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We investigate the effects of the spin-orbit interaction induced by the Rashba coupling on the collective
plasma excitations in a two-dimensional spintronic system �2DSS�. In addition, we calculate the polarization
function of the spin-split 2DSS in the self-consistent-field approximation. With the use of the f-sum rule, we
determine the oscillator strengths of the plasmon and electron-hole excitations arising from transitions within
and between the spin-split subband branches. The large density of states near the bottom of the band gives rise
to a high frequency mode with large oscillator strength.The screened Coulomb potential of a point charge by
the density fluctuations within the two-dimensional plane is calculated and we show the role played by spin
orbits.
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In recent years, both theoreticians and experimentalists
have been investigating the effect of spin-orbit �SO� coupling
due to the linear Rashba splitting1 on the physical properties,
both spectral and transport, of low-dimensional semiconduc-
tor structures such as the two-dimensional electron system
�2DES�.2–12 The SO coupling can be reliably controlled in
experiments on these systems and made relatively strong. It
has been demonstrated that SO coupling may give rise to
interesting behavior in both the noninteracting and interact-
ing properties of low-dimensional semiconductor structures.
The mechanism for the Rashba SO coupling is a unique fea-
ture of the reduced dimensionality. All the potential profiles
that can be produced by various flexible means of band en-
gineering have electrostatic origin and give rise to a local
electric field. For some confining potentials, the average
electric field within the quantum well is different from zero
and electrons in the quantum well experience a finite electric
field directed along the normal to the plane of the 2DES.

There have been several works reported in dealing with
the Rashba effect on ballistic spin transport, spin-splitting of
the energy bands, and the effect on the exchange and many-
body effects.13–25 Sun et al.21 carried out a detailed calcula-
tion of the effect of Rashba SO coupling on the electron
transport through quantum dots with either ferromagnetic or
nonferromagnetic leads. There is also some related research
on the properties of the induced electric field spincurrent in
which, even though there is no charge current, there is the
occurrence of spin polarization in the system.26–28 Ullrich
and Flatté14 carried out a detailed calculation of the collec-
tive intersubband spin-density excitations in quantum wells
using a density functional formalism. In the work of Xu,17

the plasmon excitations were calculated theoretically for a
two-dimensional �2D� electron gas in the presence of SO
coupling induced by the Rashba effect. In both Refs. 14 and
17, it was shown that plasmon excitations can be achieved as
intra- and interband SO transitions. In Ref. 17, the plasmons
were calculated in the long wavelength limit, but the Landau
damping due to particle-hole mode excitations was not dis-
cussed. A related paper has recently been published on 2D
plasmons with SO interaction by Yuan et al.29 Although
these authors predicted two plasmon mode branches, we dis-

agree with their method of calculation which depends on a
4�4 matrix formalism for the dielectric response function.
Oscillator strengths of the plasmons and particle-hole modes
are here reported, and we include such calculations which are
relevant to their experimental detection. The f-sum rule
which is an integral part of this calculation is also obtained.
We also calculate the screening of an impurity by the charge
density fluctuations arising from the SO coupling.

In this paper, we calculate the polarization function for a
longitudinal electric field of a 2D electron gas where the SO
coupling is induced by the Rashba effect which lifts the de-
generacy of the energy spectrum and produces a linear term
in the energy dispersion relation.30 The Hamiltonian for free
electrons in the 2DES is a sum of the kinetic energy and
HSO=�R /���� �p�z, where �� = ��x ,�y ,�z� is the vector of
Pauli spin matrices. Here, the z component of the momentum
p does not contribute to HSO since in the stationary state
there is no transfer of electrons across the interface of con-
finement. �For a detailed discussion of the Rashba SO cou-
pling parameter �R in an asymmetric quantum well, see, for
example, the paper by Moroz and Barnes.24� A self-
consistent calculation by Wissinger et al.31 of the energy sub-
bands in doped quantum wells has revealed a spin splitting
which has been attributed to the asymmetry in the band pro-
file. Since HSO is independent of coordinates, the eigenfunc-
tion may be sought in the form of plane waves �k�r�
=�keik·r /�A. Here, r and k are in-plane coordinate and wave
vectors, A is a normalization area, the spinor �k satisfies the
equation Hk�k=�k�k and the Hamiltonian has the following
explicit representation in spin space:

Hk = � �2k2/2m* i�Rk exp�− i��k��
− i�Rk exp�i��k�� �2k2/2m* � . �1�

Here, m* is the electron effective mass, ��k� is the polar
angle of the wave vector k. Upon diagonalizing the matrix in
Eq. �1�, we obtain the energy eigenvalues �k±
=�2k2 /2m*±�Rk and the corresponding wave functions
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The dependence of the spinor �2� on the angle ��k� means
that the two states, denoted by 	 and 
, are polarized along
the directions +�k� ẑ� and −�k� ẑ�, respectively. This lifts
the spin degeneracy of the free electron Hamiltonian and the
system has a “	” and a “
” branch. These results show that
the effect of the Rashba SO coupling manifests itself through
a mutual shift of the spin branches, resulting in an energy
gap between the 	 and 
 spin branches.

