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A nanodevice consisting of a conductive cylinder in an axial magnetic field with one-dimensional wires
attached to its lateral surface is considered. An explicit form for transmission and reflection coefficients of the
system as a function of electron energy is found from the first principles. The form and the position of
transmission resonances and zeros are studied. It is found that, in the case of one wire being attached to the
cylinder, reflection peaks occur at energies coinciding with the discrete part of the electronic spectrum of the
cylinder. These peaks are split in a magnetic field. In the case of two wires the asymmetric Fano-type
resonances are detected in the transmission between the wires for integer and half integer values of the
magnetic flux. The collapse of the resonances appears for certain position of contacts. Magnetic field splits
transmission peaks and leads to spin polarization of transmitted electrons.
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I. INTRODUCTION

Electron transport in curved two-dimensional nanostruc-
tures attracts considerable attention in the last decade. Trans-
port properties of the electron gas on spherical1–5 and
cylindrical6,7 nanosurfaces have been intensively studied in
the last few years. Those systems are of particular interest
due to recent intensive experimental investigations of the
coherent transport in individual carbon nanotubes8–12 and
rolled GaAs/AlGaAs heterostructures.13,14 A number of the-
oretical works15–22 have been focused on the electron trans-
port in carbon nanotubes �see Ref. 23 for review�. It should
be mentioned that nanotube-based multiterminal nanodevices
have recently attracted more and more attention since they
are proposed as promising units for future low-power high-
speed electronics. A lot of works24–30 are devoted to the in-
vestigation of the electron transport in various interesting
multiterminal nanodevices.

The conductance is usually measured for two basic geom-
etries of contacts. Most theoretical studies are focused on the
case of end-contacted nanotubes. In this geometry a strong
interaction between metal and carbon atoms is realized, re-
sulting in low contact resistance. However, in the last few
years much attention has been devoted to side-contacted
nanotubes.31 In this case the leads are attached to the lateral
surface of the tube. The interest to these structures is stipu-
lated by recent experiments on scanned probe microscopy of
electronic transport in the nanotubes.32,33 The tip of the
atomic force microscope can play the role of the side-
contacted lead. Another interesting system with laterally at-
tached leads is branched “nanotree” reported in Ref. 34. We
mention that the side-contacted geometry is also realized in
crossed carbon nanotubes.9 It is evident that the lateral dis-
position of the contacts can significantly affect the transport.
In particular, the resonant transport regime is expected in
this case.

Recent experiments on the transport in carbon
nanotubes9,10 have reported the presence of asymmetric Fano
resonances in the dependence of conductance on the Fermi
energy. Being a characteristic manifestation of wave phe-
nomena in scattering experiments, resonances have received

considerable attention in recent electron transport investiga-
tions. A number of papers35–38 are devoted to the study of
Fano resonances in the transport through quasi-one-
dimensional channels with impurities. It is shown in Refs.
4,5 that the same resonances occur in the conductance
through a quantum nanosphere and a quantum nanotorus.
Similar phenomena could be expected in the electron trans-
port through the quantum cylinder but our analysis shows
that the form of resonances differs from the Fano line shape.

The purpose of the present paper is an investigation of the
electron transport through a multiterminal nanodevice con-
sisting of a conductive cylindrical surface C with one-
dimensional wires attached to it. The cylinder is placed in an
axial magnetic field B and the wires are attached to its lateral
surface. The number of wires we denote by N. We consider
in detail the case of one and two wires attached to the cyl-
inder. The points of contacts on the cylinder we denote by
q j = �zj ,� j�, where zj and � j are cylindrical coordinates and
j=1,… ,N is the number of the contact.

In our model, the electron on the cylinder is able to go
away from the contact region to infinity and never returns
back. We stress that the model is valid for a realistic finite-
size cylinder if its bases are immersed into absorbing elec-
tron reservoirs as shown in Fig. 1.

