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We have studied both theoretically and experimentally the luminescence spectra and kinetics of crystalline,
disordered solid solutions after pulsed excitation. First, we present the model calculations of the steady-state
luminescence band shape caused by recombination of excitons localized in the wells of random potential
induced by disorder. Classification of optically active tail states of the main exciton band into two groups is
proposed. The majority of the states responsible for the optical absorption corresponds to the group of extended
states belonging to the percolation cluster, whereas only a relatively small group of ‘‘radiative’’ states forms
the steady-state luminescence band. The continuum percolation theory is applied to distinguish the ‘‘radiative’’
localized states, which are isolated in space and have no ways for nonradiative transitions along the tail states.
It is found that the analysis of the exciton-phonon interaction gives the information about the character of the
localization of excitons. We have shown that the model used describes quite well the experimental cw spectra
of CdS(12c) Sec and ZnSe(12c)Tec solid solutions. Further, the experimental results are presented for the
temporal evolution of the luminescence band. It is shown that the changes of band shape with time come from
the interplay of population dynamics of extended states and spatially isolated ‘‘radiative’’ states. Finally, the
measurements of the decay of the spectrally integrated luminescence intensity at long delay times are pre-
sented. It is shown that the observed temporal behavior can be described in terms of relaxation of separated
pairs followed by subsequent exciton formation and radiative recombination. Electron tunneling processes are
supposed to be responsible for the luminescence in the long-time limit at excitation below the exciton mobility
edge. At excitation by photons with higher energies the diffusion of electrons can account for the observed
behavior of the luminescence.@S0163-1829~99!11419-X#
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I. INTRODUCTION

Wide application of disordered II-VI semiconductor sol
solutions in modern quantum structures renews the inte
to understand their optical properties.

In this paper, three interrelated aspects of luminescenc
disordered solid solution are studied, namely,~i! the nature
of the steady-state intrinsic luminescence band at low e
tation,~ii ! the effect of high-excitation density on the spec
of radiative recombination, and~iii ! the long-time kinetics of
the luminescence both at high and low density of excitati

~i! The steady state intrinsic luminescence at a lo
excitation levels of many disordered systems1–13 including
II-VI solid solutions,2–12 is supposed to arise from recomb
nation of the excitons localized in the wells of a potent
profile induced by the disorder. A common spectrosco
feature of such systems is a considerable redshift of the
minescence with respect to the maximum of exciton abso
tion @or with respect to the band-gap edge, as in the cas
PRB 590163-1829/99/59~20!/12947~26!/$15.00
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a2Si:H ~Ref. 1!#, so that the fundamental emission band
situated in a spectral range where both the absorption c
ficient and the density of fluctuation-induced states are sm

Street1 has supposed that the intrinsic luminescence b
of a2Si:H can be understood with the assumption th
among the tail states a special group of ‘‘radiative’’ localiz
states exists, which forms a relatively narrow band with
maximum at 1.6 eV. Cohen and Sturge3 and Permogorov
et al.2 have claimed when studying II-VI solid solutions th
the upper border of the luminescence band correspond
the exciton mobility edge in the disordered system.

The results of the present paper are based on a theore
approach,10–12which incorporates both these ideas using a
background the model of solid solutions developed in Re
14 and 15. The calculations of the density of fluctuatio
induced tail states are performed within the framework o
single band, two component model of solid solutions w
diagonal disorder, which describes correctly the most co
mon features of disorder in many solid solutions and
12 947 ©1999 The American Physical Society
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simple enough for numerical calculations of many charac
istics of the tail states and the luminescence. It is suppose
the calculation of the composition dependence of tailing
fects that two constituents are distributed randomly in a d
ordered sublattice. A significant deviation of the random d
tribution should lead to considerably different results.

The problem of tail-state localization is considered in
energy regionv.v0 wherev0 is defined by the condition
N(v0) a3,1. Here the localization energyv is taken to be
positive so that its value increases with the depth of the st
a is a typical radius of the localized state, andN(v0) is the
number of tail states with localization energies exceed
v0.

In the zero-th approximation, the tail states with ener
exceedingv0 are supposed to be localized. In solid solutio
with anion substitution like CdS(12c) , Sec , and
ZnSe(12c)Tec localization is widely believed to be due to a
effect of the random potential on the hole motion. Excito
are localized by clusters of attractive atoms at compositi
below the threshold of the site percolation problem for
anion sublattice. At higher concentrations the localization
due to potential wells formed by a local excess concentra
of the attractive component. In both cases the fluctuati
responsible for the localization are considered as singly c
nected potential wells.

Further consideration of the tail-state character uses
approach of continuum percolation theory for overlapp
spheres.16–22 In order to apply this theory a sphere with th
radiusRint is introduced around every potential well or clu
ter. The value ofRint , which is the parameter of the theor
should be chosen to provide proper spectral positions of
minescence and absorption maxima. The percolation the
allows to improve the zero-th approximation and to sub
vide the tail states into the states formed by~1! spatially
isolated clusters~or potential wells!, by ~2! complexes of
clusters~or potential wells!, which are referred further a
superclusters, and~3! the states belonging to a percolatio
cluster.

The state with localization energyv is treated as spatially
isolated if no states with larger localization energy exist
the sphere of radiusRint surrounding a given potential wel
The state is considered as belonging to supercluster of sin,
if there exists a path from the given state to any other
(n21) states with larger localization energy, which can
composed of steps that are smaller thanRint . At a certain
localization energyvME the supercluster of infinite size ca
be formed. This supercluster is regarded as a percola
cluster andvME defines the mobility edge position.

On the basis of this classification the tail states can
divided into two groups with quite different radiative pro
erties. The first group is formed by the states of isola
clusters~or potential wells! and by the ground states of su
perclusters of finite size. For these states only the radia
recombination is possible. We were able to calculate num
cally the concentration and the energy distribution of th
‘‘radiative’’ states.

The second group constitutes the majority of the tail sta
and includes the excited states of superclusters and the s
of percolation cluster. For these states nonradiative tra
tions into states with larger localization energy are possi

Both types of states contribute to formation of the abso
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tion band of the exciton ground state, whereas the stea
state luminescence band at low intensity of excitation is s
posed to be formed only by the ‘‘radiative’’ states of th
fluctuation tail. The ‘‘radiative’’ states are situated main
~but not exclusively! below the mobility edge and the lumi
nescence band decreases sharply in the vicinity of the mo
ity edge. Even without the account for the exciton-phon
interaction the zero-phonon emission band is redshifted w
respect to the zero-phonon absorption band for solid solu
or the absorption edge fora2Si:H. As it follows from the
above model, the redshift of the luminescence band w
respect to the absorption is an intrinsic property of dis
dered systems.

Phonon-assisted electronic transitions with simultane
emission of optical and acoustical phonons cause the a
tional Stokes shift between the luminescence and absorp
spectra. The account for the electron-phonon interaction
lows us to describe quantitatively the shape of the lumin
cence spectra of different disordered systems in the limi
low excitation.

In particular, we were able to describe the experimen
luminescence spectra of crystalline solid solutio
CdS(12c) Sec ~Refs. 10 and 11! and ZnSe(12c)Tec .12 The
analysis of electron-phonon coupling shows that the stren
of this interaction is considerably different for two models
localized exciton, namely, for excitons localized as a wh
~model I! and for electrons bound by Coulomb interaction
holes localized by the fluctuating potential~model II!. In the
first model the electron can follow adiabatically the moti
of the hole while it cannot do it in the second model. T
comparison of calculated and experimental spectra sh
that the localized excitons are formed by localized holes w
electrons being coupled via the Coulomb interaction
CdS(12c) Sec at c,0.4 and in ZnSe(12c)Tec in the whole
composition range studied.

~ii ! The next subject of our studies is the temporal evo
tion of the luminescence band shape following excitat
with a short light pulse. At short times after the excitatio
pulse the maximum of the time-resolved luminescence b
is considerably shifted to higher energies with respect to
position observed in steady-state conditions. It can be s
posed that the early stage of luminescence corresponds t
direct recombination of excitons created by photons. T
stage covers the time interval of a few nanoseconds, whic
comparable with the exciton radiative lifetime. Dependi
on the composition of solid solutions the luminescence de
during this initial stage of recombination shows a more
less pronounced deviation from a simple exponential beh
ior.

The high-energy shift of the luminescence maximum
short times can be attributed to the filling of the hole t
states including the extended states of the percolation clu
Subsequent recombination and energy relaxation proce
lead to the time-dependent changes of the band shape an
maximum position so that at sufficiently long times the l
minescence spectrum regains the features of steady-sta
minescence.

As it is known, the high-density excitation of semico
ductor crystals leads to band-state filling and the screenin
the Coulomb potential.23 As a consequence, the attractiv
electron-hole interaction decreases with increasing fill
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causing a reduction of the exciton binding energy. At t
same time a renormalization of the single-particle energy
sults in a band-gap shrinkage. Both effects cancel each o
because they have the same order of magnitude and opp
signs. In binary semiconductors the influence of electr
hole plasma is mainly observed as a reduction of the exc
oscillator strength until the band energy reaches the exc
ground state at the Mott density when the exciton sta
disappear.23 The dynamics of band filling and of stimulate
emission at high-excitation density have been investigate
ZnSe(12c)Tec and CdS(12c)Sec alloys in Refs. 24–29. The
luminescence and gain spectroscopy of CdS(12c)Sec solid
solutions under high-excitation density were reported in R
30. It can be concluded, that the nonlinear electron-h
plasma effects are less pronounced in disordered sys
than in the binary compounds.30 This finding can be consid
ered as a consequence of the carrier localization by the
tuating potential.

Other topics that have been already treated in these
tems concern the coherent dynamics,28,31 the polarization
memory for both linear and circular polarization,32–34and the
absolute luminescence yield of the localized states as fu
tion of temperature for various alloys.28

The studies of the ZnSe(12c)Tec and CdS(12c)Sec solid
solutions presented in this paper were performed in a w
interval of the excitation power at which, nevertheless,
Coulomb potential was not screened though the consider
filling of the electronic and hole states was reached.

In agreement with the earlier data of Refs. 28,35–38
have found that more than 90% of the excitons recomb
during the first few nanoseconds after the excitation pu
while the remaining radiation lasts a few hundreds nanos
onds. Just after the high-power excitation pulse the ini
luminescence band maximum is shifted toward higher en
gies. A comparison of the shift values in two different so
solutions ZnSe(12c)Tec and CdS(12c)Sec has shown an ob
vious correlation between the value of blueshift of the ba
maximum and the width of the fluctuation tail in absorptio
The calculations, which we shall present, show that the fo
of the initial luminescence band can be described as a su
position of two overlapping bands, one of which is form
by ‘‘radiative’’ states and the other is due to states of per
lation cluster. In the long-time limit only the band formed b
radiative states survives.

~iii ! Previous studies28,35–38 of the time kinetics of the
luminescence at different spectral points have shown tha
fast decay dominating the first stage of the process cont
ously transforms into the slow nonexponential behav
Nevertheless, it was intuitively supposed that the spectr
integrated kinetics should follow an exponential decay w
the radiative lifetime of excitons created by photons. T
nonexponential behavior observed was considered as a
sequence of population dynamics of excitons across the
states. The experimental results of the present paper reve
a nonexponential behavior for the spectrally integrated lu
nescence kinetics even at very low-excitation densit
which definitely rules out the simple scheme of the expon
tial decay with the radiative lifetime of excitons.6,7 It means
that the long-time kinetics cannot be described within
framework of the localized exciton-formation models, whi
were sufficient for simulations of the steady-state lumin
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cence spectra.10–12In this paper we shall try to consider po
sible reasons leading to the long-time survival of a small
clearly observable part of the excitations and generalize
model of localized exciton formation and recombination.

As a possible reason for the long-time nonexponential
netics we are considering the creation of separated elect
hole pairs in the process of energy relaxation of excitatio
generated by photons. It is supposed that both electrons
holes are subjected to the random potential of the disorde
system. The time behavior of the luminescence intensity d
ing the long-time nonexponential stage of relaxation depe
on the energy of exciting photons and on the pulse powe

We assumed that even in the case of excitation below
mobility edge a part of absorbed photons produces ‘‘imm
bile’’ particles separated in space for which the radiat
recombination is possible only through the tunneling, like
the case of donor-acceptor pairs39 and the obtained depen
dence presents a particular case of Becquerel’s law.40 At
excitation at and above the mobility edge the long-time
minescence kinetics acquires new features, which we
scribe using the results of the theory of diffusion controll
annihilation.41–43In particular, the intermediate time kinetic
shows stretched-exponential behavior with critical indices
‘‘normal’’ 41–48 or ‘‘anomalous’’41,43 diffusion. The long-
time kinetics shows in this case a power lawt23/2 for the
decrease of intensity. This kind of dependence was obta
by Noolandi et al.50 in an approximation developed b
Mozumder51 and it was observed in amorphous silicon. T
other approach developed by Kuzovkov and Kotomin49 for
the diffusion-controlled bimolecular reaction describes
inhomogeniety in the space distribution of the particles. A
result, power law follows in the long-time limit for the in
tensity decayI (t);t23/2 in the case of equal concentration
of two kind of mobile and immobile particles.

The structure of the paper is as follows.
In Sec. II we present the main theoretical results.
In Sec. III the description of samples and other details

the experimental setup are given as well as the experime
data and their comparison with theory.

The last section of the paper is devoted to conclud
remarks.

