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Abstract

In earlier work, the momentum distribution of harmonically confined bosons has been calculated for interparticle inte
which are also harmonic for an arbitrary numberN of repelling Bose particles. After a brief discussion of the pair functio
this model, attention is also given, but now forN = 2, to the single-particle density for the repulsive interaction potentialλ/r2

12,
wherer12 is the interboson distance andλ the repulsive coupling strength. The single-particle density is displayed for sp
values ofλ, with attention focusing on the limit of strong repulsive coupling. Throughout, the focus is on the fingerpr
Wigner bosonic molecules.
 2005 Elsevier B.V. All rights reserved.
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In earlier work[1], attention has been focused
the momentum distribution of harmonically confin
bosons for interparticle interactions which also ha
harmonic form for an arbitrary numberN of repelling
(and also attracting) Bose particles. In this Letter, f
lowing a brief discussion of the pair correlation fun
tion P(r1, r2) in this model, attention is also given, b
now for N = 2, to the single-particle densityρ(r) for
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the repulsive interaction potential changed to the fo
λ/r2

12 where r12 = |r1 − r2| denotes the interboso
separation whileλ measures the repulsive couplin
strength. In particular, the ground-state particle den
ρ(r) is displayed for specific values ofλ, with atten-
tion focusing on the change from the Gaussian fo
of ρ(r) asλ goes from zero to large values of this r
pulsive coupling strength. It will be shown thatρ(r)

for large λ already contains clear fingerprints of t
formation of a Wigner bosonic molecule.

Following the culture of the background to th
present study, let us utilize the early work of Coh
.
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and Lee[2] on the low-order density matrices forN

bosons with harmonic confinement and also harmo
interparticle repulsion. In particular, from Eq. (2.35)
[2] for the second-order density matrix, we can wr
the diagonal pair functionP(r1, r2) already referred
to above as

P(r1, r2) = N(N − 1)

2

{
Nωδ2

N/π2

(N − 2)ω + 2δN

}3/2

× exp
{−2b1

(
r2
1 + r2

2

) − 2b2r1 · r2

(1)+ b3
(
2r1 · r2 + r2

1 + r2
2

)}
,

whereb1–b3 are recorded explicitly in Eqs. (2.38)
(2.40) of [2]. Finally, δ2

N = ω2 ± Nγ 2, where the
confinement potentialV is 1

2ω2r2 and the interaction
potential is±1

2γ 2r2
ij . The limit of strong repulsions i

achieved forδN � 0 and a further increase ofγ would
break the external confinement. The important po
here is the appearance in Eq.(1), via the scalar produc
r1 ·r2, of the angle between the position vectorsr1 and
r2, superposed of course on ‘confinement’ terms of
expected Gaussian form. If we fix particle 1 say at
sition (0,0, a) in Cartesian coordinates, then the t
panel inFig. 1displaysP([0,0, a], r2) to demonstrate
this conditional probability distribution of boson sep
ration for two bosons. For large bosonic repulsion,
tendency towards ‘particle localization’ is becomi
evident. The effect of repulsions is more clearly se
in the behavior of the pair functiong([0,0, a], r2), de-
fined as

(2)g(r1, r2) = 2N

N − 1

P(r1, r2)

ρ(r1)ρ(r2)
.

For non-interacting particlesg(r1, r2) ≡ 1 reflecting
the absence of correlations, while on switching on
interactionsg develops a peak atr2 = (δN +ω)/(δN −
ω)r1, which tends tor2 = −r1 in the limit of strong
interactions. This is accompanied with a diminuti
of the width ofg along the direction ofr1 − r2. The
location of the peaks is expected since, given a
ticle at r1, in order to minimize the energy at larg
interparticle repulsions,r12 must be maximal and thu
r2 = −r1. These effects are illustrated in the botto
panel ofFig. 1.

We have also considered the distributions of 4 an
bosons with interparticle harmonic repulsions. In t
caseg has a maximum when

(3)r2 = δN + (N − 1)ω

δN − ω
r1,

however, its width is non-monotonic on increasing
strength of the interaction, diverging for extremely lo
values ofδN . This suggests that, in contrast to t
two-boson problem, the spatial distribution of 4 or
bosons does not possess a structure at large coup
In Fig. 2we show contour plots ofP for N = 2,4 and
6 bosons and two values of the interparticle inter
tion close to the strong repulsion limit. The conto
plots evince the strongly elongated structure of
pair function for two bosons atδN � 0 and illustrate
the regular behavior of the distributions of 4 and
particles on increasingδN . However, we stress her
that the ground-state densityρ(r) retains its spher
ical Gaussian form for allN , though naturally the
half-width of the Gaussian depends on the strengt
the interparticle interactions. These comments para
those pertaining to the momentum distribution in[1].

This is the point to consider the alternative cho
of interparticle repulsion energyλ/r2

12. Here we can
draw on the work of Crandall et al.[3]. While these au-
thors were concerned exclusively with a two-elect
atomic model, with therefore no reference to boso
we can utilize the fact that they have an exact, s
tially symmetric solution of the Schrödinger equati
for confinement potentialV (r) given by

(4)V (r) = 1

2
mω2r2,

and repulsive interaction potential energyW(r12)

given by

(5)W(r12) = λ/r2
12, λ > 0.