II. HAMILTONIAN AND TRANSMISSION COEFFICIENT

In the model, the wires are taken to be one dimensional
and represented by semiaxes R j

+= �x :x�0� �j=1¯N�. They
are connected to the cylinder by gluing the point x=0 from
R j

+ to the point q j from C. We suppose qi�q j for i� j. The
scheme of the device is shown in Fig. 1.

If spin-orbital interaction is absent, then spin orientation
conserves, and transmission coefficients T↑�E� and T↓�E� for
electrons polarized in the direction of the magnetic field and
in the opposite direction may be expressed in terms of the
transmission coefficient T�E� for spin-free scattering

T↑�E� = T�E − g�BB/2�, T↓�E� = T�E + g�BB/2� ,

where g is electron g-factor and �B is the Bohr magneton.
Similar relations are valid for reflection coefficients. Further,
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we will deal with the spin-free problem and use spin indices
only where it is necessary.

A wave function � of the electron in the device consists of
N+1 parts:

� =�
�C

�1

¯

�N

� , �1�

where �C is a function on C and � j�j=1,… ,N� are functions
on R j

+.
To obtain the Hamiltonian H of the whole system we use

an approach based on the operator extension theory.39,40 This
method has been already used in Refs. 3–5 for the investiga-
tion of the electron transport through the nanosphere and the
nanotorus.

The Hamiltonian H of the whole system is a point pertur-
bation of the operator

H0 = HC � H1 � ¯ � HN, �2�

where HC is an electron Hamiltonian on the cylinder and Hj
are Hamiltonians in the wires R j

+.
Using cylindrical coordinates, we can represent the

Hamiltonian HC in the form

HC =
pz

2

2mc
+

�2

2mcr
2�i

�

��
−

�

�0
�2

, �3�

where pz is the z component of the momentum, r is the
radius of the cylinder, mc is the electron effective mass on
the cylinder, �=�r2B is the magnetic flux, and �0
=2��c / 	e	 is the magnetic-flux quantum. It is convenient to
represent the Hamiltonian HC in the form HC=Hz+H� where
Hz= pz

2 /2mc and H�= ��2 /2mcr
2�
i�� /���−� /�0�2. We will

need below the eigenvalues

Em =
�2

2mcr
2�m +

�

�0
�2

�4�

and the eigenfunctions

�m��� = �2�r�−1/2exp�im�� �5�

of the operator H�.
Electron motion in each wire R j

+ is described by the
Hamiltonian Hj = px

2 /2mw, where px is the momentum opera-
tor and mw is the effective mass for the electron in the wires.

To define the Hamiltonian H we use boundary conditions
at points of gluing. The role of boundary values for the wave
functions � j is played, as usual, by � j�0� and � j��0�. The
zero-range potential theory shows that to obtain a nontrivial
Hamiltonian for the whole system we must consider
functions �C with a logarithmic singularity at the points of
gluing q j,

�C�x� = − uj
mc

��2 ln 	�x,q j� + v j + o�1�, as x → q j . �6�

Here uj and v j are complex coefficients and 	�x ,q j� is the
geodesic distance on the cylinder between the points x and
q j. It is known that the most general self-adjoint boundary
conditions are defined by some linear relations between
� j�0�, � j��0�, and the coefficients uj and v j. Following Ref. 4,
we will write these conditions in the form

�v j = 
k=1

N


Bjkuk − �2

2mw
Ajk�k��0�� , j = 1 ¯ N ,

� j�0� = 
k=1

N


Akj
* uk − �2

2mw
Cjk�k��0�� . � �7�

Here complex parameters Ajk, Bjk, and Cjk are the elements
of N
N matrices. The matrices B and C have to be Hermit-
ian because the Hamiltonian H is a self-adjoint operator.40 To
avoid a nonlocal tunneling coupling between different con-
tact points we will restrict ourselves to the case of diagonal
matrices A, B, and C only. According to the zero-range po-
tential theory diagonal elements of the matrix B determine
the strength of point perturbations of the Hamiltonian HC at
the points q j on the cylinder. These elements may be ex-
pressed in terms of scattering lengths � j