II. THEORY

Optical properties of a crystal can be described if eig
values and eigenfunction of the corresponding Hamilton
are known. The complete solution of this problem rema
still very difficult even for perfect crystals. Situation is eve
more complicated in disordered solids. Additional difficulti
arise, on the one hand, from the absence of the long-ra
order and, on the other hand, from the composition dep
dence of the parameters of the system. An approximate
proach to the problem has to take into account the pecul
ties of the disordered systems.

An effective perturbation of the electronic states near
band edge occurs when an attractive center substitutes a
atom. For an isoelectronic substitution of a single atom i
three-dimensional regular crystal an important characteri
is the strength of perturbation of the electron states, whic
characterized by the relation of the perturbation potentia
its critical valueEcr , at which a localized state just appea
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The strength of perturbation of each attractive atom
creases with an increase of the concentration of attrac
centers because of the global shift of the averaged poten

We will use the following classification of disordered sy
tems in dependence of the strength of the isoelectronic
turbation and composition of the solution, which is conv
nient in the region of the tail states. The solid solution will
referred to as a strong scattering system if the perturbatio
large enough to split off the bound state from the band e
when substituting a single atom or a small cluster of the
The lattice percolation theory can be applied for an accu
estimation of the number of tail states for strong-scatter
systems in a relatively large region of compositions.

The weak-scattering limit will be related to the system
where the number of attractive atoms necessary to split
the localized state exceeds considerably unity.

An increase of the concentration of attractive centers lo
ers the averaged potential and results, thus, in a decrea
the number of localized states and a narrowing of the reg
of the tail states. As the consequence, a strong scatte
system transforms into a weak scattering one. In gene
there is a region of parameters where it is rather the ques
of convenience how to treat a given system.

The solid solution ZnSe12cTec can be attributed at a low
concentration of Te to the systems with strong scatter
because already clusters consisting of two Te atoms cr
bound hole states above the valence-band edge.4 In this pa-
per we are interested in the ZnSe12cTec solid solution at
concentrationsc of attractive Te atoms less than the critic
value of the site percolation problem for the fcc sublatti
i.e., c,pc'0.2. According to the lattice percolatio
theory,16,17,52–54randomly distributed Te atoms are able
form in the composition regionc,pc only finite-size clus-
ters.

The other systems under consideration are CdS(12c)Sec
solid solutions in a wide composition interval. Th
CdS(12c) Sec solid solution presents a system where the p
turbation by a single atom is weak and the bound states o
as a result of a large-scale fluctuation of composition form
by a considerable excess concentration of Se in some m
scopic regions of the crystal.

Both systems show considerable decrease of tailing
fects at high concentration of narrow-band component.4

A. General characteristics of disorder effects
in ZnSe12cTec and CdS

„12c…Sec solid solutions

There are two characteristics of solid solutions, name
the shift and the tailing of their band gap, which lead to
composition dependence of their optical properties.

A development of the theory of electron states in so
solutions55–65is closely related with phenomenon of the no
linear composition dependence or bowing of the band g
which presents the deviationDEG(c) from the simple linear
interpolation of the band gapEG(c) as a function of compo-
sition

EG~c!5EG~B! ~12c!1EG~A! c2DEG~c!.

Results of latest investigations in this field presented in R
63–66 show that the perturbation of the electronic states
to the isoelectronic substitution has a complicated charac
-
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According to Refs. 63–66, bowing is a result of se
consistent changes of the electronic states due to the ch
cal perturbation and structural changes of the lattice due
the variations of chemical bond lengths.

The detailed analysis of the nonlinear part of the band
variation with the composition in ZnSe12cTec and
CdS(12c)Sec solid solutions has shown4,5 that the bowing
DEG

exp(c) as a function of the composition can be presen
in the form of sum of two terms

DEG
exp~c!5DE1

exp~c!1DE2
exp~c!, ~1!

whereDE1
exp(c) andDE2

exp(c) are different functions of the
concentration. The larger termDE1

exp(c) is symmetrical in
variablesc and (12c) and can be presented by the equati

DE1
exp~c!5b1 c~12c!. ~2!

Its maximum value for ZnSe12cTec at c50.5 amounts to
about 0.25 eV. This value is comparable to the difference
the band gaps of ZnSe and ZnTe of 2.82 and 2.39 eV67

respectively.
The maximum value ofDE1

exp(c) for CdS(12c) Sec is
equal to'0.055 eV while the difference of the band gaps
CdS and CdSe crystals is equal to 0.72 eV.

The second termDE2
exp(c) reaches its maximum value a

c'0.1520.20 and it is equal to'0.1 eV for ZnSe12cTec
and to'0.030 eV for CdS(12c) Sec .4,5

Both absorption and luminescence spectra of ZnSe12cTec
and CdS(12c)Sec solid solutions show evidences of localiz
tion effects due to composition fluctuations. The form of t
fundamental absorption edge follows the simple Urbach
characterized by the Urbach tailing parameter«U(c), which
defines the exponential decreasing absorption tail. The m
mum values of«U(c) in ZnSe12cTec and CdS(12c)Sec solid
solutions are equal to«U(c) '0.030 and'0.005 eV, respec-
tively. The composition dependences of«U(c) coincide in
both crystals practically with those ofDE2

exp(c), which al-
lows one to treat the termDE2(c) as a result of the sam
composition fluctuations that are responsible for the taili
Both these functions can be approximated by the equatio14

DE2
exp~c!, «U~c!;

~12c!5/2

ln~1/c!
. ~3!

B. Density of fluctuation states in systems
with diagonal disorder

The influence of disorder on the optical properties d
pends strongly on the number of states split off the ba
edge. The most direct optical characteristics concerned w
this number of states is the broadening of the exci
ground-state transition, though the exciton-phonon inter
tion has the tendency to hide or to increase the effect. S
stituting atoms form a great variety of configurations and
general problem of disordered systems is how to find and
enumerate those responsible for the tailing. The energy
terval of interest is rather large enough and both size
number of clusters responsible for the localization incre
enormously with the growth of the localization energy a
quickly reach the values inaccessible for a direct calculat
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even for strongly scattering systems at concentrations be
the sublattice percolation thresholdc,pc .

Thus, this fact requires an approach that allows one
separate the problem of estimation of the number of loc
ized states from a calculation of the energy dependenc
the density of states and to solve these problems by mea
quite different approximations.

~1! Within a narrow energy interval the number of stat
below the band edge is estimated using~a! mathematically
accurate equations of lattice percolation theory for the c
c,pc in the strong scattering limit, or~b! the simple model
of potential wells at compositionsc,(12pc), which gives
the correct order of the magnitude of the density of sta
~DOS!. If it is necessary the obtained DOS can be fitted
the experimental data on the exciton band broadening.

~2! Calculation of the energy dependence of DOS
effective-mass approximation in both cases~a! and ~b! with
the help of a variational procedure, which presents in
essence an interpolation between two limits, namely,
tween the region of the Lifshitz border where the proced
gives an adequate result and the region near the band
where the density of states is already a function only wea
dependent on energy. The calculated DOS should be nor
ized properly by the results of the previous point~1!.

1. Model Hamiltonian

We suppose that electron-hole pairs, which take par
absorption and luminescence in the tail region of the exc
ground state in the solid solution under consideration,
localized in potential wells due to disorder effect on t
states of the valence band while electrons are bound to h
by Coulomb interaction. We have two limiting possibilitie
in this case. If the electron can follow the hole motion ad
batically we have to consider the exciton localized as
whole ~model I!. The other situation can be realized if th
hole motion is too fast and the electron interacts with av
aged distribution of the hole density~model II!.

Inasmuch as the electron mass is considerably sm
than that of the hole we neglect the difference in masse
the exciton and hole, and will describe the localized state
both cases by the same single-particle Hamiltonian. We
glect also the small difference in the electron-hole Coulo
interaction for these two models. We will take into accou
only the ground state of the electron-hole Coulomb proble
which will be included into the considerations of the spect
density of the tail states~subsection F! and in calculations of
the exciton phonon interaction~subsection J!. A significant
difference of these two models becomes obvious in the c
sideration of the exciton-phonon interaction~subsection J!.

Let a macroscopic volumeV of the crystal containingN
lattice sites be randomly filled with two sorts of atomsA and
B. The average number of atomsA is equal toNA5cN and
that of atomsB is NB5(12c)N. Atoms A are supposed to
be attractive centers andc is their concentration. The single
band Hamiltonian of the system is written as

H52(
n,m

CnWm~Cn1m2Cn!1(
n

EnCn
2 . ~4!

The wave functionsCn can be taken in many cases to
real. The diagonal matrix elementEn is equal toEA if the
w
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site is occupied with atomA and toEB in the opposite case
In the limiting casesc50 or c51 Eq. ~4! presents the

Hamiltonian of the regular crystalB or A with all En being
either equal toEB or EA . Using the plane-wave represent
tion we have in these cases

Hq
a5«q1Ea , ~5!

wherea is A or B and the relation

«q5W02Wq ~6!

describes the electronic band dispersion. The off-diago
matrix elementWm defining the band dispersion is suppos
to be independent on the composition. We suppose in
calculationsEB.EA .

2. The single-particle Green’s function and the density of state

The Green’s functionGnm
a (v) of the pure crystalA or B

can be written as

Gnm
a ~v!5$v I2Ha%nm

215
1

N (
q

eiq(Rn2Rm)

v2«q2Ea
, ~7!

whereRn is a radius-vector of the lattice siten, «q
a is the

self-energy of an electron in the band with wave vectorq,
and I is the unit matrix. Equation~7! defines the Green’s
function uniquely at energiesv outside the band, where thi
function is real. Inside the band, we can define retardant
advanced Green’s functions by the introduction of a sm
imaginary energy parameter in the denominator of
Green’s functionv→v6 i0.

For a random distribution of the atomsA and B the
Green’s function is dependent on the composition and ato
positions

Gnm~v!5$v I1Hvc2D%nm
21 . ~8!

The matrixesHvc andD are defined by the equations

Hnm
vc 5Wn2m2W0 dnm ; D5Dndnm . ~9!

Here,

EG~c!5cEA1~12c!EB ~10!

is the linear in concentration shift, which results from ave
aged value ofEn in a lattice site. LetEG defind by Eq.~10!
be a frame of reference for energy andv.0 in the region of
localized states. Then diagonal matrix elements are com
sitionally dependent functions

Dn5En2EG~c!. ~11!

The eigenvalues and eigenfunctions of the Hamiltonian
any realization of a random distribution of two kind atom
can be found by means of diagonalizing theN-rank matrix,
which is formed by columns like

vLwL
D~n!1(

m
~Hnm

vc 2Dndnm!wL
D~m!50. ~12!

The density of states of disordered systems can be foun
the result of the averaging procedure, i.e., summing over
DOS corresponding to all possible realizations of the dis
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der with the weight multipliersPD , which are equal to the
probability that a given variant of random distribution o
curs. Taking into account all of the possible quantum nu
bersL we obtain

r~v!5
1

2pE2`

`

(
D

PD (
L

dtL (
n

uwL
D~n!u2

3exp@2 i ~v I1Hvc2D!L LtL#, ~13!

where

@vI1Hvc2D#L L

5(
n,m

wL
D~n! ~v dnm1Hnm

vc 2Dn dnm! wL
D~m!.

~14!

Performing the integration overtL we transformr(v) into
the form

r~v!5(
D

PD (
L

(
n

uwL
D~n!u2 d~v2vL

D !. ~15!

Here we have denoted eigenvalues of the Hamiltonian
given realization of disorder asvL

D . EigenfunctionswL
D for

the localized states can be normalized to unity.
In order to compare the calculated functions of the loc

ization energy with experimental data we need a frame
reference for energy variables.

There is a problem concerning the large value of the to
band gap bowingDEG(c)exp as compared with the localiza
tion energies of the tail states. The frame of reference
tained by means of a simple linear interpolation of the ba
gaps like Eq.~10! would lead to a considerable overestim
tion of the localization energies of the tail states. Taking in
account that there are theoretical arguments55–66 and experi-
mental findings that allow us to conclude thatDE1

exp(c) does
not influence the localization, we will use in our further co
sideration a subtraction of the symmetrical part of the ba
gap bowing, which depends on the composition of the so
solution as it is given by Eq.~2!.

After subtractionDE1
exp(c) the frame of reference for th

experimental energies is given by the equation

EG
exp~c!5cEG

A1~12c!EG
B2DE1

exp~c!. ~16!

The value of theDE1
exp(c) itself can be defined accurate

from the experimental data if the bowing is known in t
region of large concentrations of the narrow-band compon
where the second part of the bowingDE2

exp(c) is of no
importance.5

The function corresponding in our calculations
DE1

exp(c) is the band-edge bowing due to single-site fluctu
tions DE1(c). There are different approximations given
Refs. 55–66 which were used to calculate the band-e
bowing. In the considered model the scattering from
single-site fluctuations presents the only mechanism that
duces the symmetrical part of the band-edge bowing.
second-order perturbation theory

DE1~c!5D2 Gnn
vc~0! c ~12c!, ~17!
-

a

l-
f

l

b-
d

o

d
d

nt

-

ge
e
o-
n

where

Gnm
vc ~v!5~v I2Hvc!nm

21

is the Green’s function in virtual crystal approximation, a

D5uEB2EAu ~18!

is the amplitude of the fluctuation potential. Taking into a
count that

@Gnn
vc~0!#21[Ecr ~19!

is equal to the single-site critical value of the perturbati
potential we see thatDE1(c) depends on the same param
eters of the system as the Urbach energy.

In spite of the fact that Eq.~17! does not provide an
adequate description of band-edge bowing in the gen
case~discussion of this problem can be found in Refs. 6
62! we may expect that in the simple model under consid
ation the calculated value of the bowing has the correct or
of magnitude if the parameters of the model HamiltonianD
andD/Ecr are found as a result of a fitting procedure of t
form of the absorption spectra.

