating at the same frequency as the
incident wave corresponding to the detuningd. If the gain in
the grating is above the threshold for any of the resonant
modes, there may be additional terms oscillating at the cor-
responding resonant frequencies~and not at the incident fre-
quency! and exponentially growing in magnitude. If the gain
is below the threshold of all resonant modes, these additional
terms are transient and do not contribute to the cw solution.

B. Response to an incident pulse

The response to an incident pulse can be obtained from
the Fourier transformG(t) of the reflection spectrumr (d),
and is given by

G~ t !5H~ t ! (
m51

M

ame
2 iVmt. ~13!

Note that the response is causal@i.e.,G(t)[0 for t,0#.
The shape of the reflected pulse is then given by a con-

volution of the incident pulse with the above response func-
tion. For example, for an incident Gaussian-shaped pulse
exp(2t2/T2) the reflected pulse has the shape

E
2`

`

G~ t2t8!exp~2t82/T2!c̄dt8

5
Ap

2
c̄T(

m51

M

ame
2 iVmt2~1/4!Vm

2 T2erfcS 2
t

T
1
1

2
iVmTD ,

~14!

where erfc(z) is the complementary error function.

Analogous results are obtained for the transmitted pulse
using the transmission spectrum.

C. Alternate contrapropagating solution

The standard contrapropagating solution presented above
is only one solution to the coupled mode equations. The
system of coupled mode equations has two degrees of free-
dom ~corresponding to the number of modes being coupled!,
and therefore, to obtain the general solution to the equations,
a second independent solution is required: together, these
two solutions will provide a complete description. The alter-
nate contrapropagating solution satisfies analogous boundary
conditions to the standard solution, but with the roles of the
two modes interchanged~see Fig. 4!.

The alternate contrapropagating solution is denoted by

c̄~z,d![F ū~z,d!

v̄~z,d!
G

and satisfies

v̄~z,d!5e2 idz, z<0, ~15a!

ū~z,d!50, z>L, ~15b!

ū~z,d!5 r̄ ~d!e1 idz, z<0, ~15c!

v̄~z,d!5 t̄~d!e2 idz, z>L, ~15d!

where the coefficientsr̄ (d) and t̄(d) are analogous to the
reflection and transmission coefficients for the standard so-
lution. Similarly, results for a semi-infinite grating are

05 lim
z→`

ū~z,d!e2 idz, ~15b8!

t̄~d![ lim
z→`

v̄~z,d!e1 idz. ~15d8!

The alternate solutions are analogously expanded in reso-
nance modes, and this time only the loss resonances appear.
The expansion of the time-dependent solution is

C̄~z,t ![F01Gd~z1 c̄t !1H~2t2uzu/ c̄! (
m51

M̄

āmc̄m~z!e2 i V̄mt,

~16!

where V̄m5D̄mc̄ is the frequency difference corresponding
to the loss resonance detuningD̄m . The expansion of the
monochromatic or cw solution is again found by a Fourier
transform and is

FIG. 4. Boundary conditions and response coefficients for the
alternate contrapropagating solution.
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c̄~z,d!5F01Ge2 idz2 (
m51

M̄
iām

d2D̄m

c̄m~z!e2 i ~d2D̄m!uzu.

~17!

Likewise, the alternate reflection and transmission coeffi-
cients have the expansions

r̄ ~d!52 (
m51

M̄
iām

d2D̄m

, ~18a!

t̄~d!512 (
m51

M̄
iāmt̄m

d2D̄m

. ~18b!

Note that the loss resonance detuningsD̄m correspond to the
singularities~poles! of the alternate reflection and transmis-
sion coefficients. Further, the numberM̄ of loss resonances
need not necessarily equal the numberM of gain resonances.

Similar to the case for the standard solution, the cw solu-
tion in Eq. ~17! corresponds only to that part of the physical
solution which oscillates at the frequency corresponding to
the detuningd. In general, there will also be non-steady-state
contributions oscillating at the resonant frequencies of the
loss resonances.

D. Contrapropagating solutions for finite gratings

The solutions and resonance modes that emerge naturally
from the above mathematical framework correspond to semi-
infinite exponentially tapered gratings. Exact solutions for
the correspondingtruncatedfinite gratings can be easily con-
structed by the appropriate superposition of the two contra-
propagating solutions defined earlier.

In particular if the truncated grating is of lengthL then the
exact solution for the truncated grating is a superposition of
c(z,d) and c̄(z,d) given by

c trunc~z,d!5
v̄~L,d!c~z,d!2v~L,d!c̄~z,d!

v̄~L,d!2v~L,d! r̄ ~d!
, ~19!

wherev and v̄ are the solutions for the ideal semi-infinite
grating. Similarly,

c̄ trunc~z,d!5
ū~L,d!c~z,d!2u~L,d!c̄~z,d!

ū~L,d!r ~d!2u~L,d!
, ~20!

whereu and ū are the solutions for the ideal semi-infinite
grating.

