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Variational Theory for Site Resolved Protein Folding Free Energy Surfaces
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We present a microscopic variational theory for the free energy surface of a fast folding pro
that allows folding kinetics to be resolved to the residue level using Debye-Waller factors as local o
parameters. We apply the method to thel-repressor protein and compare with site directed mutagenes
experiments. The formation of native structure and the free energy profile along the folding route
shown to be well described by the capillarity approximation but with some fine structure due to lo
folding topology. [S0031-9007(98)07855-7]
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Proteins fold on a configurational energy landscape th
has the shape of a funnel [1]. As the protein move
down the funnel towards the native state, incomple
cancellation of the entropy and energy losses may resul
free energy barriers. So far, proteins that fold fast exhib
single exponential kinetics [2], consistent with a fre
energy profile that has a single highest barrier along t
progress coordinate. Central issues are the origin of t
free energy barrier for fast folding proteins and how
the ensemble of structures which represent the bottlene
is to be characterized. We address these questions us
a variational approximation that describes ensembles
partially folded proteins at the highest level of resolution
i.e., the specific role of individual residues in guiding th
protein to the native state is quantified. In the laborator
Fersht has developed a probe of the transition state
bottleneck ensemble through protein engineering kine
studies in which the sequence of the protein is altered
replacing residues one at a time [3]. The experiment yiel
the fraction of the time that the mutated site is in the nativ
conformation in the bottleneck ensemble by comparin
folding rates of the mutant to the wild type. Since this ca
be done for any residue in the sequence, these studies
inherently “site resolved.” Resolving the transition stat
ensemble to this level is one way to monitor the avera
of the many routes taken as proteins fold.

Previous analytic mean field theories and simulation
have produced energy landscapes in one or two glob
dimensions characterizing the folding ensemble [4]. W
develop here a free energy profile for proteins with
funneled landscape that is completely site resolved, i.
one dimension per residue, by extending the mean fie
variational calculations presented in [5]. The underly
ing Hamiltonian explicitly incorporates chain stiffness an
connectivity while the approximation employs a varia
tional density that monitors local order parameters fo
folding akin to the Debye-Waller factors (also called tem
perature factors) for individual residues seen in x-ray cry
tallography.

The basic Hamiltonian for an interacting polyme
chain is H ­ Hchain 1 Hint, where Hchain is backbone
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potential andHint are the interactions between distan
monomers along the chain.Hchain is an effective har-
monic potentialbHchain ­ 1y2

P
ri ? Gij ? rj 1 B

P
r2

i ,
where hrij are the positions of theN a carbons, and
b ­ 1ykBT is the inverse temperature. The first term e
forces the chain connectivity while the second term co
fines the radius of gyration to a reasonable value [achiev
by fixing B to a small constant:B ­ s3y2a2d 3 1023].
For the connectivity matrix,Gij, we use the well known
Gaussian approximation to the freely rotating chain d
rived in [6]. Denoting theith bond vector byai ­
sri11 2 rid and the angle between successive bond vec
by u, this stiff chain model is defined by the correlation
kai ? ai1ll ­ a2gl , wherea is the mean bond length and
g ­ cosu. Following Bixon and Zwanzig,Gij is deter-
mined by inverting these correlations and transforming
the bead representation resulting in a pentadiagonal m
trix that depends on the stiffness parameterg (for the ex-
plicit matrix, see [6]). In the limitg ! 0, Gij describes
the standard flexible chain, whereasg ! 1 corresponds
to a rigid rod. The persistence length,l, for this chain is
given by l ­ ays1 2 gd. We useg ­ 0.8 giving (with
a ­ 3.8 Å) l ø 20 Å, the persistence length for poly-L-
alanine [7].