The experimental value of the symmetrical part of t
band-gap bowingDE1

exp(c) and the calculated band edg
bowing DE1(c) obey for both CdS(12c) Sec and
ZnSe(12c)Tec the inequality

DE1~c!<DE1
exp~c!. ~20!

This fact shows that contributions from the valence ban
define mainly these values.

The obtained band-edge bowing of Eq.~17! gives a con-
stant shift of the frame of reference of Eq.~10! for all energy
variables in the theoretical calculation excluding this va
from the calculations of the localization energies.

C. Strong-scattering limit, c<pc . Isolated cluster
approximation, sum rule

The limit of small concentrationc!1 of strongly attrac-
tive centers is closely related with the strong loc
perturbation problem solved in Ref. 68 for electrons and
Ref. 69 for phonons~see also Refs. 70 and 71, and referen
therein!. It corresponds to the case where the depth of
potential wells of the lattice sites occupied by atomsA is
large as compared with its critical magnitude, i.e.,

~12c! D@uGnn
vc~0!u21. ~21!

If the interatomic distances between atomsA exceed the ra-
dius of the bound state appearing at each lattice site occu
by atomsA then Eq.~12! reduces in the region of the boun
states with accuracy up to terms of the order ofc2 to the
Koster-Slater-Lifshitz equation~see Refs. 68–71!

@11D Gnn
vc~v!#wL

D~n!50. ~22!

At small but finite concentrations of the attractive cente
there exists a finite probability to find pairs and larger clu
ters of attractive centers.72

We develop here a straightforward approach to the pr
lem in the strong scattering limit atc,pc when atomsA
form only clusters of finite size. Let us assume in the fi
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approximation that the cluster wave functions of the loc
ized states are not overlapping and treat the medium
rounding a cluster in the virtual crystal approximation. Lat
we will take into account composition fluctuations outsi
the cluster.

For any cluster, the equation of motion can be presen
in this approximation in the form

@ I1gvc~v! D#nmwL
D~m!50, ~23!

wheren andm take the values corresponding the lattice si
coordinates occupied by the cluster andgvc(v) is the frag-
ment of the Green’s-function matrix restricted by the reg
of the cluster. Using an approach developed in the theor
lattice dynamics,73 we find the eigenfunctions and eigenva
ues of the matrix

@gvc~v! D# ~24!

the rank of which is equal to the size of the cluster cons
ered

(
mPCst,k

@gvc~v! D#n,m Fs~m,v!5ls~v! Fs~n,v!,

~25!

where summing is performed over the region occupied
the cluster, which containss attractive centers andt perim-
eter sites. Indexk enumerates different space configuratio
of the cluster. The eigenfunctions form the complete ort
normal set of vectors obeying the equation74

(
s

Fs~m,v! Fs~n,v!5dnm . ~26!

With the help of these eigenfunctions and eigenvalues
matrix @ I1gvc(v) D#21 can be presented as

@ I1gvc~v! D#nm
215(

s

Fs~n,v! Fs~m,v!

12ls~v!
. ~27!

The localized state will be split off if at least for one of thes
there exists the valuev5v loc.0, for which the equality is
fulfilled

ls~v loc!51. ~28!

The general rule is that, the nodeless state splits off first
this state has the deepest localization energy and is m
important for the optical properties of a system. The wa
function of the localized states can be presented as

fs~n!5 (
mPCst,k

Gn,m
vc ~v! Fm

s ~v!

3U (
n,mPCst,k

Fn
sGn,m8vc~v! Fm

sU21/2

, ~29!

where

Gn,m8vc~v!5
]

]v
Gn,m

vc ~v!.

Let us write the probability of realizing a cluster contai
ing s atomsA and having a perimeter oft atomsB as
-
r-
,

d

s

of

-

y

s
-

e

d
st

e

gst c
s ~12c! t, ~30!

where gst is the number per lattice site of different spa
configurations of clusters, which have a coinciding numb
of atoms A and B. Taking into account the nodeless bou
states only we can write for the density of states

r~v!5(
s

(
k51

gst

(
n

ufn
st,ku2 cs ~12c! t d~v2v loc

st,k!.

~31!

The integrated DOS per lattice site can be written

N~0!5E
0

EL
r~v! dv5(

st,k
gst c

s ~12c! t5(
s

ns~c!,

~32!

whereEL is the Lifshitz border for the solid solution. Th
right-hand side of the equation coincides with the total nu
ber of clusters per lattice site.

Sums like Eq.~32! are to appropriate accuracy determin
by their lower limit, i.e., by their first few terms at any con
centration. As soon as a few first values ofns(c) are known
for the different lattices, sums like this one can be practica
used to estimate the number of states splitting off the b
edge in the case of the strong scattering limit.

According to Refs. 52 and 53 the numbersns(c) are equal
to

n1~c!5c ~12c!12; n2~c!512c2 ~12c!18;

n3~c!5c3@24~12c!231126~12c!24# ~33!

for fcc lattice. The quantityn4(c) can be estimated using Eq
~33! as

n4~c!'103 c4 ~12c!30. ~34!

Further useful information can be obtained if the depe
dence of the localization energy on the number of atomsA in
a cluster is known at least approximately. This allows one
estimate the energy dependence of the integrated DO
well as the DOS itself.

The maximum number of the localized states that c
split off the cluster containings attractive centers is equal t
s. The mean numbers of clustersns(c) of sizes are normal-
ized according to equation

NA5N (
s51

`

ns~c! s, ~35!

whereN is the number of lattice sites andNA is the mean
number of atoms A per unit volume. This equation defin
the upper limit of the number of localized states. This es
mation can be useful in the limit of very strong scatteri
systems.

1. Effect of fluctuations on localized cluster states.
Perturbation theory approach

In the previous consideration we supposed that the
dium surrounding the clusters can be approximated by
virtual crystal. In order to estimate the role of compositi
fluctuations outside the cluster we will substitute the o
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tained solution into Eq.~13! and find the first correction to
the DOS due to fluctuations. As a result we have

r~v!5
1

2pE2`

`

dt (
s

(
k51

gst

(
n

ufn
st,ku2 cs ~12c! t

3exp@2 i ~v2v loc
st,k!t#

3K expS 2 i (
n{Cst,k

Dnu fn
st,ku2t D L , ~36!

where^•••& means averaging over all possible realizatio
of lattice site filling except a given cluster. At a rando
distribution each of the lattice sites is occupied by atomA
with probability c and with probability (12c) by atomB.
Taking into account that the averaging exponent is splitt
into the product of exponents and that each of the multipl
is averaging independently we obtain

K expS 2 i (
n { Cst,k

Dn ufn
st,ku2t D L

5 )
n{ Cst,k

N

@c exp~2 iDAufn
st,ku2t!

1~12c!exp~2 iDBufn
st,ku2t!#. ~37!

Here

DA5EA2EG52~12c!D,

DB5EB2EG5cD. ~38!

The averaged expression for the DOS can then be wri
as

r~v!5
1

2pE2`

`

dt (
s

(
k51

gst

(
n

ufn
st,ku2 cs ~12c! t

3expH 2 i ~v2v loc
st,k!t1 (

n { Cst,k

ln@Rn~t!#J ,

~39!

where

Rn~t!5c exp@ iD~12c! ufn
st,ku2 t#

1~12c!exp~2 iD c ufn
st,ku2 t!. ~40!

Restricting to the first nonzero cumulant we have for
DOS

r~v!5
1

2pE2`

`

dt (
s

(
k51

gst

(
n

ufn
st,ku2 cs ~12c! t

3exp@2 i ~v2v loc
st,k!t2gst,k

2 t2/2#, ~41!

where

gst,k
2 5 (

n { Cst,k

c~12c! D2 @ ufn
st,ku2#2.
s

g
rs

n

e

The summing in the last expression has to be performed o
the lattice sites outside the given cluster. After calculat
the integral overt we have

r~v!5(
s

(
k51

gst

(
n

ufn
st,ku2 cs ~12c! t

3
1

A2pgst,k
2

exp@2~v2v loc
st,k!2/~2 gst,k

2 !#.

~42!

The expression obtained differs from Eq.~31! because the
localization energy in the last equation is defined with ac
racy gst,k . If the localization energy andgst,k are compa-
rable then the number of states split off the band edge
creases due to fluctuations as compared to the case wit
fluctuations. This means that

N~0!5E
0

EL
r~v! dv<(

s
ns~c!. ~43!

The result obtained is restricted to the region where the p
turbation theory is applicable, i.e., it is the better the low
the cluster concentration and the larger the localization
ergy are.

2. Effect of fluctuations on localized cluster states.
Variational procedure

To extend the region of the cluster approach we apply
variational procedure to consider fluctuations of the s
rounding medium. For further calculations it is convenient
rewrite the Fourier integral of Eq.~36! as a Laplace transfor
mation

r~v!5
1

2pE2`

`

dt (
s

(
k51

gst

(
n

ufn
st,ku2 cs ~12c! t

3 expH 2 i F(
nm

fn
st,k~Hnm

vc 1v dnm!fm
st,kG~t2 iust,k!

1 (
n { Cst,k

ln@Rn~t2 iust,k!#J . ~44!

Here,fm
st,k is the trial wave function of the localized state fo

the given cluster, andust,k is the corresponding parameter
the Laplace transformation. An important detail of the pro
lem is concerned with the great variety of the cluster co
figurations. As a result the trial functions for the variation
procedure should be chosen for each of the clusters indiv
ally. Neglecting the possible overlapping of the wave fun
tions of clusters we consider in this case isolated clust
The problem consists in the solution of the equations, wh
have the form

(
nm

@Hnm
vc 1v dnm#fm

st,k1Ust,k~n!fn
st,k50. ~45!

The potential energy inside the cluster is defined uniqu
by the configuration of the cluster. Outside the cluster,
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most probable potential energy has to be found. As a re
of this optimization we have for the potential ener
Ust,k(n) for clusterst,k

Ust,k~n!5H Dn nP Cst,k

2
]

]ust,kufn
st,ku2

ln Rn~2 iust,k! n{ Cst,k
,

~46!

where

2
] ln Rn~2 iust,k!

]ust,k ufn
st,ku2

52~12c!DF12
exp~2D ust,k ufn

st,ku2!

c1~12c! exp~2D ust,k ufn
st,ku2!

G .

~47!

The self-consistent solutions of the equations of ‘‘m
tion’’ give functions fn

st,k and define parameters of th
Laplace transformationust,k .

Presenting in Eq.~44! ln@Rn(t2 iust,k)# in form of a Tay-
lor series int and keeping terms up tot2 we transform the
integral of Eq. ~44! to a Gaussian. Integration leads to
density of states, which can be rewritten using the equa
of motion ~45! as

r~v!5(
s

(
k51

gst

(
n

ufn
st,ku2 cs ~12c! t

3
1

A2 pgst,k
2 ~v!

expH (
n { Cst,k

F lnS c

c1p~n! D
c1p(n)

3S 12c

12c2p~n! D
12c2p(n)G J , ~48!

wherep(n)52Ust,k(n)/D, and

gst,k
2 ~v!5

m2

F(
n

Ufn
st,kU2G2 , ~49!

m25D2 (
n

~ ufn
st,ku2!2 @c1p~n!# @12c2p~n!#. ~50!

Local values of the attractive and repulsive atom concen
tions are described by the expressions@c1p(n)# and @1
2c2p(n)#, respectively.

The DOS expression for each of thes presents a set ofgst
bands, the contours of which are approximately Gauss
near their maxima. The DOS decreases with further incre
of energy and transforms for each band into an Urbach
ponent. The sum rule in this case can be formulated as
inequality like Eq.~43!.

D. Weak-scattering limit pc<c<12pc

The weak-scattering regime takes place at all comp
tions of the solid solution ifD!Ecr . The strong-scattering
lt

-

n

a-

ns
se
x-
an

i-

system transforms into weak scattering at compositions
which the inequality (12c) D!Ecr holds. A weak fluctua-
tion potential means that the number of localized state
considerably less than the total number of states in the e
tron band and the tail region is much less than the ba
width. These facts define the difficulties for the experimen
investigation of weak-scattering systems in the region of
tail states.

The CdS(12c) Sec solid solution, which we consider as
weak-scattering system is characterized by a value of
relation D/Ecr'0.3 for the valence band. When the tailin
has its maximum atc50.2 this value means that the critica
number of Se atoms necessary to split off a localized sta
of the order 10. The probability of the fluctuation presenti
a compact cluster of ten Se atoms is proportional toc10

'1027. This value corresponds to the number of states
the tail equal to'1016, which is insufficient to describe the
observable tailing effect at this composition. A considera
decrease of tailing occurs in this solid solution in regio
both c.0.50 andc,0.10 but it still remains observable
Therefore, the first problem is to explain the tailing in su
kind of solid solution.

At present, there are no direct measurements ofr(v) in
the tail region for solid solutions and we perform an estim
tion of the DOS value in the region ofv where data on the
exciton absorption can be used to verify the accuracy of
calculations. Further, we will find the relation that conne
the half-width of the exciton ground-state absorption ba
and the DOS.