The corresponding spectral coefficients for the truncated
grating are

r trunc~d!5
v̄~L,d!r ~d!2v~L,d!

v̄~L,d!2v~L,d! r̄ ~d!
, ~21a!

t trunc~d!5
v̄~L,d!u~L,d!2v~L,d!ū~L,d!

v̄~L,d!2v~L,d! r̄ ~d!
e2 idL, ~21b!

r̄ trunc~d!5
ū~L,d!2u~L,d! r̄ ~d!

ū~L,d!r ~d!2u~L,d!
, ~21c!

t̄ trunc~d!5
ū~L,d!v~L,d!2u~L,d!v̄~L,d!

ū~L,d!r ~d!2u~L,d!
e1 idL. ~21d!

E. Copropagating solutions

Even though the mathematical form of the coupled mode
equations is the same for problems involving both contra-
propagating or copropagating modes, the boundary condi-
tions normally used are different. The standard and alternate
solutions for copropagating modes are shown schematically
in Fig. 5. At the incident end of the grating, one mode has
unit amplitude and the other mode is absent. At the far end of
the grating some of the incident energy remains in the same
mode and emerges as the transmitted wave. Some of the
energy is coupled to the other mode and emerges as the
cross-coupled wave.

The standard copropagating solution in Fig. 5~a! is de-
noted by

f~z,d![Fm~z,d!

n~z,d!
G

and satisfies

m~z,d!5eidz, z<0, ~22a!

n~z,d!50, z<0, ~22b!

m~z,d!5t~d!e1 idz, z>L, ~22c!

n~z,d!5x~d!e2 idz, z>L, ~22d!

where the coefficients,x(d) and t(d) are identified as the
cross-coupling and transmission coefficients, respectively.

The alternate copropagating solution in Fig. 5~b! is de-
noted by

f̄~z,d![F m̄~z,d!

n̄~z,d!
G

and satisfies

m̄~z,d!50, z<0, ~23a!

n̄~z,d!5e2 idz, z<0, ~23b!

m̄~z,d!5x̄~d!e1 idz, z>L, ~23c!

n̄~z,d!5 t̄~d!e2 idz, z>L, ~23d!

FIG. 5. Boundary conditions and response coefficients for the
~a! standard and~b! alternate copropagating solutions. Note that the
signs of the exponents are not related to the direction of propagation
of the underlying modes.
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where the coefficientsx̄(d) and t̄(d) are identified as the
alternate cross-coupling and transmission coefficients, re-
spectively.

For semi-infinite tapered gratings the coefficients are cor-
respondingly defined by

t~d![ lim
z→`

m~z,d!e2 idz, ~22c8!

x~d![ lim
z→`

n~z,d!e1 idz, ~22d8!

x̄~d![ lim
z→`

m̄~z,d!e2 idz, ~23c8!

t̄~d![ lim
z→`

n̄~z,d!e1 idz. ~23d8!

Of course, since the coupled mode equations have only
two degrees of freedom, the four solutionsc, c̄, f, and f̄
are not all independent but satisfy

c~z,d!5f~z,d!1r ~d!f̄~z,d!, ~24a!

c̄~z,d!5f̄~z,d!1 r̄ ~d!f~z,d!, ~24b!

or, equivalently

f~z,d!5
c~z,d!2r ~d!c̄~z,d!

12r ~d! r̄ ~d!
, ~25a!

f̄~z,d!5
c̄~z,d!2 r̄ ~d!c~z,d!

12r ~d! r̄ ~d!
. ~25b!

These interrelationships are used in Sec. IV to derive reso-
nance mode expansions for the copropagating solutions. The
resonance mode expansions for the copropagating solutions
are given in Eqs.~D1! and ~D2!. The above equations also
imply various relations between the different reflection,
transmission, and cross-coupling coefficients and these are
given in Appendix B.

The corresponding solutions connected with the time-
dependent coupled mode equations for copropagating modes
represent ad-function pulse incident on the grating from the
left. Specifically,

F~z,t !5F10Gd~z2 c̄t !, z,0, ~26a!

F̄~z,t !5F01Gd~z1 c̄t !, z,0, ~26b!

where the incident pulse reaches the front of the grating at
time t50. Note that the boundary conditions are initial con-
ditions in space applying forz,0; this differs from the con-
trapropagating solutions, which are defined by boundary
conditions on the time variable. Simple arguments using the
appropriate characteristics of the coupled mode equations in-
dicate that the responses are nonzero only whenz. c̄utu.
Note that the time parametert appearing in the coupled
mode equations is not the physical time, but a transformed
time @see Eq.~A10!# and thus for copropagating modes one

of the modes is apparently traveling backwards in time with
respect to this transformed coordinate.

IV. CONSISTENCY EQUATIONS

In the previous sections, the resonance modes have been
defined, and resonance mode expansions have been given for
two independent solutionsc and c̄ of the coupled mode
equations. From these two solutions, the solution to any
problem for the coupled mode equations can be found by
forming the appropriate linear superpositions. Substituting
the resonance mode expansions forc andc̄ directly into the
coupled mode equations~3!, using the fact that the resonance
modes are solutions of the coupled mode equations for their
characteristic detunings, and requiring that the solutions sat-
isfy the equations for all detunings gives the following con-
sistency conditions:

q~z!52i (
m51

M̄

āmūm~z!ei D̄mz, ~27a!

q̄~z!522i (
m51

M

amvm~z!e2 iDmz. ~27b!

