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We present an equilibrium theory for strain relaxation in epitaxial layers grown on substrates of a
finite dimension. The conventional dislocation model is refined to take account of the multiple reflection
of image dislocations. The effect of strain transfer and dilution due to finite vertical and lateral dimen-
sions of the substrate is also considered. The critical thickness has been obtained based on an energy
balance approach. Detailed numerical analysis with primary experiments for the SiGe alloy system is
also provided.
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Epitaxial layers grown on lattice mismatched substrates,
such as SiGe alloy on Si, have found a wide variety of
applications. The large lattice mismatch of about 4% be-
tween germanium and silicon, however, has limited the
growth of high-quality SiGe alloys to within a certain
thickness, the so-called critical thickness, beyond which
misfit dislocations start to generate [1]. To circumvent this
limitation, a novel approach via substrate engineering (i.e.,
tailoring the substrate to form a finite dimension in the ver-
tical and/or lateral directions) has been proposed to transfer
or dilute the misfit strain [2,3].

Theoretically, many different models have been estab-
lished to predict the critical thickness for strained layers.
Among the most celebrated ones are the Matthews-
Blakeslee [1] (MB) and People-Bean [4] (PB) models for
the equilibrium theory, and the Dodson and Tsao model for
the kinetic theory [5]. Because of its clarity and reason-
ably good agreement with experiments, the equilibrium
theory, especially the PB model, has been widely accepted.

However, the conventional dislocation model for epitax-
ial layers on a bulk substrate runs into serious difficulties
when the substrate has finite dimension. This is particu-
larly true when the thickness of the epilayer is comparable
to either the substrate thickness (as in a compliant sub-
strate) or the lateral dimensions of the substrate (as in a
mesa structure). In addition to the lack of a dislocation
model, there has been no treatment which can thoroughly
describe the elastic strain in such systems. Establishing
a rigorous theoretical model for strain relaxation in these
systems is not only of scientific interest, it also has practi-
cal value. Technology advancement in patterning the mesa
and thinning the substrate thickness down to a few hundred
angstroms results in the need to analyze situations in which
the epitaxial layer is of comparable thickness to the sub-
strate dimension [2,6].

In this paper, we provide a theoretical analysis for dis-
locations and elastic strain in epitaxial layers grown on
substrates of a finite dimension. The conventional disloca-
tion model is refined to accommodate the multiple image
dislocations generated from multiple surface boundaries.
Strain transfer and dilution due to a finite substrate dimen-
sion have also been considered. The critical thickness is
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derived within the equilibrium theory, and detailed numeri-
cal analysis is provided for the SiGe alloy system. Recent
experiments on compliant substrates are also discussed.

Figure 1 illustrates the structure of an epitaxial layer of
thickness h1 grown on a thin-film compliant substrate of
thickness h2. For a mesa substrate, the length and the width
of the mesa are 2l and 2w, respectively.

We first discuss the limitation of the conventional dis-
location model when applied to a finite-sized substrate.
For an epitaxial layer (epilayer) grown on a bulk substrate,
the lattice constant a1 will match that of the substrate as,
provided the epilayer is coherently strained. The misfit
is f � �a1 2 as��as and the strain energy per unit area
is E � Bf2h1. Here, B is a material constant and given
by 2m�1 1 n���1 2 n�, with m and n the shear modulus
and Poisson’s ratio of the epilayer, respectively. For an
isotropic medium with straight dislocations lying on the
interface plane between the epilayer and the substrate, the
energy per unit length for a dislocation is [7]

Edis �
mb2�1 2 n cos2u�

4p�1 2 n�
ln�ah�b� , (1)

where h, the outer radius associated with a dislocation line,
is truncated at the surface of the epilayer with h � h1, and

FIG. 1. (a) Schematic of an epilayer situated on a compliant
substrate. The primary dislocation is lying on the interface
between the epilayer and the substrate. The first-order image
dislocations generated by the top surface of the epilayer and the
bottom surface of the substrate are illustrated. (b) Mesa substrate
of finite lateral dimension.
© 2000 The American Physical Society
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b is the magnitude of the Burger’s vector. The prefactor a

is related to the uncertainty in the cutoff of the inner radius
b and the outer radius, and is normally chosen between 1
and 4.