The nodeless solution which they utilize for the
two-electron atomic model, times of course a s
glet spin function to give an overall antisymmet
fermion wave function, has the unnormalized form[3,
Eq. (3.14)]

(6)Ψ (r1, r2) = e−mωr2
1/2h̄e−mωr2

2/2h̄rα
12,

whereα = [(1 + 4λm/h̄2)1/2 − 1]/2. Clearly, when
the interparticle repulsion is switched off in the pres
bosonic application, ther12 ≡ |r1 − r2| term in (6) is
replaced by unity and one has an elementary p
uct wave function in which the two bosons und
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Fig. 1. Pair functionsP(r1, r2) (top panel) andg(r1, r2) (bottom panel) forr1 = aẑ andr2 = zẑ of two bosons interacting with harmon
repulsions as functions ofz/a. The different curves correspond to the values ofδN/ω = 1, 0.5, 0.25 and 0.05. The dashed lines locate|z1| = a.
ile,

e ng
discussion occupy the same Gaussian orbital. Wh
of course, we can immediately constructP(r1, r2),
after appropriate normalization, as|Ψ (r1, r2)|2 from
Eq. (6), we shall rather start displaying below th
single-particle density given by

(7)ρ(r) = N
∫

Ψ 2(r1, r2) dr2,
whereN is to be chosen such that

(8)
∫

ρ(r) dr = 2

in the present two-boson model. Explicitly, usi
Eq.(6) in Eq.(7), we have

(9)ρ(r) = N e−mωr2/h̄

∫
e−mωr2

2/h̄|r − r2|2α dr2.
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Fig. 2. Contour plots of the pair functionsP([0,0, z1], [0,0, z2]) as functions ofz1/d andz2/d with d = √

h̄/(mω) for N bosons interacting
with the harmonic potential12ω2r2. The left, middle and right columns correspond toN = 2, 4 and 6 bosons respectively, and the top a

bottom rows toδN/ω = 0.05 and 10−3.
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The integral entering Eq.(9) gives

ρ(r) = 21−α

π3/2

(
mω

h̄

)3/2

(10)× e−2mωr2/h̄
1F1

(3
2 + α, 3

2, mωr2

h̄

)
,

where 1F1 is the confluent hypergeometric functio
[4]. For discrete values ofλ given by

(11)

[(
1+ 4λm

h̄2

)1/2

− 1

]
= 2n,

wheren is an integer,ρ(r) can be explicitly written
as exp(−mωr2/h̄) times a polynomial of order 2n.
In practice,ρ(r) has to be evaluated numerically a
sample results forρ(r) are displayed inFig. 3. The
repulsive interaction between the two bosons, fi
widens the density profile and then leads to the
mation of a maximum displaced from the trap cen
This can be viewed as the first signature of the form
tion of a Wigner molecule of bosonic particles.

Let us now examine the pair function for tw
bosons withλ/r2

12 repulsion. InFig. 4 we show the
contour plots of|Ψ (r1, r2)|2 for α = 0.1 and 10. We
observe the appearance of two well separated reg
where the conditional probability is maximum. Fro
these plots it is clear that the probability distributi
for the distance between the two particles is a hig
peaked function around

(12)r0
12/d = √

2+ 2α,

where d = √
h̄/(mω). Furthermore, the difference

with the harmonic repulsions are notable. Even tho
we found that the probability distribution of tw
bosons is maximum when they are in opposite p
tions, their repulsion is not as strong as to sepa
them from each other at a minimum distance as
bosons interacting withλ/r2

12 are. In this sense, th
lack of strong localization can be attributed to t
weak interactions present in the exact model of h
monic interactions.

To conclude, it is of interest to make contact w
the numerical study of Romanovsky et al.[5]. Though
these workers considered different repulsive inter
tions, namely, contact and Coulomb, from those st
ied in the present Letter, some similarities are e
dent. However, we have onlyN = 2 for the inverse
square interaction potentialλ/r2

12, whereas the nume
ical studies of[5] consideredN = 6. For Coulomb
repulsions, they noted, in two dimensions, in contr
to the present three-dimensional study, the tendenc
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Fig. 3. Boson densitiesρ(r)/ρmax for two bosons with theλ/r2

12 interaction potential as functions ofr/d with ρmax the maximum density for
given α, andd = √

h̄/(mω). The different lines correspond to different values ofα (measuring the strength of the repulsive interaction:
Eq.(6)) as indicated in the plot.

Fig. 4. Contour plots of the pair functionsP([0,0, z1], [0,0, z2]) as functions ofz1/d andz2/d for two bosons interacting with theλ/r2
12

potential. Left and right panels correspond toα = 0.1 and 10, respectively.
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ring formation of the bosons, with, as they term it
breaking of rotational symmetry.

Acknowledgements

This work has been partially supported by an A
vanced Research Initiative of Scuola Normale Su
riore di Pisa (SNS) and by the Istituto Nazionale
Fisica della Materia (INFM). N.H. March acknow
edges that his contribution to this Letter was larg
made during a visit to SNS in 2005. He wishes
thank SNS for the very stimulating atmosphere wh
this study was carried out and for generous s
port.

References

[1] N.H. March, M.P. Tosi, Phys. Chem. Liq. 39 (2001) 183.
[2] L. Cohen, C. Lee, J. Math. Phys. 26 (1985) 3105.
[3] R. Crandall, R. Whitnell, R. Bettega, Am. J. Phys. 52 (198

438.
[4] M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathema

cal Functions with Formulas, Graphs, and Mathematical Tab
Dover, New York, 1972.

[5] I. Romanovsky, C. Yannouleas, U. Landman, Phys. Rev. Lett
(2004) 230405.


	Wigner bosonic molecules with repulsive interactions and harmonic confinement
	Acknowledgements
	References


