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THE LOCAL MAXIMUM MODULUS PRINCIPLE*

By HuUGO RossI
(Received December 30, 1959)

1. Introduction

Let X be a compact topological space. By C(X) we mean the algebra
of all complex-valued continuous functions on X. For fe C(X), define
IIfllx = sup {|f(®)|; e X}. With the norm || - ||,, called the sup norm
on X, C(X) becomes a Banach algebra. Let S be a subset of C(X). We
say S separates points on X if for all , y in X, # + y, there is an feS
such that f(x) # f(y). By a function algebra A we mean a point separat-
ing subalgebra with unity of the algebra C(X) on a compact Hausdorff
x (l.e., A is closed

in C(X)).

Let A be a function algebra, S, the space of maximal ideals on A4, and
I", the Silov boundary of A (the smallest closed subset of S, on which all
f €A attains its maximum). Then I',c X S,, and Hfllr, =1lflle=
Il f1ls,, so that A can be considered as a closed subalgebra of Cc(r.

It is the purpose of this paper to study the behavior of A on the set
S, — I'y; in particular to obtain the foilowing result:

Let U be an open subset of S, — I'y;. We denote by A(U) the uniform
closure of A in the sup norm on U. Then

S D8y, DUD8U DIy, .

The first inclusions are either trivial or known facts, it is the last
inclusion that we call the local maximum modulus principle; for it follows
from:

Let x € S, — I',. Then no function in A attains a value at « greater in
absolute value than at other points in any neighborhood of z.

The approach used here is the result of study with I. M. Singer and
K. M. Hoffman. Iam grateful to them for many significant conversations
and for their fruitful eriticism. The results of section 6 were essentially
known to them.

* This research was supported by the United States Air Force through the Air Force
Office of Scientific Research of the Air Research and Development Command under Contract
No. AF 49 (638) 692. Reproduction in whole or in part is permitted for any purpose of
the United States Government.
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2 HUGO ROSSI

2. The main lemma

The method of proof will require us to construct from certain local in-
formation, a globally defined holomorphic function on a given subset of
complex n-space. To do this we appeal to the solution of Cousin’s second
problem, which we shall describe as in [3, Ch. XX (J.-P. Serre)].

Let M be a complex manifold. We denote by H(M) the algebra of
holomorphic functions on M. Let K be a compact subset of M. We denote
by K the H(M)-convex hull of K:

{meM; [f(m)| = ||fllx forall feH(M)} .

2.1. DEFINITION. A Stein manifold is a complex manifold M satisfy-
ing the following conditions: .

(a) M is a countable union of compact sets,

(b) H(M) separates the points of M,

(¢) for me M, we can find f, +--, f, in H(M) which define local co-
ordinates in a neighborhood of m,

(d) for K compact, Kis compact. [3, Ch. XVIII].

2.2. DEFINITION. A divisor on M consists of a collection of pairs
{U,, fi}, where U, is open in M and f, is meromorphic in U, such that

(a) {U;} is a locally finite covering of M,

(b) fif5"is holomorphic and non-vanishing in U, N U,.

Cousin’s second problem is: when is there a function f meromorphic on
M such that f/f, is holomorphic and non-vanishing on U,? We shall say
that the divisor has a solution if such a function exists.

If {U!} is a refinement of the covering {U,}, define f} = f,| U}, where
1 is chosen so that U c U,. Then, obviously, {U/, f/} is also a divisor;
and it has a solution if and only if the divisor {U,, f,} has a solution. We
shall call the divisor {U’/, f/} a refinement of {U,, f.}.