B on the correspond-
ing point perturbations: Bjj =mcln�� j

B� /��2. Similarly ele-
ments Cjj describe the strength of point perturbations at the
point x=0 in the wires and may be expressed in terms of
scattering lengths � j

C by the relation Cjj =−mw� j
C /2�2. For

convenience, we represent parameters Ajj in the form Ajj

=mw
�� j

Aei�j /�2, where � j
A has the dimension of length and

� j is the argument of the complex number Ajj. We mention
that the effect of the scattering lengths � j

A, � j
B, and � j

C on the
electron transport has been discussed in Ref. 4. In the present
paper we concentrate our attention on phenomena which are
independent of contact parameters.

To obtain transmission and reflection coefficients of the
system one needs a solution of the Schrödinger equation for
the Hamiltonian H. The function �1 in this solution is a
superposition of incident and reflected waves while other
functions � j �j=2,…N� represent scattered waves. The wave
function �C may be expressed4 in terms of the Green func-
tion G�x ,x� ;E� for the Hamiltonian HC,

FIG. 1. Scheme of the device in the case of two wires attached
to the cylinder. An incident wave �IW� originating from reservoir 1
is reflected back with amplitude r11 and scattered to reservoir 2 with
amplitude t21. Reservoirs 3 and 4 absorb the electron waves going
away from the contact region.
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��C�x� = 
j=1

N

 j�E�G�x,q j;E� ,

� j�x� = � j1e−ikx + Sj�E�eikx, j = 1,…,N .
� �8�

Here k=�2mwE /�2 is the electron wave vector in wires,
 j�E� are complex factors, and Sj�E� is the amplitude of the
outgoing wave in the wire R j

+.
It is well known that the Green function G�x ,x� ;E� may

be represented in the form

G�x,x�;E� = 
m=−�

�

Gz�z,z�;E − Em��m����m
* ���� , �9�

where x= �z ,��, x�= �z� ,���, and

Gz�z,z�;E� =
imc

�2k
eik	z−z�	 �10�

is the Green function of the operator Hz. Substituting Eq.
�10� into Eq. �9�, we get the following equation for
G�x ,x� ;E�:

G�x,x�;E� =
imc

2��2 
m=−�

�
eikm	z−z�	+im��−���

kmr
, �11�

where �2km
2 =2mc�E−Em�, Re km�0 for E�Em, and Im km

�0 for E�Em.
Considering the asymptotics �6� of �C�x� from Eq. �8�

near the point q j, we have

uj =  j, v j = 
i=1

N

Qji�E�i. �12�

Here Qij�E� is the Krein’s Q-function, that is, N
N matrix
with elements

Qij =�G�qi,q j;E� , i � j;

lim
x→qj


G�q j,x;E� +
mc

��2 ln 	�q j,x�� , i = j . �
Using the elementary relation


n=1

�
exp�− nx�

n
= − ln�1 − e−x� ,

we can subtract the logarithmic singularity from G�x ,x� ;E�
and get the following form for diagonal elements of Q-
matrix:

Qjj =
mc

2��2� i

k0r
+ 

m=1

� � i

kmr
+

i

k−mr
−

2

m
� + 2 ln r� ,

�13�

The similar method has been used in Ref. 41 for calculating
the Q-function for electron Hamiltonian on a strip. It should
be mentioned that Eq. �13� gives the Q-function for the free
particle on a plane42 in the case of B=0 and r→�.

Let us consider the asymptotics of �C�x� at z→ ±�. As it
follows from Eqs. �8� and �11�, the wave function �C�x� is a
superposition of propagating modes

�̃m
± ��,z� = �m���exp�±ikmz� .

