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In this paper we describe a laser acceleration scheme where an electron is accelerated from rest to GeV
energies by the longitudinal electric field of an ultrashort transverse magneticsTM01d optical pulse. The on-axis
longitudinal electric field of the pulse is obtained from the free-space divergence equation beyond the so-called
slowly-varying-envelope approximation. The instantaneous electron dynamics is studied; numerical simula-
tions predict net energy gains in the GeV range for laser intensities reaching 1022 W/cm2.
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I. INTRODUCTION

Laser-driven accelerators are considered as a potential
scheme to build experimental facilities that produce high-
energy particle beams, with reduced size and lower cost
compared to accelerators presently in usef1–4g. To operate
laser-driven accelerators in a traveling-wave configuration,
the displacement of charged particles must be synchronized
with the phase of the driving electromagnetic field. Once
synchronization is achieved, the moving charges feel a static
electric field and they are accelerated for a finite period of
time. Metal waveguidesf5,6g, plasmasf7,8g, inverse free-
electron lasersf9g, self-sustained cyclotron resonancef10g,
vacuum beat wavesf11g, focused doughnut pulsesf12g, sub-
cycle pulsesf13,14g, laser beams with sharp-rising edges
f15,16g, evanescent wavesf17g, and photonic band gap fibers
f18g are some of the acceleration schemes that have been
proposed within the past 40 years. As it is discussed in Refs.
f19–25g, acceleration schemes that involve laser beams in
free space offer some practical advantages.

In this paper, we describe an approach to laser accelera-
tion in free space based on the longitudinal electric field
associated with a transverse magneticsTM01d beam with a
very short duration in the time domain. We have selected the
TM01 beam because in the paraxial approximation it experi-
ences a phase advance ofp—known as the Gouy phase
shift—from its waist to infinity. Hence, it should be possible
to confine a relativistic charged particle within a half cycle of
the on-axis longitudinal electric field. In principle, this par-
tial synchronization should produce a substantial accelera-
tion. To carry out the analysis of this proposed scheme, the
vectorial propagation of an ultrashort TM01 wave packet is
considered and the longitudinal electric field is calculated
from the free-space divergence equation beyond the slowly-
varying-envelope approximationsSVEAd. Through numeri-
cal simulations, we investigate the on-axis dynamics of elec-

trons initially at rest at the focal plane of an ultrashort TM01
wave packet. From real-time integration of the instantaneous
Lorentz force, we demonstrate that some electrons can be
captured by the field. When the laser intensity reaches
1022 W/cm2, captured electrons are accelerated to GeV en-
ergies within a few millimeters.

The paper is divided as follows. In Sec. II we establish the
full electromagnetic structure of ultrafast TM01 wave packets
propagating in free space. We therein develop a procedure to
correct the SVEA when the electromagnetic field lasts only a
few optical cycles. Section III deals with the dynamics of
on-axis electrons subject to the acceleration caused by the
longitudinal electric field component of the TM01 wave
packet. We also consider the stability of the on-axis electron
trajectory with respect to the radial field components, as well
as the losses caused by the emission of radiation during ac-
celeration. In Sec. IV our method is compared to other pro-
posed schemes, including those based on the focusing of
doughnut-shape modes and on the ponderomotive potential.
We also discuss the presence of any effect caused by residual
static field components.

II. VECTORIAL DESCRIPTION OF ULTRASHORT TM 01

LASER WAVE PACKETS FOCUSED
IN FREE SPACE

A focused TM01 beam is characterized by a ring-shaped
sdoughnut-shapedd intensity profile. It can be generated in-
terferometrically from two identical cross-polarized TM01
Gauss-Hermite modesf26–30g. In this section, we solve
Maxwell’s divergence equation in free space to obtain the
longitudinal electric field of an ultrashort TM01 wave packet.

A. The divergence equation beyond
the slowly-varying-envelope approximation

The propagation of a laser wave packet is generally stud-
ied with the use of a spatiotemporal envelope sustained by a
plane-wave carrier. As demonstrated by Brabec and Krausz,*Electronic address: charles.varin@phy.ulaval.ca
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this approach still applies for tightly focused few-cycle
pulses f31,32g. Beyond the so-called slowly-varying-
envelope approximation, solutions of Maxwell’s equations
can be obtained using the method introduced by Laxet al.
f33g. In this section, we develop a general method—based on
the divergence equation of the electric fieldin vacuo—to
calculate the longitudinal electric field associated with pulses
of a few-cycle duration.