Choose a refinement {U}, f7} so that in Ujn U; a well-defined determi-

nation h;; of (27i)~'log (fi/f}) is possible. Define ¢;;, = hy; + by + .
Then

G = ——= log (FUFNFUFFUID = —=log 1;
i 2T

i.e., ¢y is a determination of (27¢)~*logl in U,NU,N U}, so it is an
integer. The mapping U;N UN U} — ¢,y is then a cochain on the cover-
ing {U’}. It is in fact a cocycle, and thus determines an element ¢ of
the second integer-valued Cech cohomology group on M. The result of
J.-P. Serre is
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2.3. THEOREM. The divisor {U,, fi} on M has a solution if and only
if ¢ = 0, when M is a Stein manifold.

In particular, if the ¢,;, = 0 for all 4, 7, k, then {U,, f,} has a solution.

Our application is to the following very special situation: Let K be a
compact subset of a complex manifold M such that we can write K="U,,
where the U, are Stein manifolds and U, D U,,,. Let ye K, and U
be a neighborhood of ¥. Suppose there is a g holomorphic in U such that
9(y) =0,and forze KN U, z + 9, Re g(z) < 0.

2.4. THEOREM. There is an f, holomorphic in a neighborhood W of
K such that f|W—U never vanishes, and in WN U, f|g is holomorphic
and mever vanishes (i.e., is invertible).

PrOOF. Let U’ be a neighborhood of y such that U’ c U and U’ is
compact. aU’' N K is a compact set contained in {z e U; Re g(z) < 0}. Then
we can find a neighborhood W’ of K— U’ such that W’ N U’ {Re g(z) <0} .
We can find a neighborhood W” of K— W’ such that W” c U’, since
K— W'is compactin U’. WU W” is then a neighborhood of K, so there
isa U, such that U, ¢ W'y W"”. Let W = U,. Then W has the follow-
ing properties:

(i) W is a Stein manifold,

(ii) WnaU’' c {Reg(z) < 0}, since WnaU’'c W'n U,

(iii) WnN {g =0} is closed in W. For Wn {g = 0} is contained in
W" N {g=0} which is compact, since W” is compact in U, and {g=0}
is closed in U. Thus if z,e€ WN {g = 0}, and 2, — 2 € W, we must have
ze W"N{g=0},s09(2)=0. Thusze WN {g=0}. Let V=Wn {g=0}.

Now let {U,} be a locally finite covering of W such that U, = U'N W,
and U,NV=g for 1+#0. Further, we take U, so that U,NU,C
{Reg(2)<0}. Let N= ;% U,NU, Then N c {Reg(z) < 0}. Thus in
N, (2ni)~'log g has a well-defined determination .

Let fo=9, fi=1for ¢+ 0. Then {U, f,} is a divisor on W. For
filf; =1 if © #+ J, and fi/f, = 1/g, fo/f; = g which are holomorphic and
non-vanishing in U;N U,, since U;N {g = 0} = @&. Choose the determina-
tion h;; of (2wi)'log (filf;) in U,NU, as follows: h,; =0 if 4,5 + 0,
hyy = —h, hy = h.

Then for all 4, 4, k, ¢i5x = hiy + by + hiyy = 0. Thus, by (2.3), there is
an f such that for all 4, f/f; is holomorphic and never vanishes. Thus in
W—-U’' C Uiz U, flfi = f is holomorphic and never vanishes, and in
wnU’, flfo = flg is holomorphic and never vanishes.

2.5. THEOREM. Let K be a compact subset of a complex manifold M
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such that K = N, U,, where the U, are Stein manifolds and U,>U,,,.
Let y € K. Suppose y has a neighborhood U such that there is a Sunction
g holomorphic in U and

(@) 9(y) =0,

(b) forxe KNU, x # y, Re g(x) < 0.

Then there is a function f continuous on K, which is approximable on
K by functions holomorphic in a neighborhood of K such that

(1) fy) =1,

(i) forzeK, z+y, |f(x)| < 1.

PROOF. By (2.4), there is a function A, holomorphic in a neighborhood
D of K such that h/g is invertible in U, and & is invertible in D— U. We
now make a close analysis of the situation in a neighborhood of Y.