These conditions representexactresonance mode expansions
for the coupling functionsq and q̄ that define the grating
profiles. Thus, not only do the resonance modes provide a
representation for the fields, they simultaneously provide a
simple and exact representation for the grating profiles.

Thus, if we know in advance the grating profilesq
and q̄ we can find the resonance detunings and resonance
modes by solving the coupled mode equations with the ap-
propriate boundary conditions. Alternatively, if we knew the
resonance modes in advance, we could obtain the grating
profiles using the above result. In this section a method for
finding both the modes and the profilessimultaneouslyis
presented and the only information required in advance is the
resonance detunings and their relative strengths. Further-
more, the method does not require solving differential equa-
tions and is purely algebraic. This is possible because the
family of gratings and modes described has the important
property that all the resonances are discrete and finite in
number.

In the previous sections, resonance mode expansions were
obtained forC andC̄. Using Eqs.~25! and an inverse Fou-
rier transform, resonance mode expansions can also be ob-
tained forF andF̄:

F~z,t !5E
2`

` dd

2p
e2 id c̄ t

c~z,d!2r~d!c̄~z,d!

12r ~d! r̄ ~d!
, ~28a!

F̄~z,t !5E
2`

` dd

2p
e2 id c̄ t

c̄~z,d!2 r̄ ~d!c~z,d!

12r ~d! r̄ ~d!
. ~28b!

These integrals will be evaluated using the resonance
mode expansions forc and c̄ and contour integration. Ex-
amining the integrands carefully reveals that there are no
poles at either the resonancesDm or D̄m ~the singularities in
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the numerator are always balanced by singularities in the
denominator!. Thus all the poles of the integrands occur at
the detunings where

r ~d! r̄ ~d!51. ~29!

From the representations forr and r̄ , Eq. ~29! is seen to be
equivalent to a polynomial equation ford of degree
N5M1M̄ the sum of the number of gain and loss reso-
nances. The solutions of Eq.~29! will be denoted bydn for
n51, . . . ,N. The following useful representation is intro-
duced:

1

12r ~d! r̄ ~d!
[11 (

n51

N
An

d2dn
. ~30!

The detuningsdn also have a simple interpretation related
to the spectral response coefficients. Using the relations be-
tween the various coefficients given in Eq.~B1a! and Eqs.
~B2! thedn are the singularities~poles! of the copropagating
transmission coefficientst(d) and t̄(d), or equivalently, the
zeros of the contrapropagating transmission coefficients
t(d) and t̄(d).

The evaluation of the integrals by contour integration de-
pends on the relative sizes ofz and t and two different con-
tours are required. LetG1 represent the counterclockwise
contour obtained by closing the above integrals with a semi-
circle of arbitrarily large radius in the upper half of the com-
plex plane, and letG2 represent the clockwise contour ob-
tained by closing the above integrals with a semicircle of
arbitrarily large radius in the lower half of the complex
plane.

In the regiont.uzu/ c̄ the integrals forF and F̄ can be
evaluated as

F~z,t !5E
G2

dd

2p
e2 id c̄ t

c~z,d!2r ~d!c̄~z,d!

12r ~d! r̄ ~d!

52 i(
n

2
An@c~z,dn!2r ~dn!c̄~z,dn!#e

2 ivnt,

~31a!

F̄~z,t !5E
G2

dd

2p
e2 id c̄ t

c̄~z,d!2 r̄ ~d!c~z,d!

12r ~d! r̄ ~d!

52 i(
n

2
An@c̄~z,dn!2 r̄ ~dn!c~z,dn!#e

2 ivnt,

~31b!

wherevn5dnc̄ and the sum overn is restricted to those
dn which lie in the lower half of the complex plane.

Similarly, if t,2uzu/ c̄ then the integrals forF andF̄ can
be evaluated as

F~z,t !5E
G1

dd

2p
e2 id c̄ t

c~z,d!2r ~d!c̄~z,d!

12r ~d! r̄ ~d!

5 i(
n

1
An@c~z,dn!2r ~dn!c̄~z,dn!#e

2 ivnt,

~32a!

F̄~z,t !5E
G1

dd

2p
e2 id c̄ t

c̄~z,d!2 r̄ ~d!c~z,d!

12r ~d! r̄ ~d!

5 i(
n

1
An@c̄~z,dn!2 r̄ ~dn!c~z,dn!#e

2 ivnt,

~32b!

where the sum overn is restricted to thosedn which lie in
the upper half of the complex plane.

However, from the arguments following Eqs.~26! both
F and F̄ are identically zero in both these regions. This
implies that

c~z,dn!5r ~dn!c̄~z,dn! ~33!

for all n51, . . . ,N and allz.
The system of equations represented by Eq.~33! is a sys-

tem of N5M1M̄ simultaneous linear equations for the
M1M̄ unknown quantitiescm(z) andc̄m(z), and provides a
completely algebraic procedure for obtaining the resonance
modes. Explicitly, the system is

F1
0
G1 i (

m51

M
ame

2 iDmz

dn2Dm
cm~z!