For a total areal electron density n2D, there will be n+
spins and n− spins with n2D=n−+n+. At T=0 K, these are
determined by

n�

n2D
−

1

2
+ �AR�� n�

n2D
�1/2

+ �1 −
n�

n2D
�1/2	 = 0, �3�

where AR=kR /kF with kR=m*�R /�2�2 and kF= �2�n2D�1/2.
Clearly, both spin branches are equally occupied when AR
=0. When the Rashba parameter is increased for 0
AR

1/2, the occupation number of the 
 spin branch increases
while the 	 spin branch is decreased and for AR=1/2, Eq.
�3� is satisfied by n−=n2D and n+=0. When �R is sufficiently
large to make AR�1/2, which is obtained when the Fermi
energy EF
0 and m*�R /�2�2
EF
, then Eq. �3� no longer
applies for obtaining n�. We have in this case, only the 

spin branch occupied by electrons. The density of states
�DOS� for each subband ���E�=�k��E−Ek,�� has been cal-
culated and is given by ��= ± �

�+�E� = �+�E�� m*

2��2��1 −� E�

E + E�

 , �4�

�−�E� = � m*

2��2���+�E��1 +� E�

E + E�

� + 2�+�− E�

��+�E + E��� E�

E + E�

 , �5�

where �+�E� is the unit step function and E�=kR�R /�2 is a
measure of the spin gap in the DOS. Equations �4� and �5�
show that the total DOS �2D=�+�E�+�−�E� is m* /��2 for
E�0 which is equal to the DOS for a spin-degenerate 2D
electron system. However, the DOS for −E�
E
0 is in-
creased as E is reduced from zero and even becomes infinite
at E=−E�. For each subband, the DOS is not independent of
energy and �−�E���+�E� for all energies satisfying −E�


E
�. Figure 1�a� is a plot of the DOS for the spin-split
branches and the total DOS for E�−E�. The nature of the
DOS for the two spin branches leads to the results in the
collective excitations which we describe below.

The linear screening of an external potential �ext�r� by the
two-dimensional spintronic system �2DSS� embedded in a
medium with background dielectric constant �b is given by

�tot�r,�� = �
A

dr��−1�r,r�;���ext�r�� , �6�

where the inverse dielectric function is expressed in terms of
the density-density response function through

�−1�r,r�;t� = ��r − r����t� +
1

i�
�

A

dr�
e2

�s
r − r�


� ��n�r�,t�,n�r�,0��−� . �7�

Here, �s=4��0�b. The Fourier transform of the dielectric
function must satisfy the f-sum rule expressed as32

�
−�

�

d� � Im� − 1

��q,��� = ��0
2�q� , �8�

with

FIG. 1. �a� The density-of-states �DOS� for the 	 spin ��+�E��
and 
 spin ��−�E�� branches as well as the total DOS ��E�
=�+�E�+�−�E�. In this notation, �2D=m* /��2 is the DOS for a
spin-degenerate 2D system. Also, E�=m*�R

2 /2�2. �b� The plasma
dispersion for a 2D electron system with spin-orbit interaction. The
spin-flip plasmon excitations have frequency �− and the intraband
plasmons have frequency �+. The continuum of single-particle ex-
citations is also shown. The inset shows more details for the
particle-hole region and the intraband plasmon excitations. The pa-
rameters used in the calculations are �b=13, ne=1011 cm−2 and
m*=0.065me, where me is the free electron mass. Also, �R

=10 meV Å was chosen to exhibit the basic features that result
from Rashba SO interaction.
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2 �n−
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where f0�E� is the Fermi-Dirac distribution function. The
approximation in Eq. �9� is valid in the long wavelength limit
only. Here, �p=�2�n2De2q /�sm

* is the plasmon frequency
of a spin-degenerate 2D electron system in the long wave-
length limit. Equation �9� clearly shows that the charge car-
riers from each subband contribute through their total num-
ber density in the first term as well as through the individual
number densities for each subband as seen in the second
term. We can use these results to define the oscillator
strength for plasmons as �j= ± �

f��q� = � j�q���0
2�q�� ��R�q,��

��
�

�=�j�q�

−1

, �10�

where �R�q ,�� is the real part of the dielectric function. The
oscillator strength for electron-hole excitations is defined as

fe−h�q� =
1

�
�

Im ��0
d�

�

�0
2�q�

Im� − 1

��q,��� , �11�

so that from Eq. �8� the total oscillator strength for plasmons
and electron-hole excitations at a chosen q is 1.