In U, we have h = gk, where k is an invertible holomorphic function
in U. Multiplying h by 1/(k(y)), (k(y)#0), we may assume k(z)=1+k’(z),
where k°(y) = 0. Then h =g + gk°, so h — g = gk°. Choose V a neigh-
borhood of y so that | k°(2)| < 1/1/2 in V. Then we have for all ze V,
[nz) — 9(2)| < (|9(2) D/V'2 . Elementary calculations will show that
Re g(2) <0 implies that arg A(z) is not in the interval [— /4, w/4]. Let S
be the closed sector in the w-plane with vertex at the origin, bounded by
the lines arg w = 7/4, arg w = —x/4 containing the positive real axis.
Then Re g(2) < 0 implies 2(2) ¢ S for z e V. In particular, for ze K, z + y
and ze V, i(z)¢S. Thus (KN V)NS = (0). Now & is never zero on
K — V, so has a minimum m there. Then (K — V)N {{w| < m/2} = &.
Thus (K)NSN {Jw| < m/2} = (0).

Let ¢ be the mapping function of the complement of SN {|w| < m[2}
into the unit circle, mapping 0 into 1. Then for wehK), w+0, we
have |@(w)| <1, and ®(0) =1. Now, because the complement E of
SN {|w| =< m/2} is bounded by piecewise analytic curves, ¢ is extend-
able to be continuous on E, and is approximable on E by functions
holomorphic in a neighborhood. Thus @oh = f is approximable on K

by functions holomorphic in a neighborhood of K and is the desired
function.

These theorems, although of interest in themselves, are not yet stated
so as to be directly applicable to the following discussions. The compact
sets which we shall encounter are approximated by Stein manifolds in a
much broader sense (see 3.3). Thus we state the following lemma which
has essentially the same proof as the above theorems.

2.6. LEMMA. Let K be a compact subset of C*. Let ye K, U be a

neighborhood of y, and g holomorphic in a neighborhood of U such that
(@) g(y) =0,
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() Reg(z) <0 forzeUNK, 2z + y.
Suppose there is a Stein manifold S such that

(c) SDOK,

(d) SnoaU c {Re g(z) < 0},

(e) SN {g = 0} is closed in S.

Then there is a function f approximable on K by functions holomorphic
in a neighborhood of K such that

(i) fly) =1,

(i) forxzeK,x#+y, |fx)] <1.

ProOOF. The hypothesis K = N; U, where the U, are Stein manifolds,
was used in (2.5) only to be able to apply (2.4). The hypothesis there was
used only to find a Stein manifold S with the properties (c), (d), (¢). Thus
the assumption of such an S assures the conclusion.

3. The joint spectrum

Let K be a compact set in C». We denote by K the polynomial convex
hull of K,

K=1{zeC | p()| < | pll for all polynomials »} .

If K= IZ', we say that K is polynomial convex; in this case we can write
K=nN7U, U, o U,,, where the U, are of the form
{2 |m:(2)| <1, p, -+, p, are polynomials} .

For surely we can write K = " W,, where the W, are bounded domains.
Then 6 W, is compact. For ze dW,, there is a polynomial p, such that
|p.(2)| > 1, and || p,|lx < 1. Then in a neighborhood U, of z, we have
[2.(¥)| > 1> p,llc, ye U,. Cover aW, by finitely many such U, and let
D1, *++, D, be the corresponding polynomials. Then {|p;,| <1} ¢ W,. Let
Us={lp|<1}. Let U, =N}, Ui. Then U, are of the desired form.

3.1. The U, are Stein manifolds. The polynomials are dense in the
algebra of holomorphic functions on U, in the topology of uniform con-
vergence on compact subsets [3, Ch. XIX, p. 10; 6].

For K compact, K — C?, define

A(K) = the closure in the uniform norm on K of the algebra of

functions holomorphic in a neighborhood of K.

P(K) = the closure in the uniform norm on K of the polynomials.

It follows from (8.1), that if K = K, then A(K)=P(K), and K =S, ).