5r ~dn!e
22idnzH F01G2 i (

m51

M̄
āme

i D̄mz

dn2D̄m

c̄m~z!J ~34!

for n51, . . . ,N.
Thus, given the resonant frequenciesDm , D̄m and their

relative strengthsam and ām , the detuningsdn can be ob-
tained by solving the polynomial equation~29! and the reso-
nance modes can be obtained completely algebraically from
the system of linear equations~34!.

The representations forF, F̄, f, andf̄ are given in Ap-
pendix D. Additional representations using the detunings
dn for some of the spectral coefficients are given in Appen-
dix B. Since the most common structures usually investi-
gated are pure index Bragg gratings, the simplified results for
this special case are given in Appendix C.

V. EXAMPLE RESULTS AND ANALYSES

In this section two different applications of the resonance
mode method are presented. The first is the design and analy-
sis of a grating structure, which possesses only a single gain
resonance. This grating profile might be achieved by varying
any or all of the linear properties of the waveguide. How-
ever, only pure index or pure gain gratings are considered for
this example.

The second example involves nonreciprocal gratings.
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Nonreciprocal contrapropagating gratings have different re-
flection spectra when viewed from opposite ends. In particu-
lar, a grating is designed that has a single reflection peak
when used from one end, but is transparent when used from
the other end. However, note that in the absence of magnetic
effects thetransmissionthrough the structure must be the
same from both sides. Thus, devices such as optical isolators
cannot be designed without using either some magnetic ef-
fect or some nonlinear optical property. However, a structure
with different reflective properties at either end might have
interesting applications. The nonreciprocal grating profile is
achieved by using a hybrid of index and gain gratings.

A. Single resonance grating

The gain resonance is chosen to occur at a detuning cor-
responding toD152 ig, whereg is a positive quantity cor-
responding to the gain threshold for the resonance mode. In
particular, 8.686g is the threshold gain of the lasing mode in
dB per unit length~and is uniformly applied throughout the
grating!.

The reciprocity properties of pure index or pure gain grat-
ings Eqs. ~C1! imply D̄15D1*5 ig and thus d1,2
56Aa1ā12g2 where the producta1ā1 is real. This is suf-
ficient information to calculate the resonance fields exactly
and, in particular,

v1~z!5
d1e

gz

d1cos~2d1z!1g sin~2d1z!
. ~35!

The boundary condition thatv1(z)e
iD1z vanishes at infinity

implies thatd1 is pure imaginary and Im(d1).g. This result,
in turn, implies that the producta1ā1 is negative, which us-
ing the reciprocity results from Eqs.~C1! cannot occur for a
pure index grating, but is always true for a pure gain grating
with ā152a1* .

Introducing two new parameters defined byL taper
52 i /(2d1) andG52gLtaper, exact expressions for the grat-
ing profiles and resonance modes are

q~z!5q̄~z!5
iA12G2/L taper

cosh~z/L taper!1G sinh~z/L taper!
, ~36a!

u1~z!5
2egzA12G2sinh~z/L taper!

cosh~z/L taper!1G sinh~z/L taper!
, ~36b!

v1~z!5
egz

cosh~z/L taper!1G sinh~z/L taper!
, ~36c!

with G,1. Note thatL taper can be identified as the typical
length scale over which the grating is tapered: small values
of L tapercorrespond to strongly tapered gratings, large values
correspond to weakly tapered or almost uniform gratings.
The reflection spectrum is given by

r ~D!52 i
A12G2

D1 iG
, ~37!

whereD52dL taper is a normalized detuning.
The intensity distribution for the resonance mode is given

by

I ~z!5uu1~z!u21uv1~z!u2

5e2gz
cosh~z/L taper!2G sinh~z/L taper!

cosh~z/L taper!1G sinh~z/L taper!
. ~38!

Note that ifG!1 then the intensity distributionI (z)'1 and
is uniform along the length of the grating.

The response to an incident pulse can also be calculated.
For an incident Gaussian shaped pulse exp(2t2/T2) the re-
flected pulse has the shape

Ap

2
c̄TA122gLtapere

2g c̄t2~1/4!g2 c̄2T2erfcS 2
t

T
1
1

2
gc̄TD .

~39!

For a specific physical implementation of this grating,
consider a single mode waveguide with the gain grating con-
fined to the core and assumed to be uniform across the core,
and coupling occurs between the fundamental forward and
backward modes. Then, the variation in the core is given by

nco~z!5n̄co1
l

p

nmode
hn̄co

q~z!cos~2pz/L!, ~40!

whereL is the grating period,n̄co is the unperturbed index of
the core, l52n̄coL is the laser resonance wavelength,
nmodeis the effective modal index of the coupled modes,h is
the fraction of modal power in the core, andq(z) is the
grating profile obtained above. Note that sinceq(z) is an
imaginary quantity, the above index profile corresponds to a
periodic grating with alternating regions of gain and loss.
The gain profile is given by

8.686 dB3
2p

l
Im@nco~z!#. ~41!

