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Stability of double-peaked solitons in Bragg gratings with the quadratic nonlinearity
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We report systematic results for the existence and stability of double-péBigdsolitons in the known
model including the Bragg grating, which acts on the fundamental- and second-harmonic waves, and the
quadratio(x'?) nonlinearity, which accounts for the parametric interaction between the harmonics. We identify
existence and stability regions for the DP solitons in the plane of relevant pararfibenselative Bragg
reflectivity at the two harmonics, and phase mismafdietween them We conclude that the existence region
considerably expands with the soliton’s velocity while the stability area remains nearly constant up to a
critical value ofv. The stability region quickly vanishes as one crosses the critical value, while the region of
the existence of unstable DP solitons does not disappear. The stability is confined to negative soliton frequen-
cies, and almost entirely tg<<0. Collisions between stable moving solitons are investigated too, with a
conclusion that they are always destructive.
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It is well known that solitons in quadratically nonlinear twin-peaked solitons will be considered, as well as collisions
(x?) media can be supported by means of the artificiabetween the moving ones.
dispersion/diffraction induced by the Bragg gratifRG) in Following Ref. [3], we adopt a model of the double-
the temporal/spatial domain. Detailed description of the BGperiodic BG that makes it possible to separately control the
supported solitons can be found in general reviews devotestrength of the Bragg reflection acting on the pairs of right-
to the @ solitons[1]. In most works, these solitons were and left-traveling FF and SH waved),,U_) and (V,,V.).
introduced as four-wave complexes, since the BG gives risén a properly normalized form, the temporal-domain model
to resonant coupling between counterpropagating waves iimvolves four evolution equations,
both the fundamental-frequendi#F) and second-harmonic
(SH) component$2—4]. In the spatial domain, the BG in the 0= {iﬁ + ii + w} U, +U_+U.V,,
form of a system of parallel ribs on a planar waveguide with o oz
the x? nonlinearity can give rise to three-wave solitons, in

which two FF components are coupled by the resonant Bragg . ) .
reflection on the grating, and the third wave represents a 0= Tzt U_+U,+UV,
combinational harmonic whose wave vector is directed along
the ribs, hence it does not scatter on thign®]. .

A noteworthy feature which was found in the studies of 0= {'_ﬁ + ii +q+ 2_“’]\/+ + KV_+ U2,
the x@ BG models is the existence of double-peakbdP, vodt  dz Vo

alias twin-peakedsolitons[3,5,7]. In fact, DP soliton solu-

tions occur too in the ordinary® model, with the intrinsic id .d 20 2

(rather than BG-inducgddispersion or diffractior{8], but 0 voit oz A, Vo wVe+ UL (1)

they all are unstable in that case, unlike the fundamental

(single-peakexsolitons[1]. In the BG models, the stability Wheret and z are the time and coordinate, an4l is the

of the four-wave and three-wave DP solitons was briefly confrequency of the solution to be looked for. Further, the

sidered, respectively, in Ref&3,5], with a conclusion thatin Bragg-reflection strength and group velocity in the FF equa-

some cases they may be stable, and in some other cases rfiins, together with thg'? coefficient, are scaled to be 1, the
A possibility of the existence of stable double- and mul-pPositive coefficients, and « are the relative group velocity

tipeaked solitons is a topic of general interest. Experimenand Bragg reflectivity at the SH, anl(that may have either

tally, they were observeqn the spatial domainin a partially ~ Sign is a phase-mismatch parameter.

incoherent beam launched into a photorefractive crystal, Solutions for solitons moving at the velocityare looked

which features saturable nonlinearif9]. The stability of ~for as functions oz-vt. As shown in Ref[3], a necessary

two- and three_peaked solitons in a saturable model was thé}pndltlon for the existence of solitons is that the pair of the

investigated in some detail in R¢fL0]. The objective of the ~Parametersw,v) must belong to the band gap in each har-

present Brief Report is to revisit the DP solitons in tf@  monic, which means

BG model, ascertain their stability, and identify the respec-

tive stability region in a relevant parameter space, which is

necessary in order to understand the robustness and generin-this work we sev,=1 (as was actually done in Rf]),

ity of this class of stable solitons. Both quiescent and movingas the relative group velocity cannot be strongly different

w+v2 <1, Kquy+2w)?+v?< v(z). (2
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FIG. 2. Black and gray areas are, respectively, regions of the