Let A be any function algebra. Letg,, -+, g, € A. Define

0(gy, ++, 90) ={(9:(%), * - -, gu(®)); © € S,} =the joint spectrumofyg,, + - -, g,.

A(gyy -+, 9,) = the subalgebra of A generated by g, -+, g,.
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(9, * + +, g»)=the polynomial convex hull of a(g,, + - -, 90) =S40, .. g+
?(gy, *++, 9,)=the natural map of S, onto a(g,, + -+, g,):

r— (gl(x)’ cty gn(x)) .

We note that @(g,, -+, g,) can be considered also as the polynomial
convex hull of o(g,, ---, g,)(I',).

We will use the following theorem.

3.2. THEOREM (Silov-Arens-Calderén). Let A be a function algebra,
and g, -+, 9,€ A. Let he A(a(g,, -+, g,)). Then there is an f € A such

that for all x € S,, f(x) = MP(gy, *++, g)) (@) = B(g:(T), - -+, ga(x)) [1, 5].
We will write f = h(gy, + -, g.).

More essential for our purposes is the lemma of Arens and Calderon,
which, in conjunction with (8.1) proves (3.2).

3.3. LEMMA (Arens-Calderén). Let A be a function algebra, and
g+, 9o €A. Let U be a neighborhood of o(g,, -+, 9,). Then there are
Gn+1s ** %y Om € A such that, for = : C™— C™ the projection onto the first
n coordinates,

(3(9y ++ 9u)) C U [1].
We note also that mop(gy, ««+, g.) = P(gy, *+*, 9n)-

4. A first maximum modulus principle

Let A be a function algebra, and let S be its space of maximal ideals.
Let fe Aand x € S. We shall say that f has a local peak at x if there is
a neighborhood U of « such that | f(z)| > | f(y)| for ally = z,ye U. If
there is a g € A such that [g(x)| > | g(y) | for all y +# x, y € S, we say that
x is a peak point. Obviously any peak point is in the Silov boundary, for
the function g attains its maximum modulus only at x. If Sis metrizable,
then the set of all peak points is, as defined by Bishop [2], the minimal
boundary. The minimal boundary can also be characterized as the small-
est subset of S on which every function in A attains its maximum. We
shall now prove that every point of S which has a local peak function is
in the minimal boundary.

4.1. THEOREM. Let A be a function algebra, S=S,. Let ye A. If
there is an f € A which has a local peak at y, then y is a peak point.

PRrROOF. Let f have a local peak at y in U, i.e., for all re U, r = y,
|f(r) | <If@®)]. Let g, = f/(f(y)) — 1. Then g(y) =0, and for re U,
r + ¥, Reg/(r) <O0.

Let 0<e <1, LetreS — U. Thereis a g,€ A such that g.(r) =1,
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9. (y) =0. Let U, = {s;]9.(s)| > ¢}. Since S — U is compact, we can
find U, .-+, U, among the {U,} which cover S — U. Letg,, -+, g, be
the corresponding functions. Then {s;|g(s)| <& 1=1=n} c U.

Let 6=0(g,, 91, * *+, 94), and @ : S—a, P=9(g,, +++, g,). Then@~'(0)=y.
For if all g,(r) = 0, then r € U. Butif r # y, Re g,(r) < 0, so g«(r) =0
implies » = y.

Let W= {|z,] <¢,1=<1=<n+1}. Then Wis a neighborhood of 0,
and WNo c ¢(U). Now the variety {2, = 0} intersects ¢ in W only at
0. oN{|z|=<¢/2} is compact in W. Further oN {|2;|=¢/2} C {Re z,<0},
since it is contained in @(U). Let D’ be a neighborhood of 6 — {| 2, | < ¢/2}
such that D'N {|z,| < ¢/2}  {Rez, < 0}. Then D = D'U{|z]| < ¢/2} is
a neighborhood of ¢ such that

(i) DN{z, =0} N Wis closed in D,

(i) DN {lz]|=¢/2} c {Rez < 0}.

