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We report systematic results for the existence and stability of double-peakedsDPd solitons in the known
model including the Bragg grating, which acts on the fundamental- and second-harmonic waves, and the
quadraticsxs2dd nonlinearity, which accounts for the parametric interaction between the harmonics. We identify
existence and stability regions for the DP solitons in the plane of relevant parameterssthe relative Bragg
reflectivity at the two harmonics, and phase mismatchq between themd. We conclude that the existence region
considerably expands with the soliton’s velocityv, while the stability area remains nearly constant up to a
critical value ofv. The stability region quickly vanishes as one crosses the critical value, while the region of
the existence of unstable DP solitons does not disappear. The stability is confined to negative soliton frequen-
cies, and almost entirely toq,0. Collisions between stable moving solitons are investigated too, with a
conclusion that they are always destructive.
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It is well known that solitons in quadratically nonlinear
sxs2dd media can be supported by means of the artificial
dispersion/diffraction induced by the Bragg gratingsBGd in
the temporal/spatial domain. Detailed description of the BG-
supported solitons can be found in general reviews devoted
to the xs2d solitons f1g. In most works, these solitons were
introduced as four-wave complexes, since the BG gives rise
to resonant coupling between counterpropagating waves in
both the fundamental-frequencysFFd and second-harmonic
sSHd componentsf2–4g. In the spatial domain, the BG in the
form of a system of parallel ribs on a planar waveguide with
the xs2d nonlinearity can give rise to three-wave solitons, in
which two FF components are coupled by the resonant Bragg
reflection on the grating, and the third wave represents a
combinational harmonic whose wave vector is directed along
the ribs, hence it does not scatter on themf5,6g.

A noteworthy feature which was found in the studies of
the xs2d BG models is the existence of double-peakedsDP,
alias twin-peakedd solitonsf3,5,7g. In fact, DP soliton solu-
tions occur too in the ordinaryxs2d model, with the intrinsic
srather than BG-inducedd dispersion or diffractionf8g, but
they all are unstable in that case, unlike the fundamental
ssingle-peakedd solitonsf1g. In the BG models, the stability
of the four-wave and three-wave DP solitons was briefly con-
sidered, respectively, in Refs.f3,5g, with a conclusion that in
some cases they may be stable, and in some other cases not.

A possibility of the existence of stable double- and mul-
tipeaked solitons is a topic of general interest. Experimen-
tally, they were observedsin the spatial domaind in a partially
incoherent beam launched into a photorefractive crystal,
which features saturable nonlinearityf9g. The stability of
two- and three-peaked solitons in a saturable model was then
investigated in some detail in Ref.f10g. The objective of the
present Brief Report is to revisit the DP solitons in thexs2d

BG model, ascertain their stability, and identify the respec-
tive stability region in a relevant parameter space, which is
necessary in order to understand the robustness and generic-
ity of this class of stable solitons. Both quiescent and moving

twin-peaked solitons will be considered, as well as collisions
between the moving ones.

Following Ref. f3g, we adopt a model of the double-
periodic BG that makes it possible to separately control the
strength of the Bragg reflection acting on the pairs of right-
and left-traveling FF and SH waves,sU+,U−d and sV+,V−d.
In a properly normalized form, the temporal-domain model
involves four evolution equations,
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where t and z are the time and coordinate, andv is the
frequency of the solution to be looked for. Further, the
Bragg-reflection strength and group velocity in the FF equa-
tions, together with thexs2d coefficient, are scaled to be 1, the
positive coefficientsv0 andk are the relative group velocity
and Bragg reflectivity at the SH, andq sthat may have either
signd is a phase-mismatch parameter.

Solutions for solitons moving at the velocityv are looked
for as functions ofz−vt. As shown in Ref.f3g, a necessary
condition for the existence of solitons is that the pair of the
parameterssv ,vd must belong to the band gap in each har-
monic, which means

v + v2 , 1, k−2sqv0 + 2vd2 + v2 , v0
2. s2d

In this work we setv0=1 sas was actually done in Ref.f3gd,
as the relative group velocity cannot be strongly different
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from 1, and its effect on the solutions is not conspicuous.
In Ref. f3g, it was demonstrated that approximate solu-

tions of Eqs.s1d can be found in an analytical form, assum-
ing k large and neglecting terms with the spatial derivatives
in the SH equations. In particular, the analytical approxima-
tion for quiescent solitonssv=0d is srecall we setv0=1d

V+/− =
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2

ks1 − D2d
,

U± =Î2ks1 − D2dfv + coscszdg
2 cos2 cszd − 1 −D
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1
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cszdD ,

cszd = − 2 tan−1SÎ1 + v

1 − v
tanhsÎ1 − v2zdD , s3d

with D;sq+2vd /k. The solution exists forD2,1, the ex-
pressionss3d producing a DP shape atuDu close to 1sother-
wise, the solitons are single-peakedd. A notable fact reported
in Ref. f3g is that both the approximate analytical solutions
and their numerically found counterparts occupy only a part
of the band-gap areas2d, leaving its large part empty.

As concerns the DP solitons, in Ref.f3g their existence
region was identifiedsin a numerical formd in the plane of
sv ,vd, for two sets of values of the phase-mismatch and
relative-BG-strength parameters:sq= ±3, k=10d, when the
above analytical approximation applies, and also for the case
of sq=0, k=1d, when the approximation cannot be used. It
was observed that the existence region is quite large for
q=−3 andq=0, and extremely small forq= +3. The stability
of the DP solitons was tested in direct simulations for several
cases, with a conclusion that they may be stable forv,0,

and are definitely unstable forv.0. These sketchy results
suggest that the parametersq and k are crucially important
for the existence and stability of the DP solitons. Therefore,
in this work, we aim to identify the corresponding regions in
thesk ,qd plane, which is a new approach in comparison with
Ref. f3g.