The average gain in the grating is zero. The maximum value
of the gain is

8.686 dB3
2nmode
hn̄co

A12G2/L taper. ~42!

For a typical value ofh'0.8, nmode'n̄co, G!1, and
L taper'3 cm the maximum gain required is 7 dB/cm. Ex-
amples of the grating profile and intensity distribution of the
laser mode for these typical values are shown in Fig. 6.

The above results are for an infinitely long grating. Re-
sults for a truncated version of the above grating with length
L are obtained using the results of Sec. IIID.

r trunc~D!52 i
A12G2

D1 iG F12
1

f ~D,L !G , ~43!

where

f ~D,L !5
12G2

11D21
D21G2

11D2 coshS L

L taper
De2 iDL/L taper

1
~D1 iG !~DG2 i !

11D2 sinhS L

L taper
De2 iDL/L taper.

~44!
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Note that asL→` the functionf (D,L)→` and the reflec-
tion spectrum approaches that for the ideal semi-infinite ta-
pered grating.

For the finite grating, the gain resonances satisfy the equa-
tion f (D,L)50. One of these resonances corresponds to the
original gain resonanceD1 but is perturbed slightly from its
value for the ideal semi-infinite grating. For long gratings
L@L taper the original resonance is shifted to the new detun-
ing:

d'2 igF11
2~12G!

~11G!G
e2~12G!L/L taperG . ~45!

Thus, the gain threshold has increased by a small amount
exponentially dependent on the actual length of the grating.
The remaining solutions off (D,L)50 correspond to addi-
tional resonances, but all of these have gain thresholds in
excess of 8.686/(2L taper). Thus the gain margin for the
lasing modes of the truncated grating is at least
8.686(12G)/(2L taper). Thus increasing the gain margin cor-
responds to decreasing the rate at which the grating tapers.
As the lengthL of the truncated grating is increased the gain
margin does not vary much, but the relative amplitudes of
the additional resonances decay to zero.

B. Nonreciprocal grating

Figure 7 shows the boundary conditions appropriate for a
contrapropagating problem where the incoming wave is in-
cident on the grating from the back. As with all solutions,
this solution can be constructed from a superposition of the
standard solutions. In fact, although it is interpreted differ-
ently, this solution is proportional to the solution shown in
Fig. 5~b! and is given byf̄(z,d)/x̄(d). Using the relation-

ships between the different coefficients in Eqs.~B2! the ex-
pression for the back-incident reflection coefficient is

r2~d!52
r̄ ~d!t~d!

t̄~d!
. ~46!

Pure index and pure gain gratings are reciprocal gratings
and have the property

ur ~d!u25ur2~d!u2. ~47!

That is, apart from the phase of the reflected wave, the re-
flection spectrum is identical when the grating is used from
either end.

A nonreciprocal grating can be obtained by using a com-
bination of a gain and an index grating. The simplest nonre-
ciprocal structure to formulate using the resonance mode
analysis hasM51 andM̄50 and corresponds to the most
extreme example of nonreciprocity: when the grating reflects
from one end, but is totally transparent when used from the
other end. The equations implyd15D1 and choosing
D152 ig anda15 ir 0g gives

r ~d!5
2r 0g

d1 ig
, ~48a!

r2~d!50, ~48b!

t~d!5t2~d!51. ~48c!

The peak reflectance from the front end isur 0u2 and the half-
width at half maximum of the reflection peak isg.

The standard solutions for the fields are given by

u~z!5eidz, ~49a!

v~z!5
2r 0g

d1 ig
e22gzeidz, ~49b!

ū~z!50, ~49c!

v̄~z!5e2 idz ~49d!

and the profiles are given by

q~z!50, ~50a!

q̄~z!52r 0ge
22gz. ~50b!

The results for a truncated version of the above structure
with lengthL are also easily obtained using the results from
Sec. III D and are

r trunc~d!5
2r 0g

d1 ig
@12e2idLe22gL#, ~51a!

r trunc
2 ~d!50, ~51b!

t trunc~d!5t trunc
2 ~d!51. ~51c!

Note that even the truncated grating remains totally transpar-
ent ~i.e., r250 andt25eidL) in the reverse direction.

FIG. 6. Gain profileg(z) in dB/cm ~shown by the solid curve!
and the resonance mode intensity profile in arbitrary units~shown
by the dashed curve! for a single resonance grating with parameters
G50.1,L taper53 cm.

FIG. 7. Boundary conditions and response coefficients for the
contrapropagating solution with a wave incident from the back of
the grating.
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Figure 8 shows typical examples of the reflection spectra
for the semi-infinite and truncated gratings. The most obvi-
ous effect of truncating the grating is to reduce the peak
reflectivity. In addition, the truncated grating also exhibits
slight sidelobes.