By (3.3), choose g,.1, ***, 9., such that 7(d(g,, + -+, gn)) < D. We may
assume g,.,(x)=-++=g,()=0. Let \r=9(gy **+, gn), then mop=¢. Let
0 = 0(gy, *++*, gn)- O is polynomial convex, and 7#-'(D) is a neighborhood
of . Thus we can find a Stein manifold S such that S is compact in
7-Y(D). Then {2, =0}Nzn(W)NS is a closed variety in S, since
{2, =0} Nz (W)Nn-'(D) is closed in 7=~(D).

If z+ 0and ze€0(gy, ***, gn), then 7z = 0. For let z = y(r). If 7z =0,
then woyr(r) = @(r) = 0, so r =y and thus z = () = y(y) = 0. Thus if
zenw (W), z + 0, then Re 2z, = Re (n2), < 0.

We now check that the hypotheses of Lemma 2.6 are verified with K
the set a(gy *++, gn), With U the set {|z,| <¢/2, 1 <7 <n + 1}, and the
y of (2.6) the origin, g is 2;| U, and the Stein manifold is S. We have
already noted (a), (b), (c), (e). But

SnoU=Sn{lz|=¢2,1si=n+1} Cca(D)N{lz|=¢21=i<n+1}
=n'D)N{z|=¢2,1=i=n+1} c {Rez, <0} .
Thus (d) is verified.
Thus, by (2.6), there is an f holomorphic in a neighborhood of
0(go, ++*, g) such that f(0)=1, and | f(2)| <1 for z€ a(gy, *++, gu), 2 # 0.

Then, by (3.2), f(gs, ***, gn)=r is in A. For r e S, y(r) # 0, so | (r)| < 1.
On the other hand h(y) = f(0) = 1, so y is a peak point.

5. The local maximum modulus principle

Let A be a function algebra, and S=S,. For K C S, kernel (K) =
{feA;f=0on K}. Kernel (K) is an ideal of A. For I an ideal of A,
hull (I) = {x €S ; f(x) = 0 for all fe I}. If we let I + 1 represent the
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canonical addition of an identity to I, S;., is S, with hull (1) identified to
a point.
5.1. LEMMA. Let A be a finitely generated algebra, i.e., A = P(S),

where S is a polynomial convex subset of some C*. Let KC Sand fe A
such that

(i) Kc {f=0},

(ii) there is a neighborhood U of K such that UN {f = 0} = K.

Then K is a hull.

PrROOF. We may assume that f is one of the generators, i.e., f =z,
and S c C*. We may write U = SN W, where W is open in C*. Then

SNWn{z=0} =K

is compact. Since S is polynomial convex, we can find a Stein manifold
D, DS, such that DN {2,=0} N W is compact. Then V=DnN {z,=0} N W
is a variety in D. Then, by Theorem A of Cartan [3, Ch. XVIII], if
zeD — V, there is an f holomorphic in D such that f(z) # 0 and f = 0
on V. Thus, for any ze S, 2¢ K, there is an f € A such that f(z) + 0,
and f € kernel (K). Therefore K = hull (kernel (X)).

5.2. THEOREM. Let A be a finitely generated algebra. Let fe A, and
t be any positive number. Let M(f,t)={xeS,;|f(x)|=t}. Let K be a
component of M(f,t). Then KNT, + &.

ProOOF. Suppose KNI'y = @. Then, we can find a neighborhood U of
K such that

(i) aUNM(f, t) = @, (since K is a component of M(f, t)),

) Unr,=g@.

Let K' = M(f, t)Nn U. K’ is compact by (i), and by (ii) K’ and I', are
disjoint. Further since 8U is compact, we have || f|lz =] fllx. =t>|| floz-
We may assume || f|lz =1 and there is a ye U — 8U where f(y) =
l|fllz =1. Then g = (1 + £)/2 is such that

fg=1nU={gl=13nU={g=llgllz}nU=K"
is compact and contained in U. Thus K” is disjoint from T',.