Our calculation of the number of states splitting off th
band edge is based on the assumption that the exciton s
are localized in fluctuations that are essentially simply c
nected potential wells. It is supposed that these poten
wells are formed by regions where there is an excess
atoms of the narrow-gap component compared to their a
age concentration. The problem is to find the most proba
fluctuations of such kind. The requirements that each we
simply connected, and that the excess concentration in
volume is minimized, leads to an answer that follows fro
the theory of percolation along the sites of disordered s
lattices: the lower bound on the excess concentration is
critical concentration in the percolation problem along t
sites of the sublattice. This approach assumes that the
tuation wells are large in size, and clusters of excess atom
the wells can be considered as fractals of finite size. T
DOS in the tail obtained from these arguments have con
erably larger values as compared to estimations of the c
pact clusters and are in agreement with experimental d
over a wide range of concentrations.

1. Estimation of the quantity ofr„v… for fractal clusters

We consider the most general case, which involves po
tial wells in which the excess concentrationp of attractive
centers averaged over the potential well is smaller than
maximum value (12c), which leads to a compact occupa
tion of the volume.

The probability of realizing a fluctuation within the vo
ume containingnv lattice sites where the excess number
attraction centers isnp(v)5np5nvp equals

cnA~12c!nB,
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where nA5nv(c1p)5(nc1np) and nB5nv(12c2p)
5(nv2nc2np) are the numbers of atomsA and B in the
considered volume. It is known that the strength of the
tential well is only weakly dependent on the form of th
well.75 We assume that states with nearly the same local
tion depth can be obtained if the numbernp of excess attrac-
tive atoms is comparable to the sizenv

comp of the compact
cluster. Then the probability of realization written above w
be considerably smaller than the probability of realization
a compact cluster

exp~nv
compln c!5cnv

comp

for approximately the same value of the localization ener
However, taking into account thatnv@1, we obtain for the
number of realizations the large quantity

nv!

nA!nB!
,

which can compensate the small probability for an individ
realization.

The contribution to the DOS from clusters of sizenv

containingnp centers of attraction in excess can be written
the form15

r~v!5
1

pv0
^ImG~v!&

'
1

v0D
A nv

2p~c1p!~12c2p!

3S c

c1pD nv(c1p)S 12c

12c2pD nv(12c2p)

, ~51!

wherev05V/N.
The DOS obtained is strongly decreasing withp increas-

ing and we have to find the wells that give the localized st
of a given depth at a minimum value ofp. The number of
excess attractive atomsA in the well is equal tonp . These
atoms can form a singly connected configuration within
volume containingnv@1 lattice sites atp, which is close to
the critical value of site percolation problempc for a given
sublattice. We can define a singly connected potential we
such kind as a finite-size fractal. Then the substitutionp
5pc into Eq. ~51! wherepc is the critical value for an infi-
nite sample gives an estimation of the DOS if the actual s
of fluctuation is large, i.e.,nv@1.

A further problem consists in the estimation of the loc
ization depth for potential wells. At present there is no rec
for this estimation for potential wells of fractal structure. W
perform an estimation based on universal properties of no
less ground states of the Schrodinger equation in the re
of an attractive potential75,76and assume that the form of th
potential well plays no role as it takes place for the wells
simple forms.75

Let us write the criterion of appearance of the localiz
state for a compact cluster of spherical form in effectiv
mass approximation using the approach of Ref. 75, wh
gives in this case an exact result

@ncr
comp#2/3~12c!D5Ecr , ~52!
-

a-

f

.

l

te

a

f

e

-
e

e-
on

f

-
h

wherencr
comp is the size of the potential well, (12c)D is its

depth, andEcr is the critical value in the effective-mass a
proximation for a potential well with volumev0

Ecr5
p2

4

\2

2M S 3

4p
v0D 2/3, ~53!

where M is the effective mass of the particle. Taking in
account the relation between radiusR(v) of the spherical
potential well, its depth (12c)D, the critical value of the
single site perturbation of Eq.~53!, and the localization en-
ergy v, which has the form

R~v!5A \2

2M @~12c!D2v#
Fp2arctgA~12c!D2v

v G ,
~54!

we see that Eq.~52! can be withdrawn from the last equatio
in the limit v→0. For the potential well that consists ofnv

lattice sites containing (nv c) of attractive atoms and (nvpc)
of excess atoms of the same kind, the maximum volume
which the wave function does not decrease exponentiall
equal to nv (c1pc). The averaged level of the attractiv
potential within this volume is equal toD pc /(c1pc). Then
the relation, which connectsnv , v, andEcr can be written
as

@nv ~c1pc!#
2/3F pc

c1pc
D2vG

5
4 Ecr

p2 H p2 arctgFA pc

c1pc
D/v21G J 2

.

~55!

This leads to the number of lattice sites in the potential w
at a given localization energy

nv5
1

~c1pc! F Ecr

pc

c1pc
D2vG 3/2

3H 22
2

p
arctgFA pc

c1pc

D

v
21G J 3

. ~56!

The equation obtained gives in the limitc→(12pc) the ex-
act result for the compact spherical cluster.

Finally, the DOS can be presented in the form

r~v!'
1

v0 D
A nv

2p~c1pc!~12c2pc!

3F S c

c1pc
D (c1pc)S 12c

12c2pc
D (12c2pc)Gnv

, ~57!

with nv defined by Eq.~56!. We shall use this equation fo
the estimation of the DOS in the region of the absorpt
maximum of the exciton ground state.
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2. Weak-scattering regime in regions c<pc and c>12pc

The tailing estimated by Eq.~57! decreases sharply at low
concentration of attractive atomsc,pc in the weak scatter-
ing limit. The CdS(12c) Sec solid solution shows, neverthe
less, an observable broadening of the exciton ground s
even in this region of concentration. Equation~57! gives the
correct order of the DOS in this solid solution at an ene
corresponding to the exciton band maximum up toc50.1.
At lower concentrations the valuepc50.2 leads to a numbe
of states, which is insufficient to explain the observed tail
effects.

To decrease the value ofpc and thus to increase the num
ber of localized states in this region of concentration
consider potential wells formation by finite-size clusters ta
ing into account the percolation over the next neighbors.

Another concentration range where the percolation o
the next neighbors should be taken into account isc.1
2pc . In this composition region the localized states can
isolated from each other only if the repulsive atoms form
percolation cluster, which in turn demands a decreasing
colation threshold.

E. Approximation of the energy dependence
of the density of states

The following calculations are aimed to obtain an inte
polation formula, which describes the dependence of DO
the wide region of energies for both strong- and we
scattering limits. It is assumed thatv0 is the lower border of
the energy interval where the DOS behavior is conside
We assume that in zeroth approximation all the states w
localization energyv j.v0 can be treated as localized an
isolated from the others. This approach is valid if the to
number of states withv.v0

N~v0!5E
v0

EL
r~v!dv, ~58!

satisfies the inequality

N~v0! a3,1. ~59!

Herea'A\2/2Mv0 is the typical length of the exponentia
decay of the wave function with a localization energy of t
order v0 . The further consideration will show thatv0
,vME where vME is position of the mobility edge. Both
these energies have the same order of magnitude and
considerably larger then the Urbach parameter«U , which
defines the exponential decrease of the DOS in the regio
energies exceedingvME .77

We describe the behavior ofr(v) in effective-mass ap-
proximation using modifications of the variational procedu
of Refs. 78 and 79 and assuming that localized states
formed by the spherical potential wells, which are larger th
the compact cluster leading to the localized state at ene
v0. Using the approach developed in Refs. 14 and 15 we
write for the DOS
te
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e
a
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-
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th

l

are

of

re
n
gy
n

r~v!;
1

v0 A2pg2~v!
expH E d3r

v0

3F lnS c

c1p~r ! D
c1p(r )S 12c

12c2p~r ! D
12c2p(r )G J ,

~60!

where

g2~v!5
m2

F E d3r

v0
w tr

2 ~r !G2 , ~61!

and

m25D2E d3r

v0
@w tr

2 ~r !#2@c1p~r !#@12c2p~r !#. ~62!

The local values of attractive and repulsive atom concen
tions are described by the equations@c1p(r )# and @12c
2p(r )#, respectively. The potential well configuratio
Utr(r ) is given by the functionp(r )

Utr~r !52D p~r !, ~63!

where

p~r !

5H ~12c! r<R~v0!

~12c!F12
exp~2tw tr

2 D!

c1~12c!exp~2tw tr
2 D!

G r .R~v0!J ,

~64!

andR(v0) is expressed by Eq.~54!. The trial functionw tr(r )
is the solution of the equation

F2
\2

2M
¹21v2Utr~r !Gw tr~r !50. ~65!

The DOS obtained in this way decreases slowly at value
v, which are not too large as compared tov0 and it has
singular behavior atv→EL , i.e., near the Lifshitz border
This character of the DOS behavior corresponds well to
energy dependence of the experimental data, however,
absolute number of the states appears to be insufficien
describe the tailing. This occurs because of the fact that
procedure takes into account only the localized states, wh
are formed in spherical potential wells while in reality the
exists a great variety of their space configurations. We in
duce a multiplication factor that corrects the magnitude
r(v) of Eq. ~60! using the sum rule of Eq.~43! in the case of
the strong scattering limit and estimations of the number
localized states in the region of absorption band maxim
given by Eq.~57!.

F. Zero-phonon exciton absorption band

For an ideal crystal the optical absorption is described
the wavelength region of the ground-state exciton by
spectral density, which can be written in the form
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a1s~v!;
v0

p
uc1s~0!u2 ImG00~v2E1s2 i d!, ~66!

where

GkWkW~v2E1s!5
1

v2
\2

2M
kW22E1s2 id

. ~67!

Here E1s and c1s(r ); exp(2r/aB) are the eigenvalue an
eigenfunction of the exciton ground state, andk is the wave
vector of a photon.

For the solid solution the general form of the imagina
part of the Green’s function averaged over possible real
tions of the fluctuation potential is77

^ImGkWkW~v!&5
tkWkW~v!

Fv2
\2

2M
kW22DkWkW~v!G2

1tkWkW
2

~v!

, ~68!

wheretkWkW(v) andDkWkW(v) are linked by the dispersion rela
tion, which ensures correct normalization of the express
for the spectral density. In the region of localized states th
functions are the imaginary and real parts of the scatte
matrix.75 Therefore, we have

tkWkW~v!5
6 v0

p3
D2A~v/D!S Ecr

D D 3/2

uI 1~kW !u2r~v!, ~69!

where

I 1~kW !5S 2Mv

\2 D 3/2
1

~2p!3E d3rW exp~ ikW rW !w tr~rW !. ~70!

The calculation ofDkWkW(v) is a more complicated problem
because for this purpose we have to knowtkWkW(v) in a wide-
energy interval.

For an approximate description of the spectral den
within a narrow energy region in the vicinity of its maximu
we can replaceDkWkW(v) by a constant valueDkWkW

0 . As the
result we obtain atk'0

^ImG00~v!&'
1

p

t00~v!

@v2D00
0 #21t00

2 ~v!
, ~71!

whereD00
0 is considered as a parameter, which allows us

reach coincidence between the positions of experimental
theoretical maximavmax of the 1s exciton state in the ab
sorption spectrum.

G. Zero-phonon luminescence band

Until now we considered the states with energiesv>v0
as isolated from each other. These states are formed by
ters of atoms of the narrow-gap component of the solid
lution or by singly connected potential wells, which are i
duced by composition fluctuations. At random distribution
the constituents of the solid solution the clusters and po
tial wells are also randomly distributed over the crystal. N
we introduce a more accurate classification of the states
ing into account that not all of them are really isolated
a-

n
se
g

y

o
nd

us-
-

f
n-

k-

space. In general, the consideration of randomly distribu
potential wells, the wave functions of which are overlappin
is a sophisticated variant of the problem of quantum per
lation theory80–86 with off-diagonal disorder. We simplify
the problem and apply for the consideration a continu
version of classical percolation theory.

1. Classification of the tail states

The problem that we intend to solve is whether or no
given state has the possibility for a transition to any oth
lower laying states followed by emission of phonons. W
suppose that the temperature is low enough to make tra
tions into upper states unimportant. For this purpose we
troduce a sphere of radiusRint , which restricts the length o
the step that can be made in processes of such elec
phonon relaxation. These processes are completely ab
for the deeply localized states for any reasonable value
Rint . Because of the exponential increase of the DOS w
decreasingv the role of these processes grows and becom
critical within a relatively narrow region of energies. Th
fact allows one to considerRint as an energy independen
parameter. As a result the problem of the description of
tail states can be considered in terms of continuum perc
tion theory for overlapping spheres.16–22 The percolation
theory allows introduction of subdivision of the tail stat
into states formed by spatially isolated clusters~or potential
wells!, by complexes of clusters~or potential wells!, and
states belonging to percolation clusters.

We consider a state with localization energyv as spa-
tially isolated if there exist no states with larger localizati
energy in the sphere of radiusRint surrounding the given
potential well. The number of isolated states^n1& can be
written with the help of the continuum percolation theory f
overlapping spheres16–21 as

^n1~v!&' exp~2@Rint /r ~v!#3![ exp$22P~v!%.
~72!

Here notations are introduced

P~v!5
1

2
@Rint /r ~v!#3, r ~v!5S 3

4p

1

N~v! D
(1/3)

.

~73!

The integrated DOSN(v) is given by equation

N~v!5E
v

EL
r~v! dv. ~74!

The functionP(v) represents the integrated density of loc
ized states with localization energy exceedingv in units of
the first virial coefficient.