The highest and lowest numbers of the occupied modes we
denote by M±= 
±kr−� /�0�, where 
x� means the integer
part of x. Using Eqs. �8� and �11�, we obtain

�C�x� � 
m=M−

M+

tm
± �̃m

± ��,z� , �14�

where the “plus” sign corresponds to z→ +� and the “mi-
nus” sign should be taken for z→−�. Here tm

± is the partial

transmission amplitude to the mode �̃m
± �� ,z�. As follows

from Eq. �8�, the amplitude is given by

tm
± =

i
�2�rkm


j=1

N

̃ je
�ikmzj−im�j , �15�

where ̃ j = jmw/�2.
Denote the reflection coefficient to the wire R j

+ by R11
= 	S1	2 and the transmission coefficient by Tj1= 	Sj	2. The par-

tial transmission coefficient Tm
± to the propagating mode �̃m

±

is defined by Tm
± = �km /k�	tm

± 	2. We stress that the relation

R11 + 
j=2

N

Tj1 + 
m=M−

M+

�Tm
+ + Tm

− � = 1 �16�

is valid for an arbitrary energy E that is the manifestation of
the current conservation law for our system.

Substituting Eq. �8� into Eq. �7�, we get a system of 2N
linear equations for Sj and  j,

�
l=1

N

Qjll = Bjj j −
ik�2Ajj

2mw
�Sj − � j1�

Sj + � j1 = Ajj
*  j −

ik�2Cjj

2mw
�Sj − � j1� .� �17�

For convenience, we introduce the dimensionless ele-
ments of the Q-matrix,

Q̃ij�E� = ��2/mw��Qij�E� − Bij� .

System �17� may be decomposed to a system of N equations
for l,


l=1

N �Q̃jl −
2k� j

A� jl

k� j
C + 4i

�̃l = −
4k��1

Aei�1

k�1
C + 4i

� j1 �18�

and a similar system for Sl,


l=1

N ��1
A�k�l

C + 4i�ei�l

��l
A�k�1

C − 4i�ei�1
�Q̃jl −

2k� j
A� jl

k� j
C + 4i

�Sl = Q̃j1 −
2k�1

A� j1

k�1
C − 4i

.

�19�

The solutions of systems �18� and �19� may be repre-
sented in the form
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n =
�n

�
, Sn =

�Sn

�

��n
A�k�1

C − 4i�ei�1

��1
A�k�n

C + 4i�ei�n
, �20�

where

� = det�Q̃jl −
2k� j

A� jl

k� j
C + 4i

� , �21�

�n = det��Q̃jl −
2k� j

A� jl

k� j
C + 4i

��1 − �nl� +
4k��1

Aei�1

k�1
C + 4i

� j1�nl� ,

�22�

and

�Sn = det��Q̃jl −
2k� j

A� jl

k� j
C + 4i

��1 − �nl� + �Q̃j1 −
2k�1

A� j1

k�1
C − 4i

��nl� .

�23�

III. RESULTS AND DISCUSSION

Let us consider in detail the case of one wire attached to
the cylinder. Using Eqs. �15� and �20�, we obtain

Tm
± =

8k�1
A

�rkm	2k�1
A − �k�1

C + 4i�Q̃11	2
. �24�

Note that Tm
+ =Tm

− for any energy E, i.e., the scattering is
isotropic in the z direction. Reflection amplitude r11�S1 may
be obtained from Eq. �19�,

r11 =
�k�1

C − 4i�Q̃11 − 2k�1
A

�k�1
C + 4i�Q̃11 − 2k�1

A
. �25�

The reflection coefficient R11= 	r11	2 as a function of the
electron energy E is represented in Fig. 2. Hereafter we use
�=�2 / �2mcr

2� for the unit of energy and suppose mw=mc.
The figure shows that the dependence of reflection coeffi-
cient on E contains a series of sharp peaks at the points Em.
To study the behavior of the reflection coefficient in a vicin-
ity of the eigenvalues Em we consider the asymptotics of

Q̃jl�E� near these points:

Q̃jl�E� �
� jl

�m�

km
+ � jl

�m� + O�km�, as km → 0, �26�

where

� jl
�m� = i

m�

�m��� j��m�
* ��l� �27�

and m� are indices for which Em�=Em. If the magnetic flux
� /�0 is integer or half integer then the eigenvalues Em are
double degenerated and the sum in Eq. �27� contains two
terms; otherwise it contains one term only.