We take interaction between distant monomers alo
the chain to be restricted to specifically nativelike inte
actions Hint ­

PsNd
eijusjri 2 rjjd, where the isotropic

pair potential has a minimum at a nonzero distance p
duced by summing three Gaussians,usrd ­ gse2bsr2

1

gie2bir2
2 gle2blr2

; the short- and intermediate-rang
terms are repulsive while the long-range Gaussian is
tractivesbs . bi . bld. The sum over pair interactions
s
PsNdd is restricted to native contacts. This constrai

gives a smooth funnel shaped energy landscape, app
priate for fast folding proteins. This is an extreme rea
ization of theprinciple of minimum frustration[8] and is
reminiscent of the lattice model originally introduced b
Gō [9]. The heterogeneity of the interaction between d
ferent residues is reflected by the strengtheij. Non-native
interactions can also be included inHint and treated by our
variational method.
© 1998 The American Physical Society 5237
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To study the many dimensional free energy surface d
fined by H, we choose local order parameters that c
characterize the ensemble of partially folded structures
specifying the temperature factor for each residue,B̂i .
This describes the mean square fluctuations of a resid
about its native position and for fully folded proteins ha
been measured. A similar local order parameter for fol
ing has been used in lattice simulations [10] and earl
analytical work [5]. Consider the free energy surface d
fined by the set of scalar fluctuations of each residue fro
its native positionhrN

i j, B̂i ­ sri 2 rN
i d2. The free en-

ergy surfaceF fhB̂ijg for an ensemble specified byhB̂ij is
given by

e2bF fhB̂i jg ­ Tr

"Y
i

dfB̂i 2 sri 2 rN
i d2ge2bH

#
(1)

­
Z

D l Tr e2bHflg, (2)

where bHflg ­ bH 1
P

lifB̂i 2 sri 2 rN
i d2g, and

D l ;
Q

j dljy2pi.
Denoting the integrand in Eq. (2) bye2bFflg, we ap-

proximateFflg with the help of a reference Hamiltonian
H0 and the Gibbs-Bogoliubov variational expressio
Fflg ø 2kBT logZ0 1 kHflg 2 H0l0, where Z0 ­
Trfe2bH0 g, and k· · ·l0 means the average with respec
to H0. The reference Hamiltonian describes a Gaus
ian chain constrained to fluctuate about the nati
structure hrN

i j by a harmonic external field:bH0 ­
Hchain 1

P
Cisri 2 rN

i d2. The variational parameters
hCij are conjugate tohB̂ij. This reference Hamiltonian
captures the two stable phases of fast folding protein
the globule with smallhCij and the native state with
uniformly largehCij. hCij also form a set of local order
parameters for folding. A similar (but more elaborate
reference Hamiltonian was used to determine the pha
diagram for proteins with a rugged energy landscape
well as to study folding free energy barriers [5]. Thes
mean field studies employed a global order parameter
nativeness by setting allCi equal in one region of the
protein. Different related effective harmonic variationa
Hamilitonians have been employed to study polymers
random media [11], random directed polymers [12], an
random copolymers [13].

Evaluating Eq. (2) using the steepest descents appro
mation gives the stationary condition̂Bi ­ ksri 2 rN

i d2l0
as a function ofhCij leading to a one to one relation be
tween thehB̂ij and hCij. Technically, it is more con-
venient to study the free energy surface inhCij space
so that we consider the variational free energy surfa
expressed asFfhCijg ­ E 2 ST with the estimate for
the energyE ­

PsNd
eijkusrijdl0 and the entropySykB ­

logZ0 1
P

kCisri 2 rN
i d2l0 as a function ofhCij.

SinceH0 is quadratic,Z0 and all of the averages are ex
pressible in terms of the correlations,kri ? rjl0 2 kril0 ?

krjl0 ­ 3y2Gij , with Gij ­ f1y2 Gij 1 sB 1 Ciddijg21.
Z0 involves the determinant of the correlation matri
5238
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while the averages can be calculated using the density
site i, risrd ­ kdsr 2 ridl0, and the pair density between
sites i and j, rijsrd ­ kdsr 2 rijdl0. In terms of the
average positionsi ­

P
j GijCjrN

j , these densities are
risrd ­ spGiid23y2 expf2sr 2 sid2yGiig, and rijsrd ­
spdGijd23y2 expf2sr 2 sijd2ydGijg, where dGij ­
Gii 1 Gjj 2 2Gij .