We consider the state as belonging to a supercluste
sizes if it is connected with any others of (s21) states with
larger localization energy, i.e., if there exist paths from t
given state to the other (s21) states, which can be made b
steps that are less thanRint . Then the magnitude ofN(v)
reaches the critical value at certain localization energyvME
and a supercluster of infinite size appeares. This superclu
is regarded as percolation cluster andvME is considered as
the mobility edge.



it
i

m

o
s-
y
th

t

o
an

u
.

o

-

te
lo

th
f
d

v
t

lit
lls

rit
a

ing

su-

ters
mes
ate
tion

heir
und

ber
s as
m-

y

s.
t-

n

cay

r

riti-

wo
sti-
as

ing

l-
ion.

es-
ical

PRB 59 12 959LUMINESCENCE SPECTRA AND KINETICS OF . . .
We shall use the fact that the critical value of the dens
for the percolation problem for overlapping spheres
known. Survey of data on critical values obtained by a nu
ber of authors are given by Haan and Zwanzig.20 These val-
ues lay within the interval 1.17<P cr

cl <1.40. It follows from
Eqs. ~72! and ~73! that the critical value in our problem
P(vME) depends on the magnitude ofRint and on the inte-
grated DOS at the percolation thresholdN(vME).

The important characteristics of the percolation theory
overlapping spheres16–22 are the averaged numbers of clu
ters ^ns& consisting ofs overlapping spheres. We identif
these values with numbers of superclusters formed by
potential wells. The numberŝns& were obtained for the firs
five s in the low-density limit by Haan and Zwanzig20 in the
form of a Taylor series. In order to estimate the behavior
^ns& in the region of the mobility edge we have performed
extrapolation of the dependences fors52,3,4 by means of
equations

^n2~v!&5P~v! exp$23.073P~v!%,

^n3~v!&51.375P 2~v! exp$24.09P~v!%,

^n4~v!&52.1842P 3~v! exp$25.084P~v!%. ~75!

The Taylor series expansion of these functions gives res
practically coinciding with those of Haan and Zwanzig20

The accuracy of the extrapolation of the^n2(v)& can be
examined by using the results of numerical calculations
Holcomb and Rehr18 for the functionP3(pnorm), which is
related with^n2(v)& by the equationP3(pnorm)512^n1&
22^n2& wherepnorm andP(v) are connected by the equa
tion pnorm5P(v)/8. The functionP3(pnorm) gives the prob-
ability for any sphere to belong to cluster of sizes.3. The
comparison has shown that Eq.~75! leads forn2 to close
coincidence with results of Holcomb and Rehr18 in the re-
gion most important for further calculationspnorm.0.1, i.e.,
in the mobility edge region.

All of the states contribute to the exciton ground-sta
absorption while the steady-state luminescence band at
intensity of excitation is supposed to be formed only by
‘‘radiative’’ states of the fluctuation tail. The maximum o
the ‘‘radiative’’ state density is below the mobility edge an
therefore, the luminescence band decreases sharply in
region of the mobility edge.

2. Lifetimes of the tail states

Now it is possible to find the number of states that ha
no ways for transitions into lower-lying states and have
disappear by means of radiative annihilation. This qua
should be attributed first of all to the isolated potential we
with s51. Their number is given by Eq.~72!. Besides these
states the ground states of superclusters withs.1 have also
only the radiative way to disappear. As a result we can w
for the number of ‘‘radiative’’ states, i.e., for the states th
are characterized by the radiative lifetimet (0)[t rad

m0~v![m rad~v! 5K (
s51

`

ns~v!L . ~76!
y
s
-

f

e

f

lts

f

w
e

,
the

e
o
y

e
t

Here ns(v) is the concentration of superclusters consist
of s potential wells with localization energy exceedingv.
The averaging procedure over all possible realizations of
perclusters is denoted as^ . . . &.

Within the considered model all the states of superclus
except the ground state should be characterized by lifeti
resulting from exciton-phonon transitions. Let us enumer
the states of superclusters in order of decreasing localiza
energy. Then the second state of superclusters withs52 and
the second states of all larger superclusters will have as t
only decay channel transitions into a corresponding gro
state. With increasing supercluster state number the num
of channels for exciton-phonon decay processes increase
well. We assume that the lifetime depends only on the nu
ber of decay channels. Then the state with numbers.1
should be characterized by lifetime

t (s21)5
tdec

(s21)t rad

tdec
(s21)1t rad

, ~77!

where the index (s21) is equal to the number of deca
channels andtdec

(s21) is the lifetime or intraband relaxation
time via exciton-phonon transitions into lower-lying state
The number of states that haves decay channels can be wri
ten in analogy with Eq.~76! as

ms~v!5K (
k5s11

`

nk~v!L . ~78!

The value ofm rad can be presented in a first approximatio
as

m rad'^n1~v!1n2~v! •••&

5 exp@22P~v!#1P~v!exp@23.073P~v!# •••,

~79!

while for the fraction of the states that have the single-de
channelm1 we have

m1'^n2~v!1n3~v!1•••&5P~v! exp@23.073P~v!#

11.375P 2~v!exp@24.09P~v!#1•••. ~80!

Sums like the ones given by Eqs.~76! and ~78! can be esti-
mated by their lower limit22 with high accuracy, i.e., by thei
few first terms, which are presented in Eqs.~79! and ~80!.
These sums are well defined both below and within the c
cal region udN(v)u[u12N(v)/N(vME)u!1, and above
that. However, they are exponentially small in the last t
regions. Using the approach of Ref. 22 it is possible to e
mate the singular part of these sums in the critical region
udN(v)u(n D11), whereD is the dimensionality of the system
andn is the critical index of the order parameter depend
on the dimensionality of the system. ForD53 the value ofn
is approximately 0.875, which leads to negligibly small va
ues of the singular parts of these sums in the critical reg

H. Shape of the zero-phonon luminescence band
at low intensity of excitation

The calculation of the shape of the zero-phonon lumin
cence band will be performed at the condition that the opt
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recombination is restricted by the nonradiative transitio
into the lower-lying localized tail states.

The steady-state density of the populated states at w
interband excitation is proportional to the product of t
DOS at a given energy and the lifetime of the state. T
radiation probability of the populated states is described
the same optical DOS as the absorption coefficienta0(v).
Therefore, the zero-phonon luminescence band can be
scribed as

I 1s
0 ~v!;a1s

0 ~v!P~v! t rad , ~81!

where P(v) is the total relative fraction of the radiativ
states at energyv, which belongs to superclusters of diffe
ent size.

P~v!5(
s51

`

m (s21)~v!
t (s21)

t rad
[(

s51

`

P(s21)~v!. ~82!

The contribution toP(v) of isolated wells and of ground
states of two-well superclusters is given by the equation

P~v! ;$exp@22P~v!#1P~v! exp@23.073P~v!#%.
~83!

We have accepted in our calculations a critical value for
P(vME)51.40 taken from Ref. 20. The first correction
Eq. ~83! can be written as

a1s
0 ~v!P(1)~v! t rad

'a1s
0 ~v!^n2~v!& t (1)

5a1s
0 ~v!P~v!exp@23.073P~v!#

tdect rad

tdec1t rad
. ~84!

FIG. 1. Density of statesr(v) ~1!, integrated density of state
N(v) ~2!, density of ‘‘radiative’’ statesr rs(v) ~3!, and integrated
density of ‘‘radiative’’ statesN rs(v) ~4! of the fluctuation tail of
the exciton ground state in the solid solution ZnSe12cTec at c
50.13. Curves ~1! and ~3! are represented in the unit
@cm23eV21#, curves ~2! and ~4!—in @cm23#. Open circlers—
estimation of integral density of states using the sum rule Eq.~43!.
Estimated position of the mobility edgevME is indicated by the
arrow.
s

ak

e
y

e-

e

Here we denoted astdec the lifetime resulting from the deca
process for the first ‘‘excited’’ state of the pair superclust
The last equation shows that the role of the correction
pends on the relation betweentdec andt rad .

The isolated potential wells and superclusters of sm
size give the major contribution to the luminescence at
energies of interest while the superclusters of higher or
give small corrections only.

Figures 1, 2, and 3 demonstrate the results of model
culations for the strong and weak scattering, respectively

Figure 1 presents the DOS of the fluctuation tail sta
r(v) and the integrated DOSN(v) together with the DOS
of ‘‘radiative’’ states calculated by means of equation

r rs~v!5r~v! P~v!, ~85!

where P(v) is given by Eq.~83!. The corresponding inte
grated DOSN rs(v) of ‘‘radiative’’ states is also shown in
Fig. 1 for the ZnSe(12c)Tec solid solution atc50.13. For
completeness, the position of the mobility edgevME is pre-
sented in Fig. 1 as a vertical arrow. It is obtained as the re
of the fitting of the shape of the luminescence band.

The value ofv0 was taken to be equal to 0.0975 eV in th
numerical calculations. This value lays between the e
mated localization energies of Te clusters with numbers
53 and 4. The evaluations of the integrated DOS with
help of the sum rule Eq.~43! are presented in Fig. 1 fors
52, 3, and 4 as well. The calculation of the DOS was p
formed in the rangev>v0 using Eq. ~60!. The obtained
curve was corrected with the help of the multiplication fac
as it is described above in order to reach coincidence
tween the integrated DOS and its estimation given by
~43! at v'v0. The extrapolation of the DOS into the regio
of v<v0 given in Fig. 1 was performed also with the he
of Eq. ~43!. The data of Fig. 1 show that the tailing has
this solid solution a considerable extent and the width of
region of radiative states reaches tens of meV.

FIG. 2. Density of statesr(v) (1,18) and integrated density
N(v) (2,28) of the fluctuation tails of the exciton ground state
the solid solution CdS12cSec at c50.2 ~1, 2! ~lower energy scale!
andc50.51 (18 28) ~upper energy scale!.
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In Fig. 2 we present the DOS and the integrated D
calculated for CdS(12c) Sec at c50.20 and 0.51. The curve
presenting both these functions look very similar for tw
different concentrations after a scale transformation of
energy axis. We have used in both cases the estimation o
DOS near the absorption band maximum in accordance
Eq. ~57!.

Figure 3 shows the zero-phonon optical densities for
absorption and for the luminescence for two compositions
CdS(12c) Sec . The curves were obtained with the help
Eqs.~71! and~81!. The position ofvME was chosen to reac
agreement with the experimental shift of the luminesce
bands with respect to the absorption spectra.4

The shapes of the calculated zero-phonon luminesce
bands are defined in the region of energiesv.vME by the
universal Urbach dependence ofa1s(v), by the dependence
of N(v), which has also Urbach-like character, and by
equations of the percolation theory, which define the beh
ior of P(v). This region of energies includes about 80-90
of the integrated intensity of the luminescence.

A more complicated character is inherent to the behav
of the zero-phonon luminescence band in the intervalv0
,v<vME . The behavior looks like exponential with a p
rameter of the slope, which can be expressed
„$ ln@I1s

0 (v)#%v8…
21. This value is well observable in

experiments.8 The latter region of energies is characteriz
by P(v) values, which are considerably less than unity, a
which decrease rapidly with decreasingv. The optical den-
sity of ‘‘radiative’’ states consists of only a small fraction o
the total optical density of the exciton band in this regio
Therefore, we can expect that this region of the luminesce
spectrum can be changed even by a low population of
nonradiative~‘‘silent’’ ! states at a relatively weak excitatio

FIG. 3. Zero-phonon absorption of the exciton ground st
a1s

0 (v) in the solid solution CdS12cSec ~1!, relative integral density
of statesN(v)/N(vME) ~2!, fraction of ‘‘radiative’’ statesP(v)
~3! and zero-phonon luminescence bandI 1s

0 (v) ~4!, c50.2 ~lower
energy scale!. Curves 18248 are the same forc50.51 ~upper en-
ergy scale!. The arrows indicate the estimated position of the m
bility edgevME for these two concentrations.
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I. Luminescence of ‘‘silent’’ states

The main assumption of our previous consideration is t
the main part of states optically active in absorption rema
‘‘silent’’ in luminescence under low-power steady-state e
citation. The situation can be changed at high excitat
when a considerable fraction of the radiative states is po
lated, and therefore a significant fraction of the states att
uted as ‘‘nonradiative’’ can be populated too. The resulti
additional zero-phonon luminescence can then be descr
as follows

d I 1s
0 ~v!;a1s

0 ~v! f @v,t~v!/t rad# @12P~v!# t rad ,
~86!

where the functionf @v,t(v)/t rad# describes the population
level of the nonradiative states at energyv, which are char-
acterized by their lifetime t(v). The function
f @v,t(v)/t rad# as well ast(v) depends on the intensity o
excitation. The fraction of nonradiative states is given by
function @12P(v)#, which atv<vME satisfies the inequal
ity @12P(v)#@P(v) because of the exponential decrea
of P(v) in this region. The spectral range where the ad
tional luminescenced I 1s

0 (v) could appear is above the re
gion of the maximum ofI 1s

0 (v). This fact means that the
emission of usually ‘‘silent’’ states will change the positio
of the maximum and the short wave wing of the steady-s
luminescence band.

It is worth noting that the role of the additional emisso
described by Eq.~86! depends at any given intensity of ex
citation on the total number of tail states. All other cond
tions being equal, the population of the ‘‘silent’’ states a
more important for the concentrations of the solid soluti
for which the number of tail states is relatively small. Th
recombination spectrum can be affected in the cases o~i!
weak scattering at low concentrations of the attractive co
ponent and~ii ! in both weak- and strong-scattering limits
high concentrations of the attractive component. In b
cases the number of tail states is not large enough and
radiative states can be saturated even at a relatively low
tensity of excitation.

J. Exciton-phonon interaction

The final stage of calculations includes the excito
phonon interaction. General equations can be presented

a1s~v!5E
0

`

dza1s
0 ~v1z! F~z!, ~87!

and

I 1s~v!5E
2`

0

dz I1s
0 ~v2z! F~z!. ~88!