The six field components of an electromagnetic field form
a unique vectorial solution of the four Maxwell’s equations.
Thus, given the transverse electric fieldE', the longitudinal
electric fieldEz can be obtained from the divergence equa-
tion

= ·E = 0. s1d

Using phasor notation, withaz being a longitudinal unit vec-
tor oriented along the pulse propagation, we define the vec-
torial electric field as follows:

E = E' + Ezaz,

= RehẼ expf jsv0t − k0zdgj

= RehsẼ' + Ẽzazdexpf jsv0t − k0zdgj, s2d

wherev0=k0c, k0=2pl0, andl0 are, respectively, the central
angular frequency, central wave number, and central wave-
length of the pulse spectrum, withc being the speed of light

in free space. The complex amplitudesẼ' andẼz are phasors
that are explicitly dependent upon the variablesx, y, z, andt.
By introducing Eq.s2d in Eq. s1d, the divergence equation
reads

=' · Ẽ' = jk0Ẽz −
]Ẽz

]z
, s3d

given =' to be a two-dimensional differential operator, act-
ing in the plane perpendicular to thez-oriented time-
averaged Poynting vector. Equations3d, which is equivalent
to Eq. 4sbd of Ref. f34g, can be formally inverted to yield

Ẽz = o
m=0

` S− j

k0
Dm+1 ]m

]zms=' · Ẽ'd. s4d

It should be noticed that no approximation is necessary to
obtain Eq.s4d from Eq. s3d. Hence, it applies to both non-
paraxial beams and few-cycle pulses: if the spatial distribu-
tion and polarization of the transverse electric fieldE' are
known, it gives an exact expression of the corresponding
longitudinal electric fieldEz. Them=0 term is the contribu-
tion to the longitudinal electric field that origins from the
carrier of the transverse electric field and all higher-order
terms—them=1,2,3, . . . ,̀ terms—are contributions com-

ing from the transverse field envelopeẼ'. For slightly fo-
cused and long pulses, Eq.s4d reduces to the expression for
paraxial and monochromatic beamsf28,33g.

B. The longitudinal electric field of an ultrashort TM 01 laser
wave packet in free space

As has been mentioned before, a TM01 wave packet can
be generated by an interferometric methodf26g. As a conse-

quence of the interference between the overlapping beams,
the signal intensity is zero on the axisf27g. For a propagation
oriented along thez axis of the cylindrical coordinate system
sr ,u ,zd, its transverse electric fieldE' is radially polarized
and angularly symmetric, i.e.,E'=Erar and]uE'=0.

Following the work of Porrasf35g, we express the electric
field of a scalar ultrashort pulsed beam beyond the SVEA as
a series of corrections to a paraxial quasimonochromatic
beam. For the TM01 laser beam, the zeroth-order transverse
field is defined as

Ẽr
s0d = AS jzR

q̃
D2

r expS− j
k0r

2

2q̃
D fst8d s5ad

=− A
zR

k0

]G0

]r
fst8d, s5bd

whereA is a normalizing constant,q̃=z8+ jzR is the complex
parameter of the Gaussian beam,G0=s jzR/ q̃d
3exps−jk0r

2/2q̃d is the fundamental Gaussian-beam spatial
envelope,fst8d=exps−t82/T2d is a Gaussian pulse envelope
with T being the pulse duration, andzR=k0r0

2/2 is the Ray-
leigh distance withr0 being the beam spot size at the beam
waist f27g. The retarded timet8 is introduced as a new vari-
able to distinguish diffractionswhich depends onz8=zd from
temporal effectsswhich depend ont8= t−z/cd. By recalling
the method outlined in Ref.f35g fsee Eqs.s8d–s11dg, the
nth-order correction then reads

Ẽr
snd = S j

v0
Dn ] n

]t8n

] n−1

]z8n−1Sz8n

n!

]Ẽr
s0d

]z8
D s6ad

=− A
zR

k0
S j

v0
Dn] nfst8d

]t8n

]G0
snd

]r
, s6bd

wheren=1,2,3. . . and

G0
snd = G0o

p=1

n Sn − 1

p − 1
DS− z8

q̃
Dp

LpS j
k0r

2

2q̃
D , s7d

with s n−1
p−1

d being the binomial coefficient andLps d the La-
guerre polynomial of orderp. By definition, G0

s0d=G0. As
defined in Eq.s2d, the physical field is the real part of the
complex envelope times the carrier wave. Thus,

E' = ReFSẼr
s0d + o

n=1

`

Ẽr
sndDar expf jsv0t8 − f0dgG , s8d

wheref0 is the carrier phase at the beam waist.
For a paraxial few-cycle wave packet, we havef35g
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]zẼ' = ]z8Ẽ' − c−1]t8Ẽ' s9ad