To apply Eq. (1) to the situation of a thin-film substrate,
we simply replace h by the distance from the dislocation
line to the nearest free surface, which is either the epi-
layer thickness or the substrate thickness, assuming that
the dislocation spacing is much larger than the thickness
of either film. The dislocation energy will then be equiva-
lent to the case of an epilayer situated on a bulk substrate,
a clearly nonrigorous result. The error arises from ignor-
ing the surface boundary conditions. For an epilayer on a
bulk substrate, the top surface is the only surface requiring
the stress-free boundary condition. Thus, it is a common
practice to ignore the trivial image term associated with
this single interface [8]. However, in the case of a finite-
sized substrate where multiple boundaries exist (analogous
to a multilayer structure [9]), the contribution from all im-
ages is nontrivial and must be considered.
For a dislocation lying on the interface between an epi-
layer and a compliant substrate, there is another first-order
image generated by the bottom of the substrate, in addi-
tion to the primary dislocation and the first-order image
from the epilayer top surface. This, in turn, will generate
a second-order image by the top surface, and so forth. The
same situation will also apply to the top image. The total
dislocation energy, therefore, must include the original as
well as all the image dislocations generated by the top and
bottom surfaces, and can be evaluated based on the super-
position principle using the expression

2C0 ln�hr�b� � C0 ln�h1�b� 1 C0 ln�h2�b�

2
X

�image� . (2)

Here, the constant C0 represents mb2�1 2 n cos2u��
�4p�1 2 n��, with both layers assumed to have the
same constant for simplicity. The last term in Eq. (2) is
given by
X
�image� � C0 ln

µ nY
m�1

�mH 1 h1� 3 �mH 1 h2�
��m 2 1�H 1 h1� 3 ��m 2 1�H 1 h2�

∂
� C0 ln

µ
�nH 1 h1� �nH 1 h2�

h1h2

∂
, (3)
where H � h1 1 h2, and n is the order of the image dis-
locations to be considered. It can be seen that when the
number of terms in the sum approaches infinity the en-
ergy from all the image dislocations is divergent. To avoid
the logarithmic divergence, we must truncate the infinite
sum. This approach is similar to the treatment used in the
original dislocation theory through the introduction of the
cutoff radius [10].

When only the first-order image dislocations are consid-
ered, the total dislocation energy becomes

Edis � C0 ln ���h1h2����H 1 h1� �H 1 h2��1�2b���� , (4)

which can be expressed as C0 ln�hr�b� with hr �
h1h2���H 1 h1� �H 1 h2��1�2. The dislocation on a
compliant substrate can then be viewed as if on a “bulk”
substrate, but with the renormalized thickness hr replacing
the actual thickness h1 or h2. Under the special condition
that one of the films is much thicker than the other
one, the above expression can be simplified to 1�hr �
�1�h1 1 1�h2�, which can be further reduced to the
identical result as for the case of a bulk substrate when
one of the films approaches infinite thickness. When
the epilayer has a thickness comparable to the sub-
strate, the conventional model gives a dislocation energy
Edis � C0 ln�h1�b� � C0 ln�h2�b�. Our result, on the
other hand, yields Edis � C0 ln�h1��3b��. As compared
to the conventional treatment [2,6], in which only two
extreme conditions have been separately considered with
either the epilayer or the substrate thickness incorporated
in the dislocation, the present model can evaluate the
dependence of the dislocation energy as a function of
both films.
Having obtained the dislocation energy, we now turn
to discussing the elastic strain in a bilayer structure. If
two freestanding thin films of lattice constant a1 and a2
are brought together in close proximity at thermal equi-
librium, they will reach a common lattice constant a0 and
experience a misfit as if they were situated on a “virtual”
substrate of a lattice constant a0. The misfit is given
by f1 � �a1 2 a0��a0 and f2 � �a2 2 a0��a0 for the
epilayer and thin film substrate, respectively. The total en-
ergy per unit area related to the elastic strain of both films
is Es � B1f2