When using well-known results87,88 we can write the density
of the phonon wing for localized exciton at the temperatu
T50 as

e

-
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F~v!5
1

2pE2`

`

dt expF ivt1(
q

uHFF~qW !u2

Vq
2

3@exp~2 iVqt !21#G . ~89!

Our purpose is to obtain the absorption coefficient and
luminescence intensity as functions of the localization
ergy taking into account the diagonal exciton-phonon int
action with both LO and LA phonons when no change of
excitonic state occurs. Equations~71! and ~81! describe the
inhomogeneous zero-phonon band. In order to calculate
matrix elements of the Hamiltonian of the exciton-phon
interactionHFF(qW ) the wave function of the localized exc
tons can be written as

F 5f tr~RW !c1s~rW !. ~90!

Heref tr is the solution of Eq.~65! andc1s;exp(2r/aB) is
the wave function of the exciton ground state with Bo
radiusaB .

The considerable difference appears in the excit
phonon interaction for two models of localized excitons:~I!
excitons trapped as a whole and~II ! the fluctuation trapped
hole with Coulomb bound electron.

The argumentRW of f tr is the center-of-mass vector in th
model I and it coincides with the hole coordinateRW 5r h

W in
model II. The argumentrW of c1s rW5r h

W2r e
W in model I and it

is equal to the electron coordinaterW5r e
W for model II.

The HamiltonianH f is given by the sum

HLO
f 1HLA

f ,

where f labels the phonon states. Each of the terms of
equation in turn presents the sum of the electron and h
Hamiltonians

HLO,LA
f 5HLO,LA

e 1HLO,LA
h .

The matrix elements of the exciton-phonon Hamiltonian c
be presented in the form3,89

HFF
a, f 5@Fe,q

a expi ~qW r e
W !1Fh,q

a expi ~qW r h
W !#FF . ~91!

Taking into account that for the model I

r e,h
W 5RW 1

m

mh,e
rW; rW5r e

W2r h
W ; m5memh /~me1mh!,

we see that for the model I the matrix element of the Ham
tonian can be written as

HFF
a, f 5@expi ~qW RW !#f trf trH Fe,q

a Fexpi S qW rW
m

mh
D G

1s1s

1Fh,q
a Fexpi S qW rW

m

me
D G

1s1s
J . ~92!

The first matrix element can be calculated numerically wh
the calculation of those in square brackets can be d
analytically3,89 with the help of the exciton ground-sta
wave function.
e
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For the model II each of the exponents depends only
one argument, and therefore

HFF
a, f 5Fe,q

a @expi ~qW r e
W !#1s1s1Fh,q

a @expi ~qW r h
W !#f trf tr

.
~93!

Here the first matrix element can be evaluated anal
cally. The functionsFe,q

a and Fh,q
a are given by Cohen and

Sturge3 for the Fröhlich interaction (a5F), for the deforma-
tion (a5D), and for piezoelectric (a5P) coupling of
acoustical phonons.

In order to obtain masses of particles, exciton bindi
energies, and the exciton-phonon coupling parameters fo
loys at arbitrary compositions we have used the procedur
linear interpolation of those for pure crystals from Ref. 90
it is described in Ref. 3.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental details

1. Samples

For the investigation of luminescence properties of
mixed crystals CdS12cSec and ZnSe12cTec we studied sev-
eral samples of each system. For simplicity we present in
following data from two representative, high-quality samp
of each solid solution. The samples of the CdS12cSec sys-
tem, which crystallizes in wurtzite structure over the who
composition range, were an epitaxial layer and a thin sin
crystal platelet with slightly different Selenium contents
5% and 7%, respectively. The platelet sample was gro
from the gas phase, the crystallinecW –vector being parallel to
the surface. The epitaxial layer was grown by hot wall e
taxy ~HWE! on the @111# surface of a GaAs substrate. I
cW –axis is oriented perpendicular to the surface, along
epitaxial growth direction. For details of the growth proc
dure and the characterization of the sample see Ref. 25.
studied samples of the zinc-blende solid soluti
ZnSe12cTec were bulk crystals with Tellurium contents o
13% and 10%. They were grown from the melt but
slightly different growing temperature and excess Te va
pressure.

2. Steady-state and low-intensity pulse excitations

To study the properties of luminescence and its dynam
we carried out experiments under steady-state conditions
under pulsed excitation combined with time-resolved det
tion. For the cw characterization of the samples we used
UV lines of a mercury lamp or an attenuated line of an A1

ion laser as excitation source. In order to investigate the
minescence dynamics under low and high excitation, we p
formed measurements with two different experimental s
ups, which provideps pulses with high-repetition rates a
low-pulse energies and pulses with high-pulse power but
repetition, respectively. In both cases we were able to t
the wavelength of the exciting light from above the ba
edge to resonant excitation into the localized states. The
setup consisted of an Ar1 ion pumped passive mode-locke
Ti:Sa laser followed by a regenerative amplifier and an
tical parametric amplifier for second harmonic generati
The spectral sharp pulses had a duration oftFWHM<1ps
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with 200 kHz repetition rate and up to 0.1 mW average
citation power which gives about 2mJ/cm2 for density of
excitation at the spot diameter 0.2 mm.

The detection of the luminescence signal was done w
time-resolved photon counting after the monochrometer.
temporal resolution was around 200 ps. The system allo
to follow the decay of the signal up to 0.5ms over a dynami-
cal range of more than four orders of magnitude.

3. High-intensity pulse excitations

For the creation of high carrier densities we used an a
plified, quenched cavity dye laser pumped by a XeCl ex
mer laser. It gives pulses withtFWHM580 . . . 120 psdura-
tion. The maximum excitation intensities used
experiments discussed below was up to 0.1 mJ/cm2 per
pulse, leading to estimated generation densities up
1019 cm23 under band-to-band excitation. The pulse repe
tion rate was 10 Hz. The time-resolving detection consis
of a single shot streak camera followed by a two-dimensio
charge coupled device~CCD! array camera. It allowed a
maximum resolution down to 5 ps, used to determine
temporal shape of the excitation pulse. Temporal nonline
ties as well as spatial and spectral dependences of the s
tivity of the detection systems were corrected by calibrat
algorithms. The pump-spot diameters varied arou
100 . . . 200mm.

The luminescence collection was arranged in a ba
scattering geometry in all experimental setups to avoid re
sorption. For the measurements of the CdS0.94Se0.06 platelet
sample the polarization directions of the excitation and
luminescence light were carefully adjusted to be perpend
lar to the crystallographiccW –axis. All measurements wer
carried out at low temperatures between 5 and 8 K, us
liquid-helium cryostats.

B. Steady-state luminescence

1. Luminescence ofZnSe12cTec

In Fig. 4 are shown the calculated luminescence band
ZnSe12cTec at c50.13 and an experimental spectrum o
tained under steady-state conditions at a low-density exc
tion. The mobility edge position equal to 0.18 eV leads
satisfactory coincidence with the observed shift of the lum
nescence band with respect to the absorption maximum.4 The
value ofP(vME) was taken to be 1.4, which corresponds
the result of Ref. 20 for the critical concentration of overla
ping spheres. The comparison of the zero-phonon absorp
~curve 1 in Fig. 4! and luminescence~curve 4! bands shows
that only a small fraction of the tail states situated in t
region of small values of the absorption coefficient and
the low density of the tail states is responsible for the stea
state luminescence band. The maximum of the zero-pho
luminescence band is considerably shifted with respect to
absorption band maximum. An additional Stokes shift of
luminescence band is produced in this case mainly by
interaction with LO phonons. The LO-phonon replicas a
overlapping and form the broad luminescence band. In
calculations of the phonon-assisted processes the ex
wave function was taken in the form of Eq.~90! for the
model II of localized excitons. Indeed, the localization en
-
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gies (>0.1 eV! are considerably larger than the Coulom
binding energy of the exciton ('0.025 eV! for this system
and electron is supposed not to be able to follow the h
motion adiabatically.

2. Luminescence ofCdS
„12c… Sec

~1! Experimental data on the luminescence band sha
for CdS(12c) Sec for c50.20 andc50.50 and the compari-
son with calculated spectra are presented in Fig. 5.

All the parameters of the exciton-phonon interaction we
obtained by means of linear interpolation of the values c
responding to the perfect crystals CdS and CdSe presen
for example, in Ref. 3. It was established that model I has
be used in the range of concentrationsc>0.4 to describe the
exciton-phonon interaction. This region can be characteri
by a relatively weak tailing where the binding energy of t
exciton exceeds the localization energies and electron
follow adiabatically the motion of the hole over the potent
well. Another situation takes place in the region 0.05,c
,0.4, where the inequalityEex(c)<vML is realized between
the exciton Coulomb energyEex(c) and the typical localiza-
tion energy of the tail statesv'vML . Here the electron is
not able to follow the hole motion adiabatically and th
model II becomes more adequate. The transition from mo
I to model II is continuous and there exists a narrow inter
of concentrations where the linear combination of the wa
functions of the models I and II should be used. The eff
tive strength of the exciton-phonon interaction changes
nificantly at the transition region from model I to model
because of the transformation of the wave function of
localized exciton. At the same time, the change of para

FIG. 4. Open circles—luminescence spectrum of ZnSe12cTec at
c50.13 andT52K ~upper axis!; full lines (126) and broken lines
(a2 j )-calculated dependences:~1!—zero-phonon absorption ban
a1s

0 (v), ~2!—normalized integral density of statesN(v)/N(vME),
~3!—fraction of ‘‘radiative’’ statesP(v), ~4!—zero-phonon lumi-
nescence bandI 1s

0 (v), ~5!—absorption banda1s(v) and ~6!—
luminescence bandI 1s(v) via 1s-exciton state after taking into ac
count exciton-phonon interaction; broken lines (a2 j )—zero LO-
phonon luminescence band~a! and its LO-phonon replicas o
different orders (b-1LO, c-2LO etc.!. Vertical arrow atv50.18 eV
indicates the estimated position of the mobility edgevME . Dotted
vertical line corresponds to the excitation wavelength value use
luminescence decay experiments~see text!.
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eters of the Hamiltonian of the exciton-phonon interact
with composition of the solid solution gives only an insi
nificant effect and the common multiplication factor~of the
order of unity!, which was used in the fitting procedure, r
mains independent of composition for each type of inter
tion within the studied composition interval 0.05,c,0.6.
The change of the exciton-phonon interaction strength le
to considerably different shapes of the luminescence band
different compositions of the solid solution. Fig. 5 demo
strates that the difference in the structure of the luminesce
bands is most obvious in the region of the long wavelen
wing of the spectra. In the composition interval where mo
I is applicable the exciton-phonon coupling is weak and
long wavelength wing of the main luminescence band rep
duces the optical density of the tail states with high accura
In the region of model II the strength of the exciton-phon
interaction increases considerably causing modification
the long wavelength wing as compared to the zero-pho
band.

The slope of the short wavelength wing of the lumine
cence band is practically independent of the exciton-pho
interaction strength being a function of the compositio
Both the Urbach parameter«U(c)5 and the logarithmic slope
of the short wavelength wing of the band8

„$ ln@I1s
0 (v)#%v8…

21

reproduce the corresponding characteristics of the z
phonon luminescence band. The ratio of these characteri
remains constant with appropriate accuracy in a wide reg
of concentrations.8

~2! The luminescence spectrum of CdS(12c) Sec exhibits
at relatively low concentration of Sec,0.1 new features as
compared to previous data. The results of the compariso
the calculated and experimental luminescence bands
CdS(12c) Sec are given in Fig. 6 forc'0.05. The observed
band shows a well-pronounced structure, which results fr
LO-phonon replicas. There exists in this case a consider
deviation of the luminescence band shape calculated for
‘‘radiative’’ states from the experimental one in the region

FIG. 5. Absorption and luminescence spectra of CdS12cSec

solid solution forc50.20 ~a! and 0.51~b! ~upper energy axes!.
Open circles indicate the luminescence spectrum at band-to-
excitation. Lines give the result of computing for zero-phonon
sorption band of the exciton ground statea1s

0 (v) ~1!, absorption
band taking into account interaction with phononsa1s(v) ~2!, zero-
phonon luminescence bandI 1s

0 (v) ~3! and phonon-assisted lum
nescence bandI 1s(v) ~4!.
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the short wavelength wing. To make the difference betwe
experiment and theory more obvious we show the band
culated using the same approach as in the previous cas
Fig. 6 as curve 1. It is seen that the calculated band ha
steeper slope of the short wavelength wing than the exp
mental luminescence band and the structure of the calcul
LO-phonon replica also differs from the observed one.

To improve the agreement we assumed that in this c
the condition of the low-excitation density is not fulfilled an
‘‘silent’’ states of the excitonic band have to be included in
the consideration of the luminescence spectra. The follow
Fig. 7 exhibits the DOS and the integrated DOS data
‘‘radiative’’ and ‘‘silent’’ states for this concentration, which
illustrates the idea of the explanation. The integrated DOS
the ‘‘radiative’’ states has in this case with abo
'5.1016 cm23 the lowest value among the considered so
solutions. If the intensity of excitation is not low enough th
saturation of the ‘‘radiative’’ states will occur, which can b
followed by the population of the ‘‘silent’’ states. If the num
ber of populated ‘‘silent’’ states is comparable to the value
the integrated DOS of the ‘‘radiative’’ states then a cons
erable change of the luminescence band shape can
place. The other possible reason, which leads to the s
effect, is slow rate of the exciton-phonon transitions fro
excited states of superclusters to their ground states bec
of too small an energy difference between these states in
composition region. At these conditions the ‘‘silent’’ stat
will be partially populated even when the saturation of t
radiative states is not yet achieved.