In the self-consistent field approximation, the dielectric
function is ��q ,��=1+��q ,�� where the polarization func-
tion is given by

��q,�� =
�e2

2�sqA
�

k,�,��=±1

f0�Ek,�� − f0�Ek−q,���

�� + Ek−q,�� − Ek,� + i0+

� �1 + ���

k
 − q cos �


k − q
 	 , �12�

and � is the angle between the wave vectors k and q. In the
long wavelength limit q�kF, we obtain an approximate re-
sult for the dielectric function at T=0 K given for small but
finite wave number by

��q,�� � 1 −
1

�2��p
2 +

�2e2q

�s�
��+

�0� − �−
�0��	

−
e2q

8���s
ln��+

�0��+
�0� + ��+

�0� − �−
�0��� − �2

�+
�0��+

�0� − ��+
�0� − �−

�0��� − �2� ,

�13�

where �±
�0�=2�R�4�n±�1/2 /� and �−

�0���+
�0� follows from Eq.

�3�. Since �+
�0� and �−

�0� are intimately related with the elec-
tron density in the 	 and 
 spin branches and the Rashba
parameter, Eq. �13� clearly shows that the SO coupling in-
duces two plasmon branches and each one is a collective
oscillation of charge carriers from all occupied subbands.
The collective excitations are due to interband �spin-flip� and
intraband transitions. Figure 1�b� shows our results for the

plasma excitations obtained by numerically solving the dis-
persion equation ��q ,��=0 with the polarization function
given by Eq. �12� for arbitrary wave vector. For comparison,
we also plot in Fig. 1�b� the plasma frequency �p for a spin-
degenerate 2D electron system with the same electron den-
sity and electron effective mass embedded in a background
dielectric medium as the spin-gap system.33 The frequency
�+ of the plasmon mode induced by intraband transitions is
close to the electron-hole excitation spectrum. We highlight
the proximity of the frequency of these modes as a function
of wave vector through the inset in Fig. 1�b�. As the Rashba
parameter �R is increased, the separation between �+ and the
electron-hole continuum becomes larger. The wave vector
dependence of the frequency �− of the spin-flip excitations is
very different from �+. For as q is increased in the long
wavelength limit, �− initially decreases before increasing at
some q=qc and its frequency is well separated from �+.
Now, for sufficiently large q, �− approaches the plasmon
frequency for a spin-degenerate 2D electron system. There-
fore, the long wavelength behavior of �− must be due to the
large DOS for 
 spins near the bottom of the band E=−E�,
which is given in Eq. �5�.

In Fig. 2, we plot the calculated oscillator strengths for
plasmons, f��q�, and electron-hole excitations, fe−h�q�. The
oscillator strength of the mode with higher frequency �− is
several orders of magnitude larger than the oscillator strength
of the �+ mode, as shown in Fig. 2. The oscillator strength of
the lower branch �+ is even weaker than that of the electron-
hole excitations. In the long wavelength limit, f− is appre-
ciable and quickly decreases as the wave vector is increased.
However, since most optical measurements are carried out in
the long wavelength limit, this mode may be observed.

The static shielded potential within the 2D plane at a dis-
tance r from the z axis due to a point charge Ze on the z axis
at �0,0 ,d� is calculated from

�tot�r,� = 0� = Ze�
0

�

dq
1

��q,� = 0�
J0�qr�e−qd, �14�

where, in the denominator of the integrand, we used
��q ,��=1+��q ,�� with the polarization function as given in

FIG. 2. The oscillator strengths of plasmons and electron-hole
excitations for Rashba parameter �R=1, 10, and 50 meV Å. The
oscillator strength of plasmons increases with �R. Only the oscilla-
tor strength of the �− mode and the electron-hole excitations can be
seen in the plots. The values for �b, m*, and n2D are the same as Fig.
1�b�.
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Eq. �12�. In Fig. 3, we plot �tot�r ,�=0� within the 2D plane
as a function of the radial distance r from the z axis. Three
values of the Rashba parameter were chosen. For each case,
we observe Friedel oscillations for large r. in the screened
potential. For small Rashba parameter, the largest amplitude
of the potential occurs near r=0 but as �R is increased, the
largest oscillations have an increase in amplitude and the
location of these large amplitude oscillations is shifted away
from r=0. This implies that the impurity potential couples
with the spin orbits leading to a depletion of the charge den-
sity fluctuations around the z axis and that the radius of this
depleted region increases with the Rashba SO coupling. The
screening of the impurity is influenced by the coupling of the
spin degree of freedom of the electrons to their orbital mo-
tion.
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FIG. 3. The screened potential in Eq. �14� as a function of radial
distance r within the 2D plane. A point charge is on the z axis at a
distance d=kF

−1 from the 2D plane. The parameters used in the
calculation for �b, m*, and n2D are the same as Fig. 1�b�. The
Rashba parameter is �=1 �dashed line�, 10 �dot-dashed line�, and
50 �dotted line� in units of meV Å. The inset shows only the curve
for �=1.0 meV Å.
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