1 h1 1 B2f2
2h2. At thermal equilibrium, the

total elastic strain energy of the bilayer structure will
be minimized (i.e., ≠E�≠a0 � 0), which yields a com-
mon lattice constant of a0 � �B1h1�a1 1 B2h2�a2��
�B1h1�a2

1 1 B2h2�a2
2�. When B1 � B2 and a1 is close

to a2, the above expression can be reduced to the av-
erage lattice constant weighed by the film thickness
a0 � �h1a1 1 h2a2���h1 1 h2� commonly used for
multilayers [1].

The misfit strain in the epilayer is given by ´1 � f0�g1,
with f0 � �a1 2 a2��a2 and the strain dilution factor
g1 � �1 1 �B1h1a2

1���B2h2a2
2��. A similar expression

holds for the substrate film with ´2 � f0�g2. It can
be seen that, as the substrate thickness decreases, g1
increases and ´1 decreases, implying strain transfer from
the epilayer to the substrate film. The total elastic strain
energy is given by

Es � B1f2
0h1�g2

1 1 B2f2
0h2�g2

2 . (5)

Within the equilibrium theory, there are two different
criteria to define the critical thickness for epilayers on
a bulk substrate. The MB model requires that the total
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energy from the elastic strain and dislocations be at its
minimum [1], while the PB model assumes that the energy
from elastic strain is equal to that from dislocations [4].
Because of its better fit with experiment, we shall adopt
the approximate PB model to define the critical thickness.
Based on Eqs. (4) and (5), we obtain the critical thickness
for the epilayer as a function of the substrate thickness:

B1f2
0h1c�g2

1 1 B2f2
0h2�g2

2 �

µ
C0

2
p

2 a�x�

∂
ln�hr�b� .

(6)

For the SiGe alloy, a�x� is usually chosen as the mean
value of 5.54 Å. It can be verified that when the sub-
strate thickness approaches infinity, g1 � 1 and g2 � `,
Eq. (6) then yields the conventional critical thickness on a
bulk substrate with hc � 13.3�x2 ln�hc�b� for screw dis-
locations, where x is the germanium mole fraction [4]. A
detailed numerical analysis will be given later in conjunc-
tion with the mesa substrate.

For substrates with a finite lateral dimension, we first
analyze the elastic strain for an epilayer of a lateral length
2l and infinite width. The stress distribution can be de-
scribed in a similar manner as a finite bimaterial assembly
[2]. The strain energy density per unit volume is given by
the energy density for an infinite slab, B1f2

0 , modulated by
a distribution factor v� y, z�, with

v� y, z� �

µ
1 2

cosh�ky�
cosh�kl�

∂2

exp�2pz�l� . (7)

In Eq. (7), k is the interfacial compliance parameter,
and can be estimated by z �n��he, with z �n� about
0.93 for SiGe alloys, and the effective thickness he 	Rh

0 v� y, z� dzjy�0 	 h��f�l�h��2. The stress reduction
factor f�l�h� is given by [2]

f�l�h� � ��1 2 sechkl�2�1 2 e2ph�l�l��ph��21�2. (8)

This factor contributes to a reduction in the effective strain,
f � f0�f. In the previous treatment [2], however, only
vertical stress distribution is considered, and the maxi-
mum stress at y � 0 for the y dependence is assumed.
The distribution in the y direction should also contribute
to the stress reduction by a factor of c�l�h�, with the
effective length of the ridge, le 	

Rl
0 v� y, z� dyjz�0 	

l��c�l�h��2, and

c�l�h� �

∑µ
1 2

tanhkl
kl

∂

1
�1 1 �sinh2kl���2kl��

1 1 cosh2kl

∏21�2

. (9)