To generate families of the DP solitons in a numerical
form, we first took the analytical approximations3d for q=
−3, k=10, andv=−0.5437. This waveform was used as an
initial guess to find a numerically exact soliton by means of
a relaxation methodsbased on the Newton iterationsd, with
the relative accuracy no worse than 10−4. Figure 1 displays
the analytical approximation and the numerical solution ob-
tained in this casefa stability test in direct simulations of
Eqs.s1d shows that this soliton is stableg.

Then, the soliton family was generated in numerical form,

FIG. 1. Comparison of the analytical approximation, given by
Eqs.s3d for q=−3, k=10, andv=−0.5437, and numerical solution
found by means of the relaxation method for the same case. In this
figure and below, each component of the soliton is represented by
the corresponding local power, i.e.,uU±u2 and uV±u2, shown as a
function of the coordinatez. The zero-velocity solitons have
uU−,V−u2= uU+,V+u2.

FIG. 2. Black and gray areas are, respectively, regions of the
existence of stable and unstable double-peaked solitons forv=0 and
v=−0.58.

FIG. 3. The same as in Fig. 2 for moving double-peaked soli-
tons, uvu=0.2 andv=−0.52.
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starting from the above particular solution and continuing it
by varying the parameters, firstsv ,vd and thensk ,qd. At
each step of the continuation procedure, the relevant param-
eter would be changed by 2%, the previous solution being
used as the initial guess to construct the new solution by
means of the relaxation method. As said above, we aimed to
collect the results in thesk ,qd parameter plane, as these pa-
rameters are crucially important for the DP solitonssand they
were not considered before from this perspectived. Stability
of the stationary soliton solutions was tested in direct simu-
lations of Eqs.s1d, by adding, att=0, a random white-noise
perturbation to the soliton, usually with a relative amplitude
of 0.5%.

Typical examples of the existence and stability regions in
the sk ,qd plane for the quiescentsv=0d and moving solitons
are shown in Figs. 2 and 3, respectivelyfthe results are
shown forv,0 becausesas was also noted in Ref.f3gd, no
stable DP solitons can be found forv.0g. Beyond the upper
border of the DP-soliton existence region in Figs. 2 and 3sin
the latter case, it turns out to be the existence border for the
unstable solitonsd, single-peakedsfundamentald solitons can
be easily found. We do not consider them here, as the fun-
damental solitons, unlike the DP ones, were studied in detail
in Ref. f3g.

A noteworthy feature evident in Figs. 2 and 3 is the fact
that the stability region undergoes little change with the
variation of the velocity, while a region where stationary DP
solitons exist too but are unstable greatly expands with the
growth ofv. It is noteworthy too that, while the region of the
existence of unstable DP solitons may extend to positive val-
ues of q, the stability is almost entirely confined toq,0
snegative phase mismatchd. A typical example of the station-
ary shape of an unstable moving DP soliton, found deep in
the region where quiescent solitons with two peaks do not
exist, is shown in Fig. 4. A generic example of the instability

development in a moving soliton, which is taken close to the
upper stability border in Fig. 2, is presented in Fig. 5. Even-
tually, the unstable soliton is destroyed.

Collecting data for larger velocities, we have found that
there is a critical valuevcr, which slightly exceeds 0.3. The
area of the stability region remains approximately the same
as in Figs. 2 and 3, as long asuvu is smaller thanvcr, and it
quickly shrinks to nothing as one crosses the point!v!=vcr.
At !v!.vcr, there remains a vast area in thesk ,qd plane
occupied by the DP solutions, but theyall are unstable.

Finally, the existence of stable moving solitons suggests
to consider collisions between them. In all the cases consid-
ered, we have found that the collisions are strongly inelastic,
resulting in complete destruction of the colliding solitons;
see a typical example in Fig. 6.

FIG. 4. sColor onlined The shape of an unstable double-peaked
soliton found close to the upper border of the existence region in
Fig. 3, atk=7, q=2. Generally, the shape of stable double-peaked
solitons is less sharp, i.e., it has a shallower local minimum between
the peaks than this soliton.

FIG. 5. sColor onlined Onset of instability in a soliton found
slightly above the stability border in Fig. 3, fork=5.1,q=−0.8. In
other cases, the instability develops in a similar way.

FIG. 6. A typical example of the destructive collision between
two stable solitons withv=−0.52, which move at the velocitiesv
= ±0.2. The other parameters arek=10, q=−3. The collision is
shown in terms ofuU+sz,tdu2, the evolution of other wave compo-
nents being quite similar. In all the other cases, collisions between
solitons lead to similar outcomes.
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In conclusion, we have undertaken a detailed investiga-
tion of the existence and stability conditions for the double-
peakedsDPd solitons in the fundamental model combining
the effective dispersion induced by the Bragg grating in the
temporal domain, and the quadratic nonlinearity. It was
known before that DP solitons exist in this model, and they
may be stable in some cases. We have identified existence
and stability regions for these solitons in the plane of the
parameters that crucially affect their properties. It was found

that the existence region greatly expands with the increase of
the soliton’s velocity, while the stability area remains ap-
proximately constant, up to the critical value of the velocity,
beyond which the stability region quickly disappearssthe DP
solitons still exist, but they all are unstabled. The stability is
strictly confined to negative frequencies of the solitons, and
almost entirely to negative values of the phase mismatch.
Collisions between stable moving solitons are always de-
structive.
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