We will prove that K" intersects the minimal boundary, obtaining a
contradiction. Write K for K”. Since K = {g — 1 = 0} N U is compact,
by (5.1), it is a hull. Let K = hull I, I an ideal of A. Let A’ =141 =
{fe€ A; fis constant on K}. Then S, = S, with K identified to a point,
K. Now ge 4’, and g(IZ') =1, whereas |g(x)| <1 forxe U, x + K. Thus
by (4.1), there is an fe A’, f(K) =1, and |f(x)| < 1, for  # K. But
then fe A, and K = {f = || f|| = 1}. Thus since f attains its maximum
only on K, K must intersect the minimal boundary.
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5.3. THEOREM. Let A be any function algebra and fe A. Let K be a
component of M(f,t) = {x; | f(x)| =t} for t a positive number. Then
K intersects I.

PRrROOF. Suppose K and I are disjoint. Then, as in (5.2), we can find a
neighborhood U of K such that

(i) UNnM(f,t) is compact,

(i) UNr=@.

Then K’ = UNM(f, t) and (M(f, t) — U)UT are disjoint compact sets.
Thus we can find gy, -+, g, € A such that for x e K’, y e (M(f, t)—-U)uT’
there is a g, such that | g,(x)| < 1/2, | g,(y) — 1| < 1/2.

Let ¢ = ¢(f7 g1, **°, gn)r g = O'(f, Gy ** gn)- Then ¢(K,) and

P(M(f, t) — U)ul)

are disjoint. Now {|2,| = t} No = ¢(M(f, t)) = (K )Up(M(f, t) — U),
and these two are disjoint. Thus, the component C of {|z,| =t} No
containing @(K) is contained in ®(K’), and is thus disjoint from ¢(I").
Then we can find a neighborhood U of ¢ such that the component C, of
{|2,] = t} N U containing ®(K) is disjoint from ¢(I").

By (3.3), let 9,41, **+, 9 be such that, for = : C™* — C"*,

n-(a-(fvgv M) gm)) cU .

Let 6 =0(f, g1 *++s 9n)s and = @(f, g1y **+, ). Now T is the poly-
nomial convex hull of ('), so (') D I'y3,. Thus by (5.2), every com-
ponent of {|z,| = ¢t} NG intersects Y(I"); in particular the component C’
containing Y/(K) intersects y(I'). Then 7(C’) intersects mwoyr(I") = o(T").
But 7#(C’) is a connected set containing ®(K), and contained in U, so
n(C") < Cy, but this implies C, N@(I') # ¢, a contradiction.

We notice, by the above proof, that if K has a neighborhood U such
that K = UN M(f, t), then K in fact intersects the minimal boundary.

6. Restriction algebras

Let A be a function algebra, and X a subset of S,. Define X =A-convex
hull of X = {x e S,; | f(x)| < || f|lx for all fe A}. Let r be the restriction
map of 4 into C(X); r(f) = f| X. 7 is a homomorphism. Let A(X) be

the uniform closure of r(4) in C(X), i.e., the closure of A in the sup
norm on X.

6.1. THEOREM. Let U be an open subset of S — I'. Then S,z = U
and I'y5, < 8U.

PROOF. Let h be a nonzero continuous homomorphism of A(U), |h(f)|=
|| fllz. Then hor is a nonzero continuous homomorphism on A4, sincel € A4,
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and || fllz = || flls for all fe A. Thus hor is evaluation at some point z,
of S, and since A is dense in A(U), x, uniquelz determines h. Further,
foere A, 1 f@) | = h(f)| = || fllz, thus x,e U. Obviously every point
of U determines a continuous homomorphism of A(U), and since A sepa-
rates points on U, we have S, = U.