The strain energy per unit area is therefore given by Es �
B1f2

0h1��f�l�h�c�l�h��2. If the ridge is further confined
in the other lateral direction with a finite width w to form
a mesa structure, the stress reduction factor will contain
another term w2, which has the same form as Eq. (9) with
l replaced by w.
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For a mesa structure without substrate compliance, the
energy balance criterion yields a critical thickness:

B1f2
0h1c��c2f2w2� �

µ
C0

21�2a�x�

∂
ln

µ
hr

b

∂
, (10)

where the renormalized thickness hr can be considered
in a similar manner as in a compliant substrate. It can
be seen that Eq. (10) reduces to the previous result with
f � w � 1, and hr is replaced by h1 or l as one of the
dimensions is much larger than the other [2].

For a mesa structure with substrate compliance, the
critical thickness is given by

B1f2
0h1c�G2

1 1 B2f2
0h2�G2

2 �

µ
C0

21�2a�x�

∂
ln�hr�b� .

(11)

Here, G1 � g1c1f1w1 for the epilayer, and a similar ex-
pression holds for the substrate thin film G2. For practical
applications, the substrate can be thinned down to about
a few hundred angstroms, while the mesa size has to be
kept at least on the thousand angstroms scale for active
devices. The renormalized layer thickness hr , therefore,
will be dominated by the substrate thickness as given by
Eq. (4), when the first-order images are considered.

Using the material constant for SiGe with n � 0.28 and
b � 4 Å, the critical thickness of the SiGe alloy as a func-
tion of the germanium content is shown in Fig. 2 for differ-
ent substrate thickness and mesa size. As can be seen from
Fig. 2(b), there exists a threshold value for the Si substrate

FIG. 2. (a) Critical thickness of SiGe alloy as a function
of germanium content on different substrates (from left to
right): bulk substrate, compliant substrate with a 2000, 500,
and 250 Å Si film, and mesa substrate of 0.1 3 0.1 mm2 and
0.05 3 0.05 mm2 situated on a 250 Å Si thin film. (b) Critical
thickness of Si0.5Ge0.5 as a function of the Si substrate thickness.
As the Si substrate thickness decreases, the critical thickness
of SiGe increases continuously above the conventional value
on a bulk substrate. There exists a threshold value for the
Si substrate �
200 Å�, below which Si0.5Ge0.5 of an infinite
thickness can be grown without dislocations, which has been
confirmed by experiment.
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thickness, below which a SiGe alloy of any thickness can
be grown without generating misfit dislocations.

Practically, the mesa structure can be formed by mi-
crofabrication, while the compliant substrate can be real-
ized by using the silicon-on-insulator (SOI) structure with
subsequent thinning of the top Si film. In a SOI substrate,
the buried oxide will become viscous and reflow upon high
temperature anneal allowing for the strain transfer [3,11].
However, the high temperature treatment �
1100 ±C� will
introduce dislocations, inhomogeneity, and germanium
segregation, and, hence, degrade the SiGe quality. This
problem can be solved by implanting boron onto the
buried oxide to form boron-silicate-glass (BSG) SOI. The
lower viscous temperature of BSG will lead to a lower an-
neal temperature. In a recent experiment on an extremely
thin �
200 Å� Si thin film situated on a boron-implanted
SOI substrate, almost complete strain relaxation �
95%�
for the 1200 Å Si0.7Ge0.3 alloy has been obtained, and
near-band-gap photoluminescence indicating the high
quality of the SiGe alloy has been observed [12]. Future
investigation on the critical thickness will be needed to
make a detail comparison with the present theory.

In summary, we provide a theoretical model for strain
and dislocations in epitaxial layers grown on substrates of
a finite dimension, which extends the scope of the existing
theories beyond the conventional limitation of a bulk sub-
strate. Numerical analysis is carried out for the SiGe alloy
system and compared to the conventional results based on a
bulk substrate. Primary experiments for SiGe alloy grown
on extremely thin Si films are also discussed.
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