FIG. 1. Comparison of the analytical approximation, given by gyjstence of stable and unstable double-peaked solitons#orand
Egs.(3) for g=-3, k=10, andw=-0.5437, and numerical solution  __q g

found by means of the relaxation method for the same case. In this

figure and below, each component of the soliton is represented b -
the corresponding local power, i.dlJ,2 and [V,J% shown as a 4nd are definitely unstable fas>0. These sketchy results

function of the coordinatez. The zero-velocity solitons have suggest that the parameteq_sandx are ”“C"'?‘”y important
U_,V_2=|U, V.2 for the existence and stability of the DP solitons. Therefore,
in this work, we aim to identify the corresponding regions in

. . . _ the (k, lane, which is a new approach in comparison with
from 1, and its effect on the solutions is not conspicuous. Ref(lf3?) P PP P

In Ref. [3], it was demonstrated that approximate solu-
tions of Egs.(1) can be found in an analytical form, assum- . : L —
ing « large and neglecting terms with the spatial derivativesf_o 3rm, we first took the analytical approximatid8) for g

in the SH i | tcular. th Wtical . , k=10, andw=-0.5437. This waveform was used as an
In the equations. 'n particuiar, the analytical approximas,j;q| guess to find a numerically exact soliton by means of
tion for quiescent soliton& =0) is (recall we sety=1)

a relaxation methodbased on the Newton iterationsvith
- U§,++ AUi/f the relative accuracy no worse than40Figure 1 displays
Vo= W the analytical approximation and the numerical solution ob-
K tained in this caséa stability test in direct simulations of
5 Egs.(1) shows that this soliton is stafle
U. = \/ZK(l - A?%)[w+ cosy(z)] exr<+1w(2)> Then, the soliton family was generated in numerical form,
* 2co Y(z)-1-A T2 '

To generate families of the DP solitons in a numerical

3 T T T T T T T

W2)=-2 tan‘1< \/F tanf(\mz)> , 3 5

with A=(q+2w)/. The solution exists foA?< 1, the ex-
pressiong3) producing a DP shape @k| close to 1(other- 1
wise, the solitons are single-peaked notable fact reported

in Ref.[3] is that both the approximate analytical solutions
and their numerically found counterparts occupy only a par” °
of the band-gap are@), leaving its large part empty.

As concerns the DP solitons, in R¢B] their existence |
region was identifiedin a numerical form in the plane of
(v,w), for two sets of values of the phase-mismatch anc
relative-BG-strength parameterg=+3, «=10), when the 2
above analytical approximation applies, and also for the cas
of (q=0, k=1), when the approximation cannot be used. It
was observed that the existence region is quite large for 1 2 3 4 5 6 7 8 9 10
g=-3 andg=0, and extremely small fay=+3. The stability
of the DP solitons was tested in direct simulations for several FIG. 3. The same as in Fig. 2 for moving double-peaked soli-
cases, with a conclusion that they may be stable«fgt0,  tons,|v|=0.2 andw=-0.52.
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X FIG. 5. (Color online Onset of instability in a soliton found
slightly above the stability border in Fig. 3, fa=5.1,q=-0.8. In

FIG. 4. (Color onling The shape of an unstable double-peakedother cases, the instability develops in a similar way.
soliton found close to the upper border of the existence region in
Fig. 3, atk=7,q=2. Generally, the shape of stable double-peakedjeyelopment in a moving soliton, which is taken close to the
solitons is less shr_:lrp, i._e., it has a shallower local minimum beMeegpper stability border in Fig. 2, is presented in Fig. 5. Even-
the peaks than this soliton. tually, the unstable soliton is destroyed.