.− c−1]t8Ẽ' s9bd

.− c−1]t8SẼr
s0d + o

n=1

`

Ẽr
sndDar . s9cd

By introducing Eq.s9bd in Eq. s4d, it is easily shown that for
each correction applied to the transverse field there corre-
sponds a contribution to the longitudinal field given by the
following expression:

Ẽz
sn8d = −

j

k0
o
m=0

` S j

v0
Dm ] m

]t8ms=' · Ẽ'
sn8dd, s10d

where n8=sn−1d=0,1,2,3, . . ..After calculation with Eqs.
s5d, s6d, and s10d, the zeroth-order sn8=0 and m
=0,1,2,3, . . .d longitudinal electric field reads

Ẽz
s0d = − 2j

A

k0
S jzR

q̃
D2F1 − j

k0r
2

2q̃
GexpS− j

k0r
2

2q̃
D fz

s0dst8d,

s11d

and the nth longitudinal correctionsn=1,2,3, . . . andm
=0,1,2,3, . . .d is written as

Ẽz
snd = A

jzR

k0
2 fz

sndst8d
1

r

]

]r
Fr

]G0
snd

]r
G , s12d

where fz
sn8dst8d is the time envelope of the longitudinal field:

fz
sn8dst8d = o

m=0

` S j

v0
Dm+n8

]t8
m+n8fst8d s13ad

=expS−
t82

T2Do
m=0

` S − j

v0T
Dm+n8

Hm+n8S t8

T
D , s13bd

with Hm+n8sxd being the Hermite polynomial of order
sm+n8d.

As shown in Fig. 1, the transverse electric field vanishes
on axis sr =0d, as the longitudinal electric field reaches its
maximal value. SincesEzdmax~l0/r0sErdmax, the amplitude
of the longitudinal electric field is only a small fraction of the
amplitude of the transverse electric field. From Eqs.s11d and
s12d, the zeroth-order andnth-order contributions to the on-

axis longitudinal fieldẼz are found to be

Ẽz
s0d = − 2j

A

k0
S jzR

q̃
D2

fz
s0d, s14d

Ẽz
snd = − 2j

A

k0
S jzR

q̃
D2

fz
sndo

p=1

n Sn − 1

p − 1
Dsp + 1dS− z8

q̃
Dp

.

s15d

The physical on-axis longitudinal electric fieldEz is de-
fined as

Ez = ReFSẼz
s0d + o

n=1

`

Ẽz
sndDexpf jsv0t8 − f0dgG . s16d

When the pulse duration is long compared to the carrier os-

cillations, i.e., whenT@2p /v0, the SVEA applies andẼz

. Ẽz
s0d. On the other hand, as the pulse duration decreases

and approaches the limit of a single-cycle pulsesT
=2p /v0d, higher-order terms become significant and modify
noticeably the pulse envelope and carrier oscillationsssee
Fig. 2d. As a result, the carrier wave is redshiftedsslower
oscillationsd between the beam waistsz8=0d and the Ray-
leigh distancesz8=zRd and blueshiftedsfaster oscillationsd
beyond this position. Also, the pulse envelope appears to be
slowed downspositive time delayd betweenz8=0 and`, but
fastersnegative time delayd betweenz8=−` and 0. In Fig. 3,
these two effects are compared to the SVEA field forz8ù0.

FIG. 1. Spatial distribution of the transversesdashed lined and
longitudinal sfull lined electric fields of a TM01 wave packet at the
waist sz8=0d. Fields are not to scale: they have been normalized so
that their respective maxima are equal to 1.

FIG. 2. Envelope and oscillations of the on-axis longitudinal
electric fieldEz of a single-cyclesT=2p /v0d TM01 wave packet
with a Gaussian temporal envelope at the waistsz8=0d. The SVEA
field corresponds ton8=0, m=0 and the non-SVEA field ton8
=0,1,2,m=0,1,2.
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Finally, the wave carrier experiences a global on-axissGouyd
phase shift ofp from z8=0 to `, thus offering the possibility
of synchronizing charged particles with the field within this
range.

C. The magnetic flux vector of an ultrashort TM01 laser wave
packet in free space

A general equation giving the magnetic flux vectorB of
an arbitrary ultrashort wave packet cannot always be reduced
to a simple expression, as is the case for monochromatic
transverse electromagneticsTEMd wavesfsee Eq.s7.11d of
Ref. f36gg. However, when the electric field vector is known,
B can easily be deduced through Maxwell’s equations.