As follows from Eq. �26�, the denominator in Eq. �24� has
a root singularity at E=Em while the numerator remains
finite. Therefore all transmission coefficients Tm�

± vanish and
the reflection coefficient R11 reaches a unity. The reflection
coefficient has a kink in a vicinity of each point Em stipulated
by the root singularity of the Green function on the cylinder.
Using Eqs. �25� and �26�, we obtain the following asymptot-
ics for R11�k� near �m=�2mwEm /�:

R11�k� = �1 − a1��m − k� + o�km
2 � , as k → �m − 0

1 − a2
�k2 − �m

2 + o�km� , as k → �m + 0,
�

where a1 and a2 are positive numbers. The form of the re-
flection coefficient in a vicinity of the point E3 is shown in
Fig. 3.

The magnetic field splits double degenerated energy lev-
els of the operator H� and peaks on the plot R11�kr� trans-
form into doublets �Fig. 4�. If the magnetic flux � /�0 is half
integer then the levels Em are double degenerated and the
peaks are singlet as for the case of integer flux, although their
positions are shifted.

The reflection coefficient as a function of the magnetic
field is shown in Fig. 5. Peaks on the plot correspond to the
coincidence of the electron energy with the values Em. Note
that the function R11��� is periodic with a period �0 that
causes the Aharonov-Bohm oscillations in the transport. If
the value of kr is integer or half integer then there is only one
peak of R11��� on the period, otherwise there are two peaks
on each cycle.

Let us turn to the case of two wires attached to the cylin-
der. Using Eq. �20�, we obtain

FIG. 2. Reflection coefficient as a function of the electron en-
ergy in the case of one wire attached to the cylinder at � j

A=� j
B

=� j
C=0.4r, B=0.

FIG. 3. Reflection coefficient as a function of the dimensionless
parameter kr. All parameters are the same as in Fig. 2.
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t21 =
16ik��1

A�2
Aei��1−�2�Q̃21

�k�1
C + 4i��k�2

C + 4i��
, �28�

where

� = det Q̃ −
2k�1

A

k�1
C + 4i

Q̃22 −
2k�2

A

k�2
C + 4i

Q̃11

+
4k2�1

A�2
A

�k�1
C + 4i��k�2

C + 4i�
. �29�

The transmissions coefficient T21= 	t21	2 as a function of the
electron energy is shown in Fig. 6. The figure corresponds to
the case when the contacts are placed on different genera-
trices ��1��2� and shifted along the axis of the cylinder
�z1�z2� in the zero magnetic field. One can see a series of
zeros at E=Em. Transmission coefficient has a peak in the
neighborhood of each zero. The behavior of the transmission
amplitude in a vicinity of the eigenvalues Em depends
strongly on contact position and applied magnetic field. If
the points q j are placed on the cylinder in a random manner,
then the transmission coefficient vanishes at the double-
degenerated values Em. The denominator in Eq. �28� has a
pole at E=Em while the numerator has a root singularity
only. Hence the transmission coefficient vanishes in these
points.

Let us consider in detail the form of the transmission co-
efficient in the vicinity of Em. Using the asymptotic expres-

sion �26� for Q̃ij�E�, we obtain the following representation
for t21�k�:

t21�k� � cm
km

fm + km
, �30�

as E→Em. Here cm is a normalization factor and

fm =
det ��m�

�m
�31�

is a complex number with

�m = �11
�m���22 −

2�m�2
A

��m�2
C�2 + 16

� + �22
�m���11 −

2�m�1
A

��m�1
C�2 + 16

�
− �12

�m��21 − �21
�m��12.