Since bothFfhCijg and=CFfhCijg can be expressed ana
lytically in terms ofGij (which is calculated numerically),
it is relatively easy to locate the minima and saddle poin
numerically [14]. Once the transition states and the folde
unfolded, and local minima are determined, we define t
average folding route to be the connected steepest desc
path from each transition state to the neighboring minim
Only the global minimum ofFfhCijg is rigorously an upper
bound, but the saddle points and local minima should a
be good estimates for the true free energy surface.

We now apply the model to the folding of thel-
repressor protein.l6285 is a good candidate system since
is small (80 residues) and folds extremely rapidly in20 ms
following two-state kinetics [15]. Recently Oaset al.
probed the structure of the transition state ensemble
l6285 by comparing the folding rates measured with NM
for seven mutants made by alanine to glycine replaceme
[16]. The folding rates can be connected to the structu
of the transition state by thef parameter developed by
Fersht [3],f ­ D logkfyD logK (kf is the folding rate
andK denotes the equilibrium constant).f , 0 indicates
that the conformation of the mutated residue in the tran
tion state is similar to the globule, whereasf , 1 suggests
that this residue has native structure in the transition st
ensemble. Based in part on thesef values, Table I, Oas
proposed that helices H1 and H4 are structured in the tr
sition state ensemble. While a more extensive mutati
study is necessary to characterize fully the transition st
ensemble, a comparison to these results is a strong tes
the theory presented here.

We define native contacts between residues withb car-
bons within a distance of 6.5 Å (a carbons for glycines)
in the native structure [17] that are separated by at le
four monomers in sequence. The pair distribution fun
tion of the distance betweena carbons is used to constrain
the parameters of the effective pair potential. We fin
the intermediate- and long-ranged interaction param
ters sgi , bia2, gl , bla2d ­ s9.0, 0.8, 6.0, 0.4d give an
effective potential well that contains all the native conta
distances and has a minimum at the most proba
Ca 2 Ca contact distance,rp ­ 1.6a, with usrpd ­ 21.

TABLE I. f values for thel-repressor protein.

Mutant M15 M20 M37 M49 M63 M66 M81
(Helix) (H1) (H1) (H2) (H3) (H4) (H4) (H5)

fExp 0.5 1.0 0.2 0.3 0.8 1.2 0.6
kflCalc 0.3 0.3 0.1 0.2 1.0 1.0 0.7
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The short-range interaction represents the hard-core rep
sion between residues and gives excluded volume; w
the choice of valuessgs, bsa2d ­ s25.0, 4.5d, the repul-
sion roughly balances the attractive energy in the globu
state allowing us to study a folding transition that occur
directly from a random coil (i.e., near the theta tempera
ture). We will compare the free energy surface using
homogeneous contact strengthseij ­ e0d with that of the
full 20 letter Miyazawa-Jernigan contact energies [18] i
which contact between different residues have differe
energies.

We now consider a low energy folding route on th
free energy surface connecting the globule and nati
minima. Figure 1 shows the free energy along this pa
at the folding transition temperature,Tf , plotted as a
function of the fraction of energy stabilization relative
to the native state,ENORM. The stationary points of the
free energy surface form a broad barrier with a reasonab
height [s5 7dkBTf ] for fast folding proteins. The barrier
for the homogeneous case of all equal interactions
approximately 30% larger than for the heterogeneous
contact energy model. Another difference between th
two models is that we find many more transition state
and local minima (not shown) for the heterogeneous cas
These arise from the competition between contacts
different strengths.

The Debye-Waller factor (temperature factor) of eac
residue contains structural information of the stationa
points along the folding route. The temperature facto
plotted versus sequence number at four of the sadd
points along the folding route for the heterogeneous mod
are shown in Fig. 2. Even the globule already has som
structure though its fluctuations are large. Comparin
these curves progressively from the globule to the nati

FIG. 1(color). The free energy at the stationary points alon
the folding route as a function of the normalized energy fo
the homogeneous (oranges) and inhomogeneous (blackh)
models. For an ensemble with average energyE, ENORM ­
sE 2 EGdysEN 2 EGd, whereEN and EG are the energies of
the native state and globule state, respectively.fcap (described
in the text) is also shown as the solid line withg ­ 35s42dkBTf
for the heterogeneous (homogeneous) model.
ul-
ith

le
s
-
a

n
nt

e
ve
th

le

is

e
s
e.