The assumed additional emission of the ‘‘silent’’ stat
was described by Eq.~86! where the trial functionf (v) was
used to fit the observed band shape. As a result, the fit
procedure shows that a relatively simple trial functionf (v)
can be found if we exclude from the consideration the c
of highest level of excitation and the shortest time delays
the other cases~see also Sec. III C and III D!. With these
exceptions the trial functionf (v) has the form of a quasi
equilibrium Fermi distribution with two trial parameters
which is sufficient to describe the main features of the lum

nd
-

FIG. 6. Open circles show the luminescence spectrum
CdS12cSec for c50.05 atT52 K ~upper energy axis!. The lines
are computed spectra of phonon-assisted recombination of ‘‘ra
tive’’ states ~1!, ‘‘silent’’ states ~2! for EF528 meV andTe f f

52.75 meV~see text! and sum of these two terms~3!.
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nescence band shape. In this case and below when we
considering modifications of the luminescence band shap
high excitation we take the functionf (v) in the form

f ~v!5
1

exp@~v2EF!/Te f f#11
, ~94!

where the trial parametersEF and Te f f were used to fit the
shapes by means of the following equation

I 1s~v!5E
2`

0

dz I1s
0 ~v2z! F~z!1E

2`

0

dzdI 1s
0 ~v2z! F~z!.

~95!

Here dI 1s
0 (v) is defined by Eq.~85! with the trial function

f (v) given by Eq.~94!. The DOS and the integrated DOS
populated ‘‘silent’’ states obtained with the help of Eq.~94!
are presented in Fig. 7~curves 7 and 8!. The additional emis-
sion band of ‘‘silent’’ states is presented in Fig. 6 as a cu
2 and the resulting band calculated as the sum of two ba
1 and 2 is given in Fig. 6 as curve 3.

The fitting of the luminescence band shape shows that
effective exciton-phonon coupling strength for ‘‘silent
states is weaker than that for the ‘‘radiative’’ states. T
result can be understood in view of different sizes of
states forming these two ensembles. The main part of
‘‘radiative’’ states consist of isolated states and of the sta
belonging to pair superclusters while the ‘‘silent’’ stat
originate from the larger superslusters and from the perc
tion cluster. The size of the wave function directly influenc
the effective strength of exciton-phonon interaction throu
the restriction of the region of the Brillouin zone from whic
phonons participate in the emission process. We have fo
that the effective exciton-phonon coupling strength for ‘‘

FIG. 7. Computed DOS’s~odd numbers! and integrated DOS’s
~even numbers! curves of total~1, 2!, ‘‘radiative’’ ~3,4!, ‘‘silent’’
~5,6!, and populated ‘‘silent’’ states~7,8! at EF528 meV and
Te f f52.75 meV, respectively, for CdS12cSec at c50.05. The ver-
tical arrow indicates the estimated position of the mobility ed
vME . The dotted vertical line corresponds to the excitation wa
length value used in luminescence decay experiments for be
band gap excitation~see text!. The upper energy axes gives absolu
energies for CdS12cSec at c50.05.
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lent’’ states is to be taken approximately three times l
than that for ‘‘radiative’’ states in order to fit the experime
tal spectrum.

C. High-density excitation: modifications
of the luminescence band shape

High-density pulsed excitation gives a wide range of p
sibilities to study effects resulting from the saturation of t
‘‘radiative’’ states and the population of ‘‘silent’’ states. W
discuss below the experimental data of two solid solutio
namely, CdS(12c) Sec at c50.05 and ZnSe12cTec at c
50.13 which, are characterized by very different extents
their tail states. The first solid solution has about 1017 cm23

states below the mobility edge, while the second has alm
1019 cm23. Despite this difference, the behavior of the lum
nescence bands at high excitations are fairly similar. At
citation levels 0.3–1 mJ/cm2 spectra detected during and ju
after the excitation pulse~during less than 0.5 ns for ou
conditions! show the features of the stimulated emissio
These data and their discussion can be found in Refs. 24
26. Except for these shortest time delays and highest pu
ing intensities, the spectra and their modification with tim
delay are practically independent of the excitation pow
within the studied range 0.001-0.1 mJ/cm2. This finding
means that the concentration of excitons created in sam
is restricted by bleaching of absorption at high level of ex
tation.

The result of model simulations and the experimental d
for the evolution of the luminescence bands with time a
shown in Fig. 8 for CdS(12c) Sec for c50.05. Analogous
data are given in Fig. 9 for ZnSe12cTec for c50.13. In both
cases Eqs.~86!, ~94!, and~95! were used in the calculations
The variable parameters of the fitting procedureEF andTe f f
of the trial functionf (v) are given in the captions of Figs.
and 9.

The constants of the exciton-phonon interaction were
both cases again decreased by a factor of 3 for the ‘‘sile
states as compared to the ‘‘radiative’’ states. The last f
can again be interpreted as the consequence of increase
averaged size of wave functions of the ‘‘silent’’ states, whi
are formed by the large superclusters and by the percola
cluster.

D. Low-density excitation: modifications
of the luminescence band shape

At Ti:Sa-laserps-pulse excitation the luminescence spe
tra are in the first moment considerably less shifted into
blue region than at sub-ns excitation discussed in the prev
ous section. This finding confirms low-density conditions
the excitation.

In Figs. 10 and 11 the emission spectra at resonant e
tation belowvME are shown for CdS(12c) Sec for c50.05
and for ZnSe12cTec for c50.13. The spectra were integrate
over different intervals of time. Figure 12 presents the lum
nescence spectra of CdS(12c) Sec for c50.05 at band-to-
band excitation detected at similar conditions.

The spectra of CdS(12c) Sec show clearly the features o
the exciton-phonon luminescence at all time delays. The s
toward the low energy increases with time delay and
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-
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change of the relation between zero-LO-phonon band
1LO-phonon replica have the same character as it was
cussed in Sec. III C.

E. Pulse excitation: long-time kinetics of the luminescence

The experimental data on spectrally integrated kine
show that the luminescence process, which is character
in a few first nanoseconds by a fast decay of the inten
exhibits afterwards a slow nonexponential behavior.

We consider as a reason for the long-time nonexponen
kinetics the formation of excitons from separated electr
hole pairs, which themselves are generated in the proce
energy relaxation of electronic excitations produced by p
tons. In solid solutions with anion substitution the holes
more strongly affected by the fluctuation potential than
electrons and some part of photogenerated holes can b
calized before the exciton formation occurs resulting in se
rated pairs even at excitation below the mobility edge.

The random potential influences the motion of electro
as well and leads to conduction band tailing.94 The formation
of excitons is possible through the diffusion of mobile ele
trons or via tunneling of electrons, which were localized
the fluctuation potential of conduction band.

In this section we present the quantitative data on the t
evolution of the luminescence during the long-time non
ponential stage of relaxation. The time behavior of the lum
nescence intensity during this stage depends on the ener
exciting photon and on the pulse power.

FIG. 8. Solid lines: luminescence spectra of CdS12cSec , c
50.05 atT55 K for pulse (a2 f curves! band-to-band excitation
and different time delay after excitation pulse:a20.2, b20.7, c
21.5, d22.5, e24.5, and f 210 ns, respectively. The lumines
cence spectrum at steady-state band-to-band excitation is show
the solid curveg ~absolute energy values are shown at upper ax!.
Curves with symbols represent computed spectra of phon
assisted recombination of ‘‘radiative’’ and ‘‘silent’’ states with tria
function defined by Eq.~94! and the following fitting parametersEF

and Te f f ~in meV!: a20 and 12;b215 and 7.5;c225 and 7.5;
d225 and 6.25;e225 and 4.25;f 228 and 3; andg228 and 2.75,
respectively.
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1. CdS-Se long-time luminescence kinetics

Figure 13 demonstrates the spectrally integrated kine
of the luminescence in the long-time limit for th

by

n-

FIG. 9. Solid lines: luminescence spectra of ZnSe12cTec , c
50.13 atT55 K for pulse (a2 f curves! band-to-band excitation
and different time delay after excitation pulse:a20.75, b21.05,
c21.4, d22.05,e25.0, andf 250 ns, respectively. The lumines
cence spectrum at steady-state band-to-band excitation is show
solid curveg ~absolute energy values are shown at upper ax!.
Curves with symbolsa2d represent computed spectra of phono
assisted recombination of ‘‘radiative’’ and ‘‘silent’’ states with th
trial function defined by Eq.~94! and the following fitting param-
eters EF and Te f f ~in eV!: a20.05 and 0.5;b20.1 and 0.1;c
20.14 and 0.035; andd20.15 and 0.025, respectively. Compute
luminescence spectrum via the ‘‘radiative’’ states only is shown
broken curveg.

FIG. 10. Luminescence spectra of CdS12cSec , c50.05 at reso-
nant low-density pulse excitation at 2.467 eV~dotted vertical line!
integrated over the first nanosecond~curvea), and within the fol-
lowing time intervals after the excitation pulse: 125 ns, 5250 ns,
and 502450 ns~curvesb, c, andd, respectively!. All the spectra are
shifted arbitrary on the ordinate for clarity.
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CdS(12c)Sec sample withc50.05 at a low density of exci-
tation in the spectral region below the exciton mobility ed
~curve 1!.

The experimentally observed intensity decrease in
case can be fitted by the power law

I ~ t !;@~11t/t!#2d, ~96!

with d 5 2. This type of behavior is usually attributed
bimolecular annihilation reactions, which are described
the mean-field approximation by the equation

d ne

d t
5

d nh

d t
52k ne nh , ~97!

FIG. 11. Luminescence spectra of ZnSe12ctec , c50.13 at reso-
nant low-density pulse excitation at 2.479 eV integrated over
first nanosecond~curvea), and within the following time intervals
after the excitation pulse: 125 ns, 5250 ns, and 502450 ns
~curvesb, c, andd, respectively!. All the spectra are shifted arbi
trary on the ordinate. The excitation wavelength position is in
cated by a vertical dotted line.

FIG. 12. Luminescence spectra of CdS12cSec , c50.05 at the
low-density pulse excitation at 2.49 eV integrated over the fi
nanosecond~curvea), and within the following time intervals afte
excitation pulse: 125 ns, 5250 ns, and 502450 ns~curvesb, c,
and d, respectively!. The luminescence spectrum at steady-st
band-to-band excitation is also indicated by the solid linee.
is

n

wherene ' nh are the averaged electron and hole concen
tions andk is the time independent averaged probability
recombination~or the reaction rate constant!. The depen-
dence given by this equation presents a particular case o
well-known Becquerel’s law.40

The obtained results can be explained in the framework
the above proposed concept, which supposes that a frac
of the absorbed photons produces particles separated in
space. Under excitation by 2.467 eV used in this experim
the immobile ‘‘radiative’’ states are up one half of the tot
number of states excited by photons~see Fig. 7!. The re-
maining half of the states is supposed to be able to gene
separated pairs during energy relaxation.

According to Refs. 41–43 we have to expect differe
asymptotic behavior for the temporal decrease of the lu
nescence in dependence on the character of the motion o
annihilating particles. The observed results agree well w
the dependence for the localized particles for which the
diative recombination is possible only through tunnelin
like in the case of donor-acceptor pairs.39

The mean-field approximation assumes a spatially rand
and homogeneous in space distribution of annihilating p
ticles and neglects possible correlations of their distribut
or fluctuations. The good correspondence of observed t
dependence of the integrated luminescence intensity to
solution of Eq.~97! indicates the validity of the above as
sumption. The spectral position of maximum and the sh
of the luminescence band coincide at long times practic
with those of the steady-state luminescence. So, we can
clude that localized exciton formation is responsible for t
long-time luminescence decay followed by its radiative
combination.

Figures 13~curve 2! and 14 present the time kinetics o
the same sample of CdS(12c)Sec under the excitation above
the mobility edge at low and high excitation, correspon

e

-

t

e

FIG. 13. Decay of integrated luminescence spectra
CdS12cSec , c50.05 at low-density excitations below and abo
the mobility edge~solid lines 1 and 2, respectively!. Excitation
wavelengths correspond tov50 andv50.022 eV in Fig. 6 and
Fig. 7. Open circles 3 and 4 represent the fit of the long-time kin
ics by power the law of Eq.~96! with d equal to 2 and 3/2, respec
tively, with parametert equal to 1.81 and 7.85 ns. Open squares
indicate a stretched exponential dependence Eq.~104! with tD8
50.043 ns andd50.33.
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ingly. The behavior of the intensity differs considerably fro
that in the previous case. Namely, the decay of
CdS(12c)Sec luminescence obeys in an intermediate time
terval at low excitation the stretche-exponential la
exp(2td) with the index d'0.33, while this dependenc
transforms into a powert23/2 law in the limit of long times,
which means considerable decrease of the recombina
rate. At high intensity of excitation the time kinetics of th
same CdS(12c)Sec sample follows the stretched-exponent
behavior with the critical indexd'0.6.

We will try to describe the results for these cases us
the approach of the so-called diffusion controll
annihilation41–43 where the time dependence of the partic
concentration and of the reaction rate is strongly inflicted
the fluctuations of the particle concentration.

Let us suppose that the particles of both kind are mo
and the averaged concentration of them are equal. Then
random walk of both particles leads to their collision fo
lowed by the exciton formation and its annihilation durin
radiative lifetime. If the time of exciton formation and it
radiative time are less than the time of diffusion over t
microscopic volumeLd

tD;L2/D, ~98!

then the number of particles in this volume~see Refs. 41 and
43! decreases because of annihilation duringtD from its ini-
tial value

ne,h~0!Ld6@n~0!Ld#1/2 ~99!

to the value

ne,h~tD!;@ne,h~0!Ld#1/2/Ld;L2d/2;t2d/4. ~100!