Assuming a uniform gain and index change across the
core, the grating can be implemented with the following hy-
brid structure:

n~z!5n̄12r 0g
l

2p

nmode
hn̄co

e22gzcosS 2pz

L D
22ir 0g

l

2p

nmode
hn̄co

e22gzsinS 2pz

L D . ~52!

The second term is a pure index grating and the third term is
a pure gain grating. Note that the gain and index gratings are
identical in structure and amplitude but are exactly 90° out
of phase. Both the index and gain gratings are exponentially
tapered with a tapering length scale proportional to 1/g, i.e.,
the tapering and the width of the spectrum are related to each
other. The maximum index and gain changes required are

Dnmax52r 0g
l

2p

nmode
hn̄co

~53a!

Dgmax58.686 dB32r 0g
nmode
hn̄co

. ~53b!

For typical values corresponding to Fig. 8 and a wavelength
of 1.5 mm, h'0.8 and nmode'n̄co the maximum index
change is 631026 and the maximum gain is 2 dB/cm.

The above result is not limited to the specific profile in
Eq. ~52!. In fact, whenever identical index and gain gratings
~with any profile! are out of phase by 90°, the reflection from
one end will be identically zero. This is because for one of
the modes the contributions from the index and the gain
grating cancel, and it propagates totally unchanged through
the structure, but the other mode is coupled to the first and
undergoes both phase and amplitude modulation. For these
particular hybrid gratings the maximum index change and
maximum gain~in dB per unit length! are always related by

Dgmax58.686 dB3
2p

l
Dnmax. ~54!

VI. DISCUSSION

The two examples presented here and analyzed in detail
are the simplest possible structures for which exact solutions
can be obtained using resonance mode analysis. More com-
plicated structures can also be analyzed completely algebra-
ically and thus although the complexity of the calculation
will increase there is still no need to resort to numerically
integrating the coupled mode differential equations, which
can be a tedious process when investigating large families of
grating structures.

The availability of exact expressions for both the field and
the grating allows the use of perturbation theory to examine
the sensitivity of the grating response to perturbations in the
structure. Here, we have looked at a particular perturbation,
truncating the grating tails, for which exact results can be
obtained. More general perturbations can be analyzed ap-
proximately ~and again without recourse to numerical inte-
gration!.

Resonance modes appear to be a very natural way to de-
scribe the fields in nonuniform grating structures and should
provide a strong framework for obtaining a rich variety of
results about different families of grating structures. Future
work in this area will look at extending resonance mode
techniques to solving certain nonlinear grating problems.

ACKNOWLEDGMENTS

The author thanks F. Ladouceur, M. Steel, C. M. de
Sterke, and T. Brown for useful discussions and acknowl-
edges the Australian Research Council for providing finan-
cial support.

APPENDIX A: DERIVATION OF COUPLED
MODE EQUATIONS

The coupled mode equations for a slowly varying nonuni-
form grating superimposed on a uniform waveguide are de-
rived. The modes that are coupled are any two discrete
modes of the background waveguide.

The starting point is the following wave equation for the
electric field:

¹2E2
1

c2
e r~x,y,z!

]2E

]t2
50, ~A1!

wherec is the speed of light in vacuum, ande= r(x,y,z) is the
relative dielectric permittivity representing the grating struc-
ture. The double underline indicates that, in general, the di-
electric function is a tensor to include the effects of birefrin-
gence. The wave equation in Eq.~A1! is valid within the
weak-guidance approximation@14#.

The structure is represented by

e r~x,y,z!5e r~x,y!1s~x,y;z!1k1~x,y;z!e2ipz/L

1k2~x,y;z!e22ipz/L, ~A2!

FIG. 8. Reflection spectra corresponding to Eqs.~48! with pa-
rametersr 050.99 andg50.1 cm21. The dashed curve represents
the spectra in the limit of a semi-infinite grating. The solid curve is
for a truncated grating of lengthL512 cm.
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where e r(x,y) is the unperturbed background waveguide.
The coefficients describing the gratings, k1, andk2 are all
slowly varying functions ofz and are small compared to
e r . They are all tensorial in nature to allow for birefringence.

The waveguide modesF1(x,y) and F2(x,y) satisfy the
equations

¹'
2Fi1

v0
2

c2
e r~x,y!Fi2b i

2Fi50, ~A3!

whereb i are the propagation constants of each mode~by
convention the sign ofb is negative for backward propagat-
ing modes!. In general, the propagation constants vary with
frequency andv0 is the frequency for which the modes are
phase matched to the grating; i.e., the propagation constants
satisfy the resonance condition

b12b25
2p

L
. ~A4!

By convention, the first mode is the one with the larger
propagation constant. The modes also satisfy the orthonor-
malization conditions

E F i
†
•F jdx dy5d i j , ~A5!

where the normalization integral extends over the entire
transverse cross section of the waveguide. The functionsF i

†

are the adjoint modes and satisfy the wave equation for the
transpose of the dielectric tensor. For a lossless waveguide,
the adjoint modes are just the complex conjugates of the
modes.

In the presence of the grating the waveguide modes are
coupled together and the electric field has the form

E5E1~z,t !F1~x,y!ei ~b1z2v0t !1E2~z,t !F2~x,y!ei ~b2z2v0t !