For the TM01 wave packet,Bz=0, Eu=0, andBr =0. Fur-
thermore, if the divergence equation for the electric field is
satisfied, the differential form of Ampère’s law in free space,
i.e., =3B=c−2]tE, leads to the following equation:

−
]Bu

]z
=

1

c2

]Er

]t
. s17d

Introducing phasor notation, Eq.s17d becomes

B̃u +
j

k0

]B̃u

]z
=

1

c
SẼr −

j

v0

]Ẽr

]t
D . s18d

The technique introduced in Sec. II A, previously used by
Haselhoff to develop a high-gain free-electron-laser model
f34g, can be applied to obtainBu. However, under the
paraxial approximationfsee Eq.s9bdg, Eq.s18d exactly yields

B̃u =
1

c
Ẽr . s19d

III. DYNAMICS OF AN ELECTRON IN AN ULTRASHORT
TM 01 LASER WAVE PACKET FOCUSED IN FREE

SPACE

In this section, we explain the steps followed to study the
motion of an electron initially at rest at the beam waist of an
intense ultrashort TM01 laser wave packet. The analysis pre-
sented here, based on the instantaneous relativistic Lorentz
force, reveals a highly nonlinear dynamics that is not acces-
sible from time-averaged equationsf37,38g.

A. Equations of motion

The equations of motion for an electron in an external
electromagnetic field are expressed in a relativistic form as
f36g

dp

dt
= qfE + v 3 Bg, s20d

dW

dt
= qv ·E, s21d

wherep=gm0v andW=gm0c
2 are, respectively, the momen-

tum and energy of an electron of velocityv, chargeq, and
rest massm0, with g=s1−v2/c2d−1/2. Inside the symmetric
field of a TM01 wave packet, Eq.s20d is developed as fol-
lows fwith the use of Eq.s19dg:

dpr

dt
= qF1 −

vz

c
GEr , s22d

dpu

dt
= 0, s23d

FIG. 3. On-axis envelope and oscillations of the longitudinal electric field of a single-cyclesT=2p /v0d TM01 wave packet. The
non-SVEA field sdashed curved, i.e., the corrected field with the terms corresponding ton8=0,1,2 andm=0,1,2, is compared to the
quasimonochromaticsSVEAd field ssolid curved for different axial positionsz8.
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dpz

dt
= qFEz +

vr

c
ErG . s24d

Along the axissr =0d, the transverse electric field van-
ishes, leaving only the longitudinal electric field acting on
the electron. This field configuration produces an accelera-
tion parallel to the time-averaged Poynting vectorf36g. For
that ideal case a one-dimensional dynamics is obtained, thus
leading, with the help of Eq.s21d, to the following equations
of motion:

dz

dt
= vz, s25d

dvz

dt
=

q

m0
Ezsz,tdF1 −

vz
2

c2G3/2

, s26d

where

Ezsz,td = RehẼz expf jsv0t − k0z− f0dgj s27d

is the physical on-axis longitudinal electric field obtained
from Eqs. s14d–s16d. By considering the corrected field
shown in Fig. 3, Eq.s27d then reads

Ezsz,td = 2
A

k0
S r0

rszd
D2

fst8dFsinC0 − S 1

v0T
DH1S t8

T
DcosC0 − S 1

v0T
D2

H2S t8

T
DsinC0G + 4

A

k0
S z

zR
DS r0

rszd
D3

fst8d

3 FS 1

v0T
DH1S t8

T
DsinC1 − S 1

v0T
D2

H2S t8

T
DcosC1 − S 1

v0T
D3

H3S t8

T
DsinC1G − 4

A

k0
S z

zR
DS r0

rszd
D3

fst8d

3 FS 1

v0T
D2

H2S t8

T
DcosC1 + S 1

v0T
D3

H3S t8

T
DsinC1 − S 1

v0T
D4

H4S t8

T
DcosC1G + 6

A

k0
S z

zR
D2S r0

rszd
D4

fst8d

3 FS 1

v0T
D2

H2S t8

T
DsinC2 − S 1

v0T
D3

H3S t8

T
DcosC2 − S 1

v0T
D4

H4S t8

T
DsinC2G , s28d

where Cn8=v0t−k0z+s2+n8dCG−f0, CG=tan−1sz/zRd is
the basic Gouy phase shift of a paraxial Gaussian beam, and
rszd=r0

Î1+z2/zR
2 is the wave packet transverse dimension.