Now U is a maximum modulus set for A(T), thus I',,;, C U. Suppose
yeU— 09U is in I'yy,. Let W be a neighborhood of y, Wc U. Since
y € I'y@), there is an fe A(U) such that || f||z > | fllz-w, or, put another
way, || fllw > |lfllov. Since A is dense in A(U), we can find a g € A such
that [[gllw>|lgllos. But then M(g, |lgllw)NOU=3, so M(g, ||g|lw) has a

component contained in U, hence disjoint from I', a contradiction. Thus
I‘A(U) C an

6.2. COROLLARY. Let K be a compact subset of S. Then S,z =
K, KNT' C Ty C (KNT) UK.

In [4] Hoffman and Singer define the accessible set as 8(S — I'). We
have as a corollary of the above:

6.3. THEOREM. Let A be a function algebra, S=S, I' =TI,. Let
xeS — TI'. Then x has a representing measure with support contained
in the accessible set.

PROOF. T'yis-ry € 8(S —I'). Let ¢ be a measure on (S — I') repre-
senting « in the algebra A(S — I'). Then p represents x in A.

Finally, we observe, as a special case of (6.1),

6.4. THEOREM. Let A be a function algebra such that S, is the unit
wnterval. Then T'y = S,. i

PROOF. Suppose 0 <t <1, and t ¢ I',. Then ¢ has a neighborhood
U= (t —¢t+ ¢)disjoint from I'y. Then I',,, consists of two points,
t —e¢, and t +e. Then A(U)=C x C. But A(U) has more than two
maximal ideals, a contradiction. If t =0, or ¢t = 1, it is worse; I'y, is
only one point.

7. Component of a hull

Lemma 5.1 is only a special case of a more general fact which is of
interest in itself:

7.1. THEOREM. Let A be a function algebra. Let K be a component
of H, a hull. Then K is also a hull.

ProoF. Let x,€ H — K. Since K is a component of H, we can write
H=K'UK"” with K’, K” disjoint, and x,e K’, K” D K. Let U be a
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neighborhood of K’ such that UNH = K"”. Then dUNH = @. Since
U is compact, we can find finitely many f,, ---, f,, in kernel (H) such
that for xedU, there is an f; such that fi(x)+ 0. Let H°=
hull (f,, *++, f»). Then UN H°= V"’ is compact, so that for V"' = H* — U,
V' and V" are disjoint.

Then we can find g, - -, g, in A such that for xe V', y € V", there is
a g, such that | g,(x)|<1/2, |g(y)—11<1/2. Leta=0(fy, +*+, fus 91 ***» 94)s
and @ = @(f,, ***y fnr 91y ***» 9:). Then @(V') and ¢(V") are disjoint.
Now o(VHYU@(V")=0N {2, =0, ---, 2, = 0}, so there is a neighborhood
W of ¢ such that WN {z, =0, .-, 2z, = 0} splits into two closed disjoint
parts V,and V,; V, D o(V'), V, D @o(V").

Again by (8.3), find g,4,, * * *, g Such that 7(G(f1, =+ *, frr 91, =+, Iw)) T W,
and let D be a Stein manifold about &(fi, «**, fu) 91, ***, 9n) such that
(D) c W. Then DN=~*(V,) is a closed variety in D. Then, by Theorem
A [4], for z ¢ DNxw~'(V,), there is an f,, holomorphic on D, vanishing on
DN=rY(V,) such that £,(z) # 0. If ¥ = @(fi, =+ fnr 91y ***, ) We find
that (x,) € 7'(V,), so (x,) ¢ DNx~'(V,). Then fy,, determines an
element & of A such that h(x,)+#0, and h vanishes on K", thus h vanishes
on K.

If x, ¢ H, then since H is a hull, there is an f in kernel (H), such that
f(x,) # 0. In particular f vanishes on K. Thus for every « ¢ K, there is
an f vanishing on K, f(x) #+ 0, so K is a hull.
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