One can see that the behavior of transmission coefficient
in the vicinity of Em is determined by the value fm. Two
curves for different positions of the contacts corresponding
to different fm are represented in Fig. 7. If fm→0, then the
transmission coefficient has a peak in a vicinity of the zero
k=�p. The distance between the peak and the zero decreases
with decreasing of 	fm	 while the peak value remains finite.
The form of the graph in this region �dashed line in Fig. 7�
resembles the form of the Fano resonance, but it is signifi-
cant that the Fano curve is smooth in contrast to function
�30�. If fm=0 then the peak and the zero of transmission
coincide and cancel each other �solid line in Fig. 7�. We note
that fm equals zero only if det ��m�=0 as it follows from Eq.

FIG. 5. Reflection coefficient as a function of the magnetic field.
Solid line: k=4/r; dashed line: k=4.2/r.

FIG. 4. Reflection coefficient at � /�0=0.1. Other parameters
are the same as in Fig. 2.

FIG. 6. Transmission coefficient T21 as a function of the electron
energy at �1−�2=0.08�, z1−z2=0.2r, and � j

A=� j
B=� j

C=0.4r.

FIG. 7. Transmission coefficient T21 at B=0, z1−z2=0.1r, � j
A

=� j
B=� j

C=0.4r. Solid line: �1−�2=0; dashed line: �1−�2=0.08�.
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�31�. Therefore the form of the transmission coefficient in the
vicinity of Em is determined by the degree of degeneracy of
Em and by the symmetry of contact location. In particular
det ��m�=0 for all positions of contacts if the eigenvalue Em
is nondegenerated as it follows from Eq. �27�. Therefore the
zeros do not appear in a magnetic field with noninteger value
of 2� /�0. The magnetic field splits double degenerated en-
ergy levels Em and removes transmission zeros. The depen-
dence T21�E� for the noninteger value of magnetic flux is
represented in Fig. 8. One can see that the peaks on the plot
T21�E� transform into doublets.

The value det � for integer 2� /�0 is given by

det ��m� = − ��r�−2sin2
�m + �/�0���2 − �1�� . �32�

If sin
�m+� /�0���2−�1��=0 then the value fm vanishes
and the zero at the point Em disappears. This phenomenon is
similar to the collapse of the Fano resonance in the transmis-
sion through a quantum sphere.3,4. The disappearance of the
zeros is associated with the symmetry of the contact location.
We note that all zeros disappear if the points q1 and q2 are
placed on the same generatrix ��1=�2� or on the opposite
generatrices of the cylinder �	�1−�2	=��. It is significant
that the positions of all zeros are independent of the scatter-
ing lengths � j

A, � j
B, and � j

C.
In the case of fm=0 the transmission coefficient T21 may

be represented near Em in the form

T21�k� � 	cm	2	1 + gmkm	2,

where cm is a normalization factor and gm is a complex num-
ber depending on the position of contacts and scattering
lengths. The smoothness of the curve T21�E� at the point E
=Em is determined by the number gm. Indeed, the left-hand
derivative is infinite in this point if Im gm�0 and the right-
hand derivative is infinite for Re gm�0. If the one-sided de-
rivatives are different, then the transmission coefficient has a
kink at the point Em. The solid line in Fig. 7 corresponds to
the case of infinite derivatives.

According to the Landauer-Büttiker formalism the ballis-
tic conductance G of the device at the zero temperature is
determined by transmission probabilities T21

↑ and T21
↓ ,

G = G0�T21
↑ + T21

↓ � , �33�

where G0=e2 / �2��� is the conductance quantum. The con-
ductance as a function of the electron energy is shown in Fig.
9. The dependence of the transmission coefficient on electron
spin orientation in the magnetic field results in additional
splitting of conductance peaks �Fig. 9� and partial spin po-
larization of transmitted electrons. It should be mentioned
that the spin splitting g�BB is independent of magnetic quan-
tum number m while the splitting of the eigenvalues Em is
proportional to m, hence the peaks are not equidistant. It is
essential that the spin polarization can be changed either by
magnetic field or by electron energy. The complete polariza-
tion is possible for integer and half integer values of mag-
netic flux � /�0.