We point out that, according to Eq.s28d, the longitudinal
electric field of a paraxial and monochromatic TM01 beam
experiences a Gouy phase shift given by 2CG, and hence a
phase advance ofp from z=0 to ` sfor an ultrashort wave
packet the actual Gouy phase shift would be slightly larger,
as shown recently by Lindneret al. f39gd. This feature offers
the possibility for relativistic electrons to remain in phase
with the longitudinal electric field of a TM01 beam from its
waist to infinity. However, an electron initially at rest at the
beam waist will not be trapped within a half cycle of the
pulse up toz=`; a delay is necessary to bring the electron
from rest to a relativistic velocity. As a consequence of that
delay, the electron will slip into the next half cycle where it
will be decelerated. During successive acceleration and de-
celeration cycles, the electron will move away from the beam
waist, toward the Rayleigh distancezR. From that position to
infinity, the Gouy phase shift of a paraxial and monochro-
matic TM01 beam is onlyp /2. If the electron reaches a po-
sition aroundzR and if the field intensity is high enough, the
electron could then be accelerated to a relativistic velocity
and confined within a half cycle of the pulse, up toz=`. In
the next subsection, we investigate the dynamics of such
electrons using the theoretical tools we developed.

B. Electron dynamics

The instantaneous electron dynamics is obtained by nu-
merically solving Eqs.s25d and s26d. The acceleration of an
electron subject to the field of a paraxialsl0=0.8 mm, r0
=10 mm, and k0r0.78.5d ultrashort sT*2p /v0d TM01

wave packet that comes fromz=−` is consideredf40,41g.
The electron of rest massm0=9.109310−31 kg and charge
q=−1.602310−19 C is initially at restsv0=0d at the beam
waist sz0=0d, where v0 and z0 are the initial velocity and
position of the electron. The field intensity is defined, in
W/cm2, as I =E0

2/2h0=r0
2A2 exps−1d /4h0, where E0 is the

maximum value of the transverse field amplitude in V/cm
andh0=120p V is the impedance of free space.

Through numerical simulations of the instantaneous equa-
tions of motion, using an embedded fifth-order Cash-Karp
Runge-Kutta methodf42g, we observed that inside low-
intensity pulses the electron oscillates at a frequency close to
the naturalscentrald frequency of the electric field. As a re-
sult of this fast oscillation, only a very small quantity of
energy is transferred to the electron and no net acceleration is
producedfsee Figs. 4sad and 4sbdg. However, for extremely
high laser intensitiesssay 1022 W/cm2d, highly relativistic
velocities can be reached within a distance comparable to the
laser wavelength. Then, the electron remains confined within
a half cycle of the field for a finite period of time. As a result
of this partial phase matchingsthat lasts only a few picosec-
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ondsd, the electron is pushed beyond the Rayleigh distance
zR. Far from focussz8@zRd, the pulse intensity vanishes due
to diffraction and the electron moves freely through space
with a velocity close to the speed of lightsan energy of
1 GeV corresponds tovz/c.0.999 999 87d, when the pulse
has the proper carrier phase at the beam waistfsee Figs. 4scd
and 4sddg. This acceleration mechanism is consistent with the
observation that the longitudinal electric field of a TM01 laser
beam decreases asszR/z8d2 and experiences a Gouy phase
shift of p from the beam waist to infinity.

The net energy gained by the electrons resulting from
their acceleration is sensitive to the field intensity, the pulse
duration, and the carrier phasessee Fig. 5d. Such dependen-
cies are a characteristic of strong-field phenomenaf25,32g. A
close look at Figs. 4scd and 4sdd reveals details about the
electron dynamicssthe horizontal scale on those figures is
timed. Electrons at rest at the waist that are promptly accel-
erated to highly relativistic energies tend to progressively get
out of phase with the field; they are decelerated in the last
part of their trajectory and experience a small overall energy
gain. On the contrary, electrons that are subject to a smaller
acceleration at the waist tend to be slowed down around the
Rayleigh distancesit takes 1.3 ps for a relativistic electron to
move fromz=0 to zRd. From then on, they enter a half cycle
of the field that produces a strong acceleration; they remain
trapped in the field up to infinity, resulting in a substantial

energy gain. It is observed from Fig. 5 that the use of longer
pulses leads to lower values of the peak energy gain, but that
the energy gain is less sensitive to the value of the carrier
phase. With longer pulses, electrons are trapped in the front
of the pulse before the field reaches its peak value. With
shorter pulses, some electrons can penetrate the field up to its
maximum before being trapped and accelerated.