1c.c., ~A6!

where the amplitudesE1 andE2 are assumed to be slowly
varying functions ofz and t.

Substituting the above electric field into the wave equa-
tion ~A1! and ignoring rapidly oscillating terms the follow-
ing coupled mode equations can be derived:

i S ]

]z
1

1

v1

]

]t DE11s1~z!E11k1~z!E250, ~A7a!

i S ]

]z
1

1

v2

]

]t DE21s2~z!E21k2~z!E150 ~A7b!

and the coefficients are given by the following expressions:

1

vm
5

v0

bmc
2E Fm

†
•e r•Fmdx dy, ~A8a!

sm~z!5
v0
2

2bmc
2E Fm

†
•s•Fmdx dy, ~A8b!

k1~z!5
v0
2

2b1c
2E F1

†
•k1

•F2dx dy, ~A8c!

k2~z!5
v0
2

2b2c
2E F2

†
•k2

•F1dx dy. ~A8d!

The coefficientsvm are recognizable as the group velocities
of the modes.

It is convenient to make the following mathematical trans-
formations to put the coupled mode equations in Eqs.~A7!
into the simplest canonical form.

New amplitudesU(z,t) andV(z,t) are introduced and are
related to the field amplitudes by

U~z,t !5E1~z,t !expF2 i E
0

z

s1~z8!dz8G , ~A9a!

V~z,t !5E2~z,t !expF2 i E
0

z

s2~z8!dz8G . ~A9b!

The time coordinate is also transformed

t85t2
1

2 F 1v1 1
1

v2
Gz ~A10!

so that the apparent group velocities of the two modes with
respect to this new time coordinate are the same in magni-
tude but opposite in sign and given by

1

c̄
5
1

2 F 1v1 2
1

v2
G . ~A11!

For copropagating modes this transformation makes one of
the two modesappearto travel backwards in time.

The coupled mode equations in their final form are then

i S ]

]z
1
1

c̄

]

]t8DU~z,t8!1q~z!V~z,t8!50, ~A12a!

i S ]

]z
2
1

c̄

]

]t8DV~z,t8!2q̄~z!U~z,t8!50, ~A12b!

where

q~z!5k1~z!expF2 i E
0

z

$s1~z8!2s2~z8!%dz8G , ~A13a!

q̄~z!52k2~z!expF1 i E
0

z

$s1~z8!2s2~z8!%dz8G . ~A13b!

APPENDIX B: SOME MATHEMATICAL PROPERTIES
OF THE SOLUTIONS

If $u1 ,v1% and$u2 ,v2% are two different solutions of the
same coupled mode equations then the combination
u1v22u2v1 is constant. This can be verified directly by dif-
ferentiation and using the coupled mode equations. Using
this result and the four standard solutions defined in Sec. III,
the following relations are obtained:

uv̄2ūv512r ~d! r̄ ~d!5t~d! t̄~d!, ~B1a!
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mn̄2m̄n5t~d!t̄~d!2x~d!x̄~d!51. ~B1b!

Combining these relations with Eqs.~25! gives the fol-
lowing results for the coefficients:

t~d!51/t̄~d!, ~B2a!

x~d!52r ~d!/t~d!, ~B2b!

t̄~d!51/t~d!, ~B2c!

x̄~d!52 r̄ ~d!/ t̄~d!. ~B2d!

The above results indicate that the solutions$dn% to Eq.
~29! are also the zeros oft(d) and t̄(d), or equivalently the
polest(d) and t̄(d). More specific results are obtained be-
low if the solutions are ordered according to

Im~d1!,Im~d2!,•••,Im~dN21!,Im~dN!. ~B3!

For convenience the notation$d̄n% is introduced, defined by

d̄1[dN , d̄2[dN21 , . . . ,d̄N21[d2 , d̄N[d1 ,
~B4!

which is just the set$dn% ordered backwards.
The asymptotic behavior of the solutions to the linear sys-

tem in Eq.~34! can be obtained by examining the determi-
nant and minors of the corresponding linear matrix of coef-
ficients and isolating the dominant terms. The asymptotic
behaviors of the resonance modes are

um~z!;Ame
1 iDmz, ~B5a!

vm~z!;Bme1 iDmze22idMz, ~B5b!

ūm~z!;Cme2 i D̄mze12i d̄ M̄z, ~B5c!

v̄m~z!;Dme
2 i D̄mz. ~B5d!

From these the asymptotic behaviors of the standard cw so-
lutions are

u~z!;Ueidz, ~B6a!

v~z!;Veidze22idMz, ~B6b!

ū~z!;Ūe2 idze12i d̄ M̄z, ~B6c!

v̄~z!;V̄e2 idz ~B6d!

and the asymptotic behaviors of the profiles are

q~z!;Qe12i d̄ M̄z, ~B7a!

q̄~z!;Q̄e22idMz. ~B7b!

Requiring the profiles to decay to zero, gives the condi-
tions

Im~dM !,0,Im~ d̄ M̄ !. ~B8!