This leads to the time dependence of the recombination
tensity of the form

FIG. 14. Decay of integrated luminescence spectra
CdS12cSec , c50.05 at high-density excitation above the mobili
edge with density 0.2•1023J/cm2 ~solid line! in a semilogarithmic
plot as a function oft0.6. The dashed line represents a stretch
exponential fit by Eq.~104! with tD8 51.0 ns andd50.60. Symbols
1 and 2 represent the fit withd50.55 and 0.65, respectively.
e
-

on

l

g

y

e
he

n-

I ~ t !;d ne,h /dt;t2(41d)/4. ~101!

HereD is the diffusion coefficient for the most mobile pa
ticles andd is the dimensionality of the space.

This kind of dependence was established in the theory
different methods~see, e.g., Refs. 42 and 49!. However, the
experimental data for CdS(12c)Sec cannot be fitted by this
law in the case under consideration. This fact confirms
assuming that at least the particles of one type are local
in this system.

For the case of mobile electrons and localized holes
recombination should be considered as a result of a ran
walk of electrons in search of localized holes and the reco
bination kinetics should keep the peculiarities and con
quences of this process. To describe the long-time beha
of the luminescence intensity we have to investigate the e
tron motion at times essentially exceeding the time of el
tron hops within the volume of sizeL, which is restricted by
the localized holes. The time dependence for an electron c
centration in this volume can be written as

d ne

d t
;2

ne

tD
, ~102!

wheretD is defined again by Eq.~98! with D equal to the
diffusion coefficient for electrons. If only a fraction of elec
trons is mobile and the number of mobile electrons is c
siderably less than the number of holes the simple expon
tial decay of the electron concentration follows also from E
~97!.

Taking into account the Poisson fluctuations in the sp
distribution of holes we obtain for the probability of the r
alization of a volumeLd empty of holes

P~Ld!5 exp~2nh Ld!. ~103!

Averaging over the space distribution of holes gives
stretched-exponential dependence41–48

exp~2@ t/tD8 #d!, ~104!

for both ne(t) and I (t);d ne /d t with the critical index of
‘‘normal’’ diffusion d5d/(d12) wheretD8 is the character-
istic time of the diffusion process.

The main contribution to the long-time dynamics of th
luminescence comes from the regions free of holes of ‘‘o
timal’’ size Ropt ~Ref. 91!

Ropt~ t !;S D t

nh
D „1/(d12)…

. ~105!

A more pronounced slowing down of the annihilation pr
cess occurs if the geometry of the percolation cluster restr
the trajectories of the moving particle. An important chara
teristic of the percolating system is the so-called correlat
length j, which gives the averaged size of finite clusters
voids ~holes! in the infinite cluster.22 When the optimal size
Ropt has the order of the correlation length of the percolat
cluster Ropt<j the diffusion process attains th

f
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‘‘anomalous’’41,43 character with a substantial decrease
the diffusion rate. In the case of diffusion over the perco
tion cluster we have90,91

ln@ I ~ t !#;2t [ds /(ds12)], ~106!

where ds52df /dw is the ‘‘hyper-universal’’ fraction
dimensionality,92,93 i.e., the spectral dimensionality of perco
lation cluster. Heredf is the fractal dimensionality (df
'2.51 for d53)22, and dw is the index of random walk
over the fractal (dw'3.8 for d53).43

A further decrease of the diffusion rate occurs when
diffusion takes place partly on clusters of finite size. Th
leads to a change ofds in Eq. ~106!

ds→ds852df /dw8 ,

wheredw8 5dw /(12b/2n)43 @b andn are the critical indexes
of the order parameter and correlation length, ford53, b
'0.42,n'0.875, anddw8 '5.0 ~Ref. 22!#.

The observed difference of the stretched-exponential
dexes of the data presented in Figs. 13 and 14 migh
assigned to the different filling of the extended electr
states at different pumping levels. The higher intensity
excitation leads to a higher concentration of electrons
holes. The ratio of the correlation length of the electron p
colation clusterj to the optimal diffusion lengthRopt de-
pends on the carrier concentrationnh'ne and defines the
character of the diffusion process, whether it is normal
anomalous.41,43 Though both functions are decreasing w
concentrations, the rate of the decrease ofj;(ne2ne

crit)2n

exceeds that ofRopt given by Eq.~105! and, therefore, their
ratio j/Ropt tends toward values less than unity with increa
ing concentration, which characterizes the normal diffusi

The data of Fig. 13~curve 2! show that a stretched
exponential law exp(2td) with the indexd'0.33 transforms

FIG. 15. Decay of integrated luminescence spectra
ZnSe12cTec , c50.13 at low-density excitations below the mobilit
edge~solid line!. Excitation wavelength corresponds to the dott
vertical line in Fig. 2. Dashed line with symbols represents the fi
the long-time kinetics by the power law of Eq.~96! with the param-
eterst514.1 ns andd53/2.
f
-

e
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e

f
d
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into a powert23/2 law in the limit of long times. This kind of
dependence also can be connected with diffusion.

Noolandi et al.50 have proposed a model of gemina
electron-hole pair recombination fora2Si:H, involving tun-
neling and diffusion. Within the so-called prescribed diff
sion approximation51 they have take into account the attra
tive Coulomb interaction between electron and ho
According to their results, the intensity should decrease
the long-time limit ast23/2, which describes well the lumi-
nescence decay in amorphous silicon.

Kuzovkov and Kotomin49 have considered a complicate
system of equations for the diffusion-controlled bimolecu
reaction. The solution describes the development of an in
mogeneity in the space distribution of the particles leading
the time dependence of the bimolecular reaction ratek
→k(t). As a result, it has been found in the long-time lim
that the reaction rate varies according to power lawk
;t21/2 for the case of equal concentrations of both mob
and immobile particles. The particle concentration decrea
in this case asne;t21/2. This leads to the decay of the lu
minescence intensity also according to power lawI (t)
;t23/2. This result follows also from Eq.~97! if the bimo-
lecular reaction ratek has the mentioned power dependen
on time.49

Thus, the long time dependence of the typeI (t);t23/2

follows from two different models of kinetics considered
Refs. 49 and 50. The simplest explanation of this fact can
as follows. According to Refs. 49 and 42 the decrease
concentrationne;t21/2 indicates an inhomogeneous distr
bution of particles, which is developing in the process
diffusion. We assume that the inhomogeneous distribution
the remaining particles produced by the diffusion during
intermediate time interval leads to the decrease of annih
tion rate as compared with the case of a random distribu
also when the remaining electrons are localized and tun
ing is responsible for their annihilation.

f

f

FIG. 16. Decay of integrated luminescence spectra
ZnSe12cTec , c50.13 at high-density excitation above the mobili
edge with density 1023J/cm2 ~solid line! in semilogarithmic plot as
a function oft0.33. Dashed line represents a stretched exponentia
by Eq. ~104! with tD8 50.74 ns andd50.33. Symbols 1 and 2 rep
resent the fit withd50.30 and 0.36, respectively.
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2. ZnSe-Te long-time luminescence kinetics

Figures 15 and 16 exhibit data for ZnSe(12c)Tec solid
solution withc50.13 investigated at low excitation slightl
below and at high excitation slightly above the mobili
edge. The time dependence of the luminescence inten
shows the powert23/2 asymptotic behavior at low excitatio
and the stretched-exponential dependence with the inde
anomalous diffusiond'0.33 at high excitation over a wid
time interval. The explanation of the previous case can
used here as well. Despite the fact that at low excitation
photon energy was below the mobility threshold the num
of ‘‘nonradiative’’ states of superclusters of large size e
ceeds considerably the number of ‘‘radiative’’ states in
spectral region of excitation~see Fig. 4!. As a consequence
the processes of the fast relaxation of holes, which electr
cannot follow adiabatically, creates favorable conditions
the generation of the separated pairs. The scale of the
dom potential for electrons in ZnSe(12c)Tec is supposed to
exceed considerably that in CdS(12c)Sec and we can admit
that the electron concentration achieved in the former cas
not sufficiently high to break the relation between the cor
lation length and the optimal diffusion length, which shou
lead to anomalous diffusion. The results at weak excitat
show in this case thet23/2 decrease~which, probably, should
be considered as the most common law in the long-t
limit ! while this limit was not achieved in our experimen
even at highest excitations.

F. Some further remarks

The nonexponential stage of relaxation lasts tens and e
hundreds of nanoseconds and the observed time depend
can be understood under the assumption that the relaxa
rate is controlled by diffusion of separated particles or
their tunnelling. This stage of the process looks like se
rated nongeminate pair recombination. In the whole, onl
small fraction of excitations participates in these process

One of the most important questions is whether this lo
time kinetics is an intrinsic or extrinsic property of radiativ
recombination of the solid solutions. We have found ve
similar luminescence kinetics in the CdS-Se samples gro
by hotwall epitaxy and in high-quality samples obtained
high-temperature growth from gaseous phase. Similar si
tion has been found for time kinetics of the luminescence
two different ZnSe(12c)Tec samples withc50.11 and c
50.13 obtained at different conditions. Since the ensem
of point defects, the dislocation density, as well as the im
rity contents are different in this set of the samples, the na
ral conclusion would be that the observed features of
long decay kinetics are of an intrinsic nature.

It is worth mentioning that even the short review of som
of the possible consequences of the tunneling and diffus
in disordered systems shows that these processes coul
count for quite different types of luminescence intensity d
pendences at the condition that some fraction of exc
states occurs in the form of separated electron-hole p
The explanation of the results presented here is based o
idea that the motion of separated particles, both electrons
holes, is affected by the random potential of solid solutio
leading to tailing of both valence and conduction ban
Then the diffusion of mobile carriers or tunneling of loca
ity
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ized electrons followed by exciton formation and their rad
tive recombination could explain the long-time survival
the excitation.

Another serious question is the problem of uniqueness
the presented interpretation. The problem arises, for insta
since it is difficult to distinguish Becquerel’s law withd
52 from stretched-exponential decrease withd50.33 within
a relatively narrow interval of observation in our measu
ments of CdS(12c)Sec ~see Fig. 13!. We have preferred to fit
by stretched-exponential functions in all appropriate ca
because they describe the decrease of intensity over the
est interval of time we were dealing with and give the po
sibility to include without contradiction both normal an
anomalous diffusion.

The other example of some uncertainty presents
stretched-exponential dependence itself. Presently such a
pendence can be strictly justified only if considerable co
centration differences of mobile particles and traps ex
Therefore, additional study is necessary to establish whe
or not it can be proved for electrons the concentration
which coincides with that of holes, but with electrons a
distributed over extended and localized states in the di
dered system.

In any case, the experimental data show that the stretc
exponential decrease can serve only as an intermediate
asymptotics, while the long-time behavior is consistent w
a t23/2 law. According to Refs. 49 and 50, this latter depe
dence can be the consequence either of the electron-
Coulomb attraction or of the spatially inhomogeneous dis
bution of particles, which is developing in the preceding p
cess of diffusion. In the former case it is difficult to expla
the decay behavior at intermediate times. In the latter c
we have to suppose that approximately the samet23/2 depen-
dence takes place also for the tunneling processes of in
mogeneously distributed electrons.

IV. CONCLUSIONS AND OUTLOOK

Semiconductor alloys of the typeA B12cCc form a set of
disordered solids properties of which vary in wide limit
The experience accumulated already in the investigation
these objects and the growing interest to their technolog
applications make it useful to attempt to highlight some co
mon features of the solid solutions, which are different
many details.

In this paper we have presented the model based on
classical percolation theory for the description of the lum
nescence process. This approach exploiting the fractal ge
etry of percolation cluster turns out to be fruitful for th
description of the steady-state luminescence under weak
tionary conditions of very different systems.

The population dynamics after pulsed excitation giv
new features to the luminescence. We have presented
description of this process in terms of the approach de
oped for stationary conditions. The deviations of experim
tal data from the theory have in this case a predictable c
acter. They are caused, first of all, by the fact that the the
dealing with the geometrical figures does not take into
count transformations of wave functions of the tail states
the mobility edge region.

A nontrivial long-time kinetics of the luminescence
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which has been observed, touches upon the problem o
separated pair generation under excitation even below
mobility edge of excitons. We have shown that the obser
long-time decay of the spectrally integrated intensity of
luminescence can be interpreted in terms of theories of
molecular reactions and open questions for further study
partly presented in Sec. III F.

Apart from a detailed understanding of the tail states
three-dimensional solids, the knowledge obtained here se
to be of great help to understand analogous phenomen
systems of reduced dimensionality.
O.

A

.
r.

n,

st.

a

s.

s.

.

s

d

t.

,

t.
he
he
d

e
i-
re

n
ms
in

ACKNOWLEDGMENTS

The paper presented here is the result of the coopera
of several research groups in different countries. The auth
would, therefore, like to express their thanks to fundi
agencies supporting the scientific work and/or the excha
of scientists. Special thanks are due to the Deutsche F
chungsgemeinschaft, the European Community in the fra
of the INTAS program~Grant No. 94-324!, and the Russian
Foundation for Basic Research~Grants Nos. 96-02-16933
and 97-02-18138!.
.

n-
.E.

C.

,
g-

lid

J.

,
-

I.

La-

ur-
y
nas

ev.
1R.A. Street, Adv. Phys.30, 593 ~1981!.
2S. Permogorov, A. Reznitsky, V. Travnikov, S. Verbin, G.
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