The results of Fig. 5 show how the non-SVEA corrections
influence the electron energy gain. As expected, the effects of
the corrections are more important as the pulse duration de-
creasesf35g. However, we observe that the global dynamics
is mainly governed by the SVEA field, which appears to be a
good approximation even in the case of a few-cycle pulse
sT*2p /v0d.

C. Stability of the on-axis trajectory

The stability of the on-axis trajectory is a major concern
for the proposed scheme to be of practical interest. If we
assume that the transverse velocityvr remains small com-
pared to the speed of lightsvr /c!1d, the transverse motion
of the electron close to the axissr !r0d is mainly defined by
its longitudinal position inside the field, as seen from the
following two equationsfobtained from Eqs.s22d ands24dg:

dpr

dt
. qF1 −

vz

c
Gk0Dr

2
EzcotC0, s29d

FIG. 4. Energy transferred to an electron at rest at the waist of an ultrashort TM01 wave packet as a function of time, measured in the
laboratory reference frame.sad andsbd The pulse intensity is too weak to trap and accelerate the electron.scd andsdd The pulse intensity is
above threshold; the electron is trapped and accelerated. Two values of the pulse carrier phasef0, corresponding to the maximum and the
minimum of the transferred energy, are considered for each intensity.
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dpz

dt
. qEz, s30d

where the SVEA is used for simplicity, withDr being the
small displacement of the electron with respect to the axis.
For the definition ofC0, see below Eq.s28d. Because the
charge of the electron is negativesq,0d, the electron is
accelerated whenEz,0, i.e., for p,C0,2p. From Eq.
s29d, we then see that off-axis electrons will be focused to-
ward the axis and accelerated for 3p /2,C0,2p scotC0

,0d. Under relativistic conditionssvz→cd, the radial accel-
eration simply vanishes for all values ofC0. We have
observed that the two solid curves shown in Figs. 4scd and
4sdd sthose reporting the highest energy gainsd are stable
trajectories.

D. Radiation

The instantaneous power radiated by an electron acceler-
ated along the axis of a TM01 wave packet is given by the
following equationf36g:

Prad=
2

3

c

4pe0
S q2

m0c
2D2

uEzu2, s31d

where e0 is the permittivity of free space se0

.10−9/36p F/md. If we consider only the SVEA fieldsthe
main contributiond, it then follows that

uEzu2 . 8 exps1dS E0

k0r0
D2S r0

rsz8d
D4

fst8d2. s32d

The result obtained in Eq.s32d shows that the radiation is
localized, concentrated in the strong-field regions. The radia-
tion losses thus depend on the relative position of the particle
with respect to the focal plane and the center of the wave
packet. By assuming that the spatial envelope of the field is
constantfrsz8d.r0g and that the electron remains at the
same position inside the pulseffst8d.1g, Eqs.s31d ands32d
are simplified to yield

Prad.
16 exps1d

3

c

4pe0
S q2

m0c
2D2S E0

k0r0
D2

. s33d

On the other hand, we can calculate the power of the
driving wave packet. The task is done by integrating the

FIG. 5. Energy transferred to an electron at rest at the waist of an ultrashort TM01 wave packet as a function of laser intensity and carrier
phasef0. The energy gain produced by the correctedsnon-SVEAd field fin scd andsddg is compared to that obtained with the SVEA fieldfin
sad and sbdg.
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absolute value of the average Poynting vectoru Ẁ u= 1
2 ReuE

3H* u in the plane perpendicular to the propagation axis.
From Eqs.s5d and s19d, it thus reads

Pfield = 2pE
0

`

u Ẁ ur dr , s34ad

=
pr0

2E0
2 exps1d
4h0

fst8d2. s34bd

From Eqs.s31d and s34bd, we define the following ratio
fagain,rsz8d.r0 is assumedg:

Prad

Pfield
.

64

3
S 1

4pe0
D2S q2

m0c
2D2 1

zR
2 , s35d

giving the fraction of the laser light power lost in radiation.
For an electron, we calculate thatPrad/Pfield,10−28zR

−2,
where zR is in meters. For the special case wherel0
=0.8 mm andr0=10 mm, the power radiated by an electron
is smaller than the power of the driving signal by a factor
10−21. Also, we can evaluate the amount of energy lost be-
cause of the radiation. As a global estimate, we setDWrad
, PradDt, whereDt is the duration of the interaction. Typi-
cally, Dt,20 ps fsee Figs. 4scd and 4sddg. Then, for I
=1022 W/cm2, l0=0.8 mm, andr0=10 mm, it appears that
DWrad.6 keV. It thus shows that the radiation losses result-
ing from the acceleration of an electron by the longitudinal
electric field of a TM01 wave packet are negligible. Such low
energy losses due to the emission of radiation are typical of
linear acceleratorsf36g.