of

h
ry
rs
le
el
e

g
ve

g
r

state, we see that the barrier atTS1 is described by the
formation of helices H4 and H5 while the central regio
of helix H1 which docks with H4 is partially localized
but with substantial fluctuations. This suggests that t
stabilizing contacts between H4, H5, and H1 are d
to the general increase in density rather than any v
strong contacts between specific residues. Following t
is the completion of helix H5 and the center of heli
H1, while helices H2 and H3 remain relatively disordere
at TS3. Last, helices H2 and H3 become increasing
more ordered along this folding route as indicated by t
temperature factors atTS4.

The folding route described above agrees with t
conclusions of the Oas group [16]; namely, helices H1 a
H4 are structured in the transition state ensemble, wher
helices H2 and H3 are unstructured. Thef values
obtained from this calculation makes the comparison mo
precise. As in the experimental analysis, we assume
ensemble of structures does not change but recalculate
free energy for each mutant at the saddle points. Us
k , e2bDFy

, we calculatef at each saddle point and
their average over the four transition states. The resu
are given in Table I. The agreement with experime
is quite reasonable in light of the rough approximatio
made in modeling the experiment. The worst agreem
is for the mutation M20. This is a surface residue with n
tertiary contacts by our definition; thus other terms in th
energy may be contributing. Some obvious improveme
to this model such as explicit hydrogen bonding an
many body forces can easily be made, but our aim h
is to explore the simplest model that gives a physica
reasonable and direct picture of the folding route for fa
folding proteins. From this point of view, the agreeme
with experiment is very encouraging.

Examination of the average folding route also lea
to a simple physical picture for the barriers under th

FIG. 2(color). The temperature factors (i.e., mean squa
fluctuations relative to the average position ofith monomer,si)
plotted as a function of sequence number for the heterogene
model at the stationary points shown in Fig. 1. The bar at t
top indicates the helical secondary structure (H1–H5).
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thermodynamic conditions of folding atTf directly from
the random coil. The progression of the folding of the 3
structure is shown in Fig. 3, where the sites of the nativ
structure are colored according to the fraction of energ
gained at that site. The first bottleneck involves parti
structure formation in approximately 40% of the chai
(in helices H4 and H5). Subsequently, a picture muc
like that of the growth of an ordered phase in an ordina
first order transition emerges with a front of progressiv
ordering crossing the protein. This is reminiscent of th
capillarity theory [19]. Within the capillarity picture,
one imagines an ordered region that is completely fold
separated by a sharp interface from a completely unfold
region. At Tf , the free energy of progressively forming

folded structure is given byfcap ­ gs2Nf 1 N
2y3
f d,

whereNf is the fraction of native residues, andg is the
surface energy cost. As shown in Fig. 1, this equatio
provides a good fit to the stationary points in both th
homogeneous and heterogeneous models, identifyingNf

with normalized energyENorm (defined in Fig. 1) and
treatingg as a fitting parameter.

Superimposed on the average behavior of the profi
are fluctuations representing the fine structure arising fro
inhomogeneity of the local folding free energy. It is
obvious that these fluctuations arise for the heterogeneo
model because of varying interaction energies but are s
present for the pure homogeneous Gō-like model. This
shows the high free energy intermediates [10,20] alo
the average folding route for a very funnellike surface a
mostly determined by the folded topology. Within the
capillarity picture, the smaller barrier for the heterogeneo
case can be interpreted as being due to wetting, as expe

FIG. 3(color). The 3D native structure of thel-repressor
protein colored according to the normalized energy of each si
sei 2 eG

i dyseN
i 2 eG

i d with ei ­
PsNd

j eijkusrijdl0, evaluated at
each saddle point (clockwise from upper left).eN

i and eG
i are

the energies of theith site in the native state and globule state
respectively.
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for the random field Ising model [21]. The thermodynam
conditions studied here favor the capillarity picture wi
a sharp interface. When folding occurs from an alrea
collapsed state the free energy difference of the b
unfolded and folded phases is smaller leading to a broa
interface. The basic formalism can be used for this oth
regime as well.
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