Collecting data for larger velocities, we have found that
there is a critical value,, which slightly exceeds 0.3. The
Rrea of the stability region remains approximately the same

starting from the above particular solution and continuing it
by varying the parameters, firéto,v) and then(x,q). At
each step of the continuation procedure, the relevant para

eter would be changed by 2%, the previous solution bein SiIrILIFlgf\'riﬁkantd ?1 ?r?iriong Mn's srmaller ttkrzarvcr,. atnd I
used as the initial guess to construct the new solution b uIcKly S S 10 nothing as one crosses the pamiEve.

means of the relaxation method. As said above, we aimed t’é‘t v/ > v, there remains a vast area in the,q) plane

collect the results in théx,q) parameter plane, as these pa- OCCquieild bt}/] the Dlt:) soluti?nst, EIUI thay_ are u?tstable. ¢
rameters are crucially important for the DP solitgasd they inafly, the existence ot stable moving solitons Suggests

were not consideed befor fom ths perspeatsiablty _ {0 SoNKer collsns betueen e in i he cases consc
of the stationary soliton solutions was tested in direct simu- ' gly ’

lations of Eqs.(1), by adding, at=0, a random white-noise resulting in complete destruction of the colliding solitons;

perturbation to the soliton, usually with a relative amplitudeSee a typical example in Fig. 6.
of 0.5%.

Typical examples of the existence and stability regions ir
the («,q) plane for the quiescerib =0) and moving solitons
are shown in Figs. 2 and 3, respectivéihe results are
shown formw <0 becausdas was also noted in RgB]), no %~
stable DP solitons can be found fer>0]. Beyond the upper 3~
border of the DP-soliton existence region in Figs. 2 afth3 0~
the latter case, it turns out to be the existence border for thzs< i
unstable solitons single-peakedfundamental solitons can 20+
be easily found. We do not consider them here, as the furs-
damental solitons, unlike the DP ones, were studied in deta o
in Ref.[3]. s

A noteworthy feature evident in Figs. 2 and 3 is the fact o-l. g
that the stability region undergoes little change with the™ 10
variation of the velocity, while a region where stationary DP
solitons exist too but are unstable greatly expands with thi
growth ofv. It is noteworthy too that, while the region of the
existence of unstable DP solitons may extend to positive val- FiG. 6. A typical example of the destructive collision between
ues ofq, the stability is almost entirely confined <0  two stable solitons witho=-0.52, which move at the velocities
(negative phase mismafch typical example of the station- =+0.2. The other parameters ake=10, q=-3. The collision is
ary shape of an unstable moving DP soliton, found deep ighown in terms ofU,(z,1)|?, the evolution of other wave compo-
the region where quiescent solitons with two peaks do nohents being quite similar. In all the other cases, collisions between
exist, is shown in Fig. 4. A generic example of the instability solitons lead to similar outcomes.

057601-3



BRIEF REPORTS PHYSICAL REVIEW H1, 057601(2005

In conclusion, we have undertaken a detailed investigathat the existence region greatly expands with the increase of
tion of the existence and stability conditions for the double-the soliton’s velocity, while the stability area remains ap-
peaked(DP) solitons in the fundamental model combining proximately constant, up to the critical value of the velocity,
the effective dispersion induced by the Bragg grating in thébeyond which the stability region quickly disappeéte DP
temporal domain, and the quadratic nonlinearity. It wassolitons still exist, but they all are unstahl&he stability is
known before that DP solitons exist in this model, and theystrictly confined to negative frequencies of the solitons, and
may be stable in some cases. We have identified existen@most entirely to negative values of the phase mismatch.
and stability regions for these solitons in the plane of theCollisions between stable moving solitons are always de-
parameters that crucially affect their properties. It was foundstructive.
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