IV. DISCUSSION

The propagation of laser light beyond the slowly-varying-
envelope approximation is a topic of high interest in many
areas of optics, particularly in the study of ultrafast phenom-
ena. To investigate the interaction between ultrashort electro-
magnetic wave packets and matter, it is necessary to know
precisely the distribution of the vectorial electromagnetic
field of the laser signal, especially when dealing with free
particles f25g. For example, when a very intense optical
pulse passes through a film of nanometric thickness, the at-
oms of the film are ionized. The free electrons produced in
this interaction are violently expelled from the focal region.
We have shown here that if an ultraintense ultrashort pulse
with a TM01 profile is used, the electrons that are close to the
propagation axis are accelerated forward by the longitudinal
electric field. In the case of pulses of a few-cycle duration,
we have demonstrated that the corrections to the slowly-
varying-envelope approximation have an influence on the
electron energy gain.

Methods to describe the free-space propagation of vecto-
rial ultrashort pulsed beams in the frequency domain have
been proposed by Quesnel and Moraf38g and, more recently,
by Lu et al. f43g. However, in the time domain it has been
demonstrated by Porrasf35g that exact expressions that de-
scribe the propagation of paraxial ultrashort pulsed beams
can be obtained by using a method inspired by the previous

work of Lax et al. f33g. In this paper, we have extended that
latter work and provided a general expression for the longi-
tudinal electric field of paraxial ultrashort wave packetsfsee
Eq. s10dg.

The acceleration of electrons by the longitudinal electric
field of a doughnut-shapedmode has been previously dis-
cussed by Hellwarth and Nouchif12g. We have noticed that
the TM focus wave mode they considered leads to a longi-
tudinal electric field different from that of an ultrashort TM01
wave packet. Moreover, these authors have suggested the use
of a mirror to cut off the accelerating laser beam beyond its
waist. From our point of view, the use of a mirror close to the
focus of the pulse would encounter severe practical limita-
tions due to material breakdown at such ultrahigh field inten-
sities. According to Varin and Pichéf44–47g, the presence of
a field-limiting apparatus is not required to produce substan-
tial accelerations with TM laser beams. In the light of the
results we have presented here, energy can be transferred to
an electron initially at rest at the waist of an ultrashort TM01
wave packet from the longitudinal electric field component.
We also observed that there is a clear intensity threshold for
this effect to take place. For field intensities that are ten times
the thresholdsfound to be 1021 W/cm2 for l=0.8 mm and
for a beam with a 10-mm waistd, the energy of the acceler-
ated electrons can exceed 1 GeV.

In the literature, the acceleration of charged particles is
often described in terms of the ponderomotive forcef37g.
This terminology refers to time-averaged equations of mo-
tion. Such an approach is particularly useful for a low-mass
particle, like an electron, driven by a fast oscillating laser
field sv0,1015 rad/sd. It should be pointed out that the early
theory of the ponderomotive acceleration applies to the non-
relativistic regime and is not appropriate to deal with the
high intensities provided by today’s ultraintense laser tech-
nology. In fact, according to Kibblef37g a nonrelativistic
regime is characterized bym=sqE0/m0v0cd2!1, whereE0 is
the amplitude of the accelerating field. For an electron driven
by the longitudinal field of a TM laser wave packet whose
intensity reaches 1022 W/cm2 sl0=0.8 mmd, m is of the or-
der of 2.5. A few years ago, Quesnel and Mora developed a
relativistic treatment of the ponderomotive acceleration deal-
ing with wave packets of finite durationf38g. However, the
relativistic theory of the ponderomotive acceleration re-
quires, to be valid, thatk0r0s1−vz/cd@1: for an electron
accelerated to GeV energiessvz/c.0.999 999 87d by a
paraxial laser wave packetsk0r0.78.5d, it appears that
k0r0s1−vz/cd.10−5. On the other hand, the parameterd
=2pr0/cT, obtained from the condition 1/k0r0,l0/cT in-
troduced by Quesnel and Moraf38g, must be of the order of
the unity: for a single-cycle wave packetsT=2p /v0d whose
transverse dimensionr0 is 10 mm, d is about 80. Still, we
recall that the final kinetic energy of an electron accelerated
by the longitudinal field of an ultrashort TM01 wave packet is
sensitive to the field absolute phase and the pulse temporal
extentssee Figs. 4 and 5d. As a consequence, the concept of
ponderomotive acceleration is not relevant to the accelera-
tion scheme proposed here. We thus conclude that the accel-
eration mechanism presented in this paper could not have
been revealed considering time-averaged equations of mo-
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tion sthe ponderomotive forced f37g, even in the relativistic
casef38g.