The conductance oscillates as a function of energy with
the period,

�E �
�

L

dE

dkm
=

�h2km

4mcL
, �34�

if the longitudinal distance L= 	z1−z2	 between the points q1
and q2 is much larger than the radius r �see Fig. 10�. The
oscillations are stipulated by the interference of electron
waves on the cylinder. It should be noted that similar oscil-
lations have been observed in a recent experiment8 with car-
bon nanotubes. The geometry of the experiment differs from

FIG. 8. Transmission coefficient T21 at � j
A=� j

B=� j
C=0.4r, z1

−z2=0.05r, �1−�2=0.05�. Solid line: B=0; dashed line: � /�0

=0.1.

FIG. 9. Zero-temperature conductance G of the system as a
function of the electron energy E at � /�0=0.1. Other parameters
are the same as in Fig. 8

FIG. 10. Zero-temperature conductance G of the system as a
function of the electron energy at z1−z2=40r, �1=�2, � j

A=� j
B=� j

C

=0.4r, and B=0.
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ours; in particular, contacts are not pointlike. But some re-
sults are valid for our system as well, in particular, the esti-
mation for the period of oscillations carried out in Ref. 8 is in
agreement with Eq. �34�.

IV. CONCLUSION

Electron transport in a nanodevice consisting of a conduc-
tive cylinder with one-dimensional wires connected to its
lateral surface is considered. The one-particle Hamiltonian of
the system is obtained using linear boundary conditions at
the points of contact. An explicit form for transmission and
reflection coefficient as a function of electron energy is
found by solving the Schrödinger equation. The general case
of arbitrary number of wires and arbitrary disposition of con-
tacts is considered. Two cases corresponding to a single wire
and two wires attached to the cylinder surface are studied in
detail. It is found that reflection peaks occur at energies co-
inciding with the discrete part Em of the electron spectrum on
the cylinder. The form of reflection peaks is discussed.

A similar analysis of the two-wire case shows that the
transmission coefficient equals zero at energies Em. We have
found that asymmetric Fano-type resonances appear in a vi-
cinity of the zeros. The zeros exist only if the number of
magnetic-flux quanta through the cylinder is integer or half
integer. They exist for all positions of contacts q1 and q2
except some specific points. It is shown that the zero at the
point Em disappears if the value det ��m� defined by Eq. �32�
vanishes. The behavior of the transmission coefficient in this

case resembles the collapse of the Fano resonances discussed
in earlier studies.4,36

The conductance of the device is investigated using
Landauer-Buttiker formalism. The resonances in transmis-
sion coefficient lead to appearance of conductance oscilla-
tions. The magnetic field splits conductance peaks and
causes spin polarization of transmitted electrons. The com-
plete spin polarization is possible for integer and half integer
values of the magnetic flux.

The results of the paper may be useful for the study of
electron transport in single-wall carbon nanotubes and rolled
GaAs/AlGaAs heterostructures. The experimental observa-
tion of the discussed effects should become possible involv-
ing leads thin enough, like the tip of the scanning tunnel
microscope. The geometry of the device in the case of one
wire resembles the geometry of experiments on scanned
probe microscopy of carbon nanotubes.32,33 Experimental
setup using two tips on the same nanotube seems in principle
feasible, although perhaps difficult to realize. In the case of
multimode leads the interference of electron waves from dif-
ferent modes will most probably result in additional trans-
mission peaks and minima. We stress that most of the ob-
tained results reflect the intrinsic properties of electron
motion on the cylinder. Therefore they are expected to re-
main valid qualitatively even in the case of realistic non-one-
dimensional wires.
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