With this requirement the standard cw solutions are valid for
all real detunings, and also for complex detunings provided
the gain or loss is not too large, in particular

Im~dM !,Im~d!,Im~ d̄ M̄ !. ~B9!

Using the above results the asymptotic behavior of Eq.
~34! gives

t~dm!50, m51, . . . ,M , ~B10a!

t̄~ d̄m!50, m51, . . . ,M̄ . ~B10b!

These equations also provide a linear system for uniquely
determining the coefficientstm and t̄m directly. In addition,
this gives the following product representations:

t~d!5

)
m51

M

~d2dm!

)
m51

M

~d2Dm!

, ~B11a!

t̄~d!5

)
m51

M̄

~d2 d̄m!

)
m51

M̄

~d2D̄m!

. ~B11b!

APPENDIX C: RESULTS FOR PURE INDEX
BRAGG GRATINGS

Additional relationships between the solutions exist for
‘‘reciprocal’’ structures. These are structures with the prop-
erty q̄(z)56q(z)* . Pure index gratings and pure gain grat-
ings are always reciprocal structures. In particular, a pure
index ~Bragg! grating with contrapropagating modes
hasq̄(z)51q(z)* ; a pure gain grating with contrapropagat-
ing modes hasq̄(z)52q(z)* . On the other hand, a pure
index grating with copropagating modes hasq̄(z)
52q(z)* and a pure gain grating with copropagating
modes hasq̄(z)51q(z)* .

The resonance modes, detunings, and various coefficients
for reciprocal structures are related by the following reci-
procity relations:

M5M̄ , ~C1a!

ūm~z!5vm~z!* , ~C1b!

v̄m~z!56um~z!* , ~C1c!

D̄m5Dm* , ~C1d!

d̄ m5dm* , ~C1e!

ām56am* . ~C1f!

Relations for any other quantities can be derived from those
above.
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Reciprocal structures also have simple conservation re-
sults. If q̄(z)51q(z)* then the coupled mode equations can
be combined to give

]

]z
~ uuu22uvu2!522 Im~d!~ uuu21uvu2!, ~C2!

which means thatuuu22uvu2 is conserved for real detunings,
and that the resonances must satisfy Im(Dm),0 and
Im(D̄m).0. For contrapropagating modes, this result corre-
sponds to conservation of the power in gratings with no loss
or gain ~i.e., pure index Bragg gratings!. For copropagating
modes, this result corresponds to a constant power difference
between the modes in a pure gain grating with average gain
zero.

If q̄(z)52q(z)* then the coupled mode equations can be
combined to give

]

]z
~ uuu21uvu2!522 Im~d!~ uuu22uvu2!, ~C3!

which means thatuuu21uvu2 is conserved for real detunings.
The interpretation is similar to the one above but with the
roles of contrapropagating and copropagating modes inter-
changed.

For a pure index Bragg grating the resonance mode analy-
sis simplifies to the following results:

q~z!5q̄~z!*52(
m51

M

Vm~z!* , ~C4!

and

u~z!5eidzF11 (
m51

M
Um~z!

d2Dm
G , ~C5a!

v~z!5eidz(
m51

M
Vm~z!

d2Dm
, ~C5b!

where

11 (
m51

M
Um~z!

dn2Dm
5r ~dn!e

22idnz(
m51

M
Vm~z!*

dn2Dm*
~C6!

for n51, . . . ,N and

Um~z!5 iamum~z!e2 iDmz, ~C7a!

Vm~z!5 iamvm~z!e2 iDmz. ~C7b!

APPENDIX D: RESONANCE EXPANSIONS

If z. c̄utu the integrals forF andF̄ can be evaluated as

F~z,t !5E
G1

dd

2p
e2 id c̄ t

c~z,d!

12r ~d! r̄ ~d!

2E
G2

dd

2p
e2 id c̄ t

r ~d!c̄~z,d!

12r ~d! r̄ ~d!

5 i(
n

1
Ane

2 idn c̄ tc~z,dn!

1 i(
n

2
Ane

2 idn c̄ tr ~dn!c̄~z,dn!

5 i(
n51

N

Ane
2 idn c̄ tc~z,dn!, ~D1a!

F̄~z,t !5E
G2

dd

2p
e2 id c̄ t

c̄~z,d!

12r ~d! r̄ ~d!

2E
G1

dd

2p
e2 id c̄ t

r̄ ~d!c~z,d!

12r ~d! r̄ ~d!

52 i(
n

2
Ane

2 idn c̄ tc̄~z,dn!

2 i(
n

1
Ane

2 idnc t̄r̄ ~dn!c~z,dn!

52 i(
n51

N

Ane
2 idn c̄ tc̄~z,dn!. ~D1b!

The corresponding cw solutions obtained by Fourier
transforms are

f~z,d!5F10Geidz1H~z! (
n51

N

Anc~z,dn!
2 sin@~d2dn!z#

d2dn
,

~D2a!

f̄~z,d!5F01Ge2 idz1H~z! (
n51

N

Anc̄~z,dn!
2 sin@~d2dn!z#

d2dn
.

~D2b!
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