In the past, the acceleration of electrons by ultrashort
electromagnetic wave packets has been the object of severe
criticisms ssee Kimet al. f48gd. In the case where the time
integral of the accelerating electric field does not vanish, an
important amount of energy can be transferred to the electron
from the staticsv=0d component of the field. It is widely
accepted that such acceleration mechanisms are incorrect and
lead to nonphysical predictions that cannot be reproduced
experimentally. For the signals considered in this paper, we
define the following ratio:

R=

FE
−`

`

fst8dejsv0−vdt8dt8G
v=0

FE
−`

`

fst8dejsv0−vdt8dt8G
v=v0

= expS−
T2v0

2

4
D , s36d

giving the relative amplitude of the zero-frequency compo-
nent sv=0d compared to the main component of the spec-
trum sv=v0d along the axissr =0d of a TM01 wave packet.
We thus see that for a single-cycle wave packetsT
=2p /v0d the condition of a zero integral of the field is fairly
well respectedsR=5310−5d. For a wave packet withT
=7.5p /v0 scorresponding to a time duration of 10 fs forl0
=0.8 mmd, the integral of the electric field simply vanishes
sR,10−60d.

The amount of energy transferred to the electron from the
static component of the fieldDWv=0 can be evaluated from
the line integral of the driving forceDW=eA

BF ·dl swhereF is
the Lorentz forced. In the frequency domain, we can see that

DWsv = 0d
DWsv = v0d

= R, s37d

whereDWsv=0d and DWsv=v0d are energies respectively
associated with the static and the main component of the
spectrum. From Eq.s37d, we see that the effect of the static
field is negligible. In the time domain, assuming a perfect
synchronization between the fieldsnoncorrectedd and the
electron and neglecting the spatial variations of the absolute
phase of the carrier due to the Gouy phase shift, the accel-
eration produced by the static component is evaluated from
the expression that follows:

DWv=0 . 2uqu
A

k0
RE

0

` dz8

1 + z82/zR
2 , s38ad

.uqu
p exps1/2d

Î2
r0E0R, s38bd

whereE0 is the amplitude of the transverse field in V/m. We
then see that the static component of the single-cycle wave

packetsr0=10 mm, I =1022 W/cm2, T=2.67 fs, andDWv=0

.520 keVd, contributes only as a small fractionsless than
0.02%d of the total amount of energy transferred to the elec-
tron fsee Fig. 4scdg. For a pulse withT=10 fs and l0

=0.8 mm, as seen in Fig. 4sdd, the effect of the static com-
ponent is vanishingly smallsDWv=0,10−50 eVd. Hence, as
expected from Eq.s37d the contribution of the static compo-
nent is not significant. In fact, Eq.s38bd gives a generous
estimate of what could be the real effect of the static field.
From our numerical simulations, it appears that the synchro-
nization of the electron with the field is only maintained
within a region that goes approximately fromz.zR to z=`
fsee Figs. 4scd and 4sddg. As a result of this shortened inter-
action, Wv=0 would be halfs260 keVd of what is obtained
when a perfect phase matching is assumeds520 keVd. More-
over, the effect of the Gouy phase shift has been neglected:
the slow evolution of the carrier wave absolute phasesdue to
diffractiond would probably reduce considerably the contri-
bution of the static field. This clearly shows that even if the
integral of the longitudinal field is not rigorously zero, the
corresponding static field is not responsible for the important
accelerations reported in this paper.

V. CONCLUSION

The on-axis acceleration of an electron by the longitudinal
electric field of a single-cycle TM01 laser wave packet in free
space has been studied. Direct-time integration of the instan-
taneous Lorentz force revealed an intensity-induced phase
matching between the electron and the field, when the pulse
intensity exceeds 1021 W/cm2. The kinetic energy trans-
ferred to the accelerated electron depends on the absolute
phase of the pulse carrier. For ultrahigh intensitiesssay
1022 W/cm2d, an electron could be accelerated from rest to
GeV energies within a few millimeters. The acceleration
scheme could be implemented as a probe-driver experiment,
where a first laser pulse would be used to prepare a bunch of
thermal—close to rest—electrons which are subsequently ac-
celerated by a high-intensity ultrashort TM01 laser wave
packet. Alternatively, free electrons could probably be pro-
duced and accelerated by a unique laser pulse, illuminating a
very thin foil.
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