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Polaron effects on the binding energy of a hydrogenic 
impurity in a semiconductor quantum well 
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Department of Physics, Middle East Technical University, 06531 Ankara, Turkey 

Received 3 October 1986, in final form 8 April 1987 

Abstract. The polaron effect on the ground-state level of a hydrogenic impurity in a 
semiconductor quantum well iscalculated asa functionof the well thickness. The formulation 
is based on an extension of the strong-coupling polaron theory and covers the overall range 
of the electron-phonon coupling strength. It is observed that in a GaAs-based quantum 
structure the phonon-induced shift in the binding energy is smaller than that in the bulk case 
except for too narrow well sizes. 

1. Introduction 

In recent years there have been a number of studies concentrating on the effect of 
confinement in semiconductor quantum wells on bound states associated with hydro- 
genic impurities. Bastard (1981) was the first to treat the problem of a quasi-two- 
dimensional donor in a GaAs-GaAlAs quantum well with infinite potential barriers at 
the interfaces. It has been reported that an increased degree of confinement along the 
growth axis leads to effective potentials much deeper than that in the bulk case. Many 
other aspects of the same problem-such as finite barriers determined by realistic 
conduction band offsets at the interfaces, the effect of the non-parabolicity of the GaAs 
conduction band or free-carrier screening effects, for example-have been examined by 
various authors (Greene and Bajaj 1983, Jayakumar and Balasubramanian 1985, Brum 
et a1 1984). 

The contribution to the binding from the coupling of the donor electron to LO 
phonons has been considered by Erselebi and Tomak (1985) within the framework of 
the strong-coupling polaron theory and by Degani and Hipolito (1986) in the weak- 
coupling limit. The latter authors include the screening effects for both the impurity 
potential and the electron-phonon interaction and explore the binding energy as a 
function of the free-electron density for various well sizes. 

The case of a polaronic donor in a strictly two-dimensional approximation for the 
electronic charge density has been extensively investigated by Mason and Das Sarma 
(1986). Using perturbational, variational and Feynman path-integral techniques they 
have studied the corrections to the binding energy induced by electron-phonon inter- 
actions over a wide range, interpolating between the weak- and tight-binding limits. 

In this work we reconsider the problem of a bound polaron in a quantum well 
heterostructure-type system and explore the ground-state energy as a function of the 
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well thickness in the overall range of the electron-phonon coupling strength. We for- 
mulate the theory in the manner proposed by Devreese et a1 (1982). The calculation is 
of a variational nature, and even for a small coupling constant ( a  G 1 )  the procedure is 
to start with the strong-coupling approximation where the electron is taken to be rapidly 
fluctuating within aself-inducedpotential well built up by the correlatedvirtual phonons. 
The small-a limit is handled by a suitable modification of the adiabatic polaron state 
which allows the theory itself to make an extrapolation towards the weak-coupling 
regime. 

2. Theory 

The Hamiltonian we use consists of an electron attracted to a Coulomb centre located at 
the origin midway between the confining potential barriers of a semiconductor quantum 
well: 

where 

He+ = V,[U, exp(iQ * r )  + a b  exp(-iQ * r ) ] .  ( 2 b )  
Q 

Here we use hoo as a unit of energy and ( h / 2 m * ~ ~ ) l / ~  as a unit of length. The operators 
u b  and uQ respectively create and annihilate a phonon of wavevector Q = q + q,i and 
frequency wo. With the normalisation volume set to unity for notational convenience, 
the electron-phonon interaction amplitude is VQ = (4~ca)”~/Q. The dimensionless par- 
ameter p = ( e 2 / ~ ) ( 2 m * / t i 3 0 0 ) 1 / 2  gives the strength of the Coulomb attraction screened 
by the static dielectric constant K of the material. 

To obtain the binding energy in the adiabatic approximation we take a Pekar-type 
trial ansatz (Pekar 1954) which is separable into the particle part qo and the phonon 
part. We choose 

w s c  = vo eSP) (3) 
wherein the exponential operator e’, with 

where 

determines the optimal lattice deformation surrounding the electronic charge density. 
A further optimisation with respect to the parameters contained in qo leads to the 
relaxed state of the system describing the composite behaviour of the electron and the 
surrounding polarisation field. 

Under the displaced oscillator transformation H+ e-SH es the Hamiltonian 
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becomes 

where 

779 = exp(iQ r) - up .  

well 5519 

Minimisation of ( O ~ ( q o ~ H ’ ~ q o ) ~ O )  with respect to qo leads to the strong-coupling result 
for the energy. Taking a hydrogen-like behaviour, To = Nexp(-r/a),  we obtain 

E$D) = -(p2/4) - (5/16)(~p - ( 5 / 1 6 ) 2 ~ 2  

= -p2  - ( 3 / 8 ) ~ ~ ~ p  - (9/256)n2a2 

(sa) 

for the bulk case and 

(8b) 

when qo is taken to be strictly two-dimensional. The corresponding results for a finite- 
width quantum structure have already been reported (ErGelebi and Tomak 1985) and 
we do not review them here. 

We now extend the formulation to the case of weak coupling wherein what is more 
appropriate is the perturbation theory with He-ph in equation (1) taken as a perturbation. 
It should be noted, however, that with decreasing degree of localisation of the electron, 
op given by equation (5) tends to zero on average and consequently H‘ reduces to the 
starting Hamiltonian (1). One is therefore led to include a first-order correction to the 
trial state q o / O )  with the last term in equation (6) being a perturbation. We then have 

in which the energy eigenvalues E, ( n  = O,1,2, . . .) of the unperturbed part of H’ 
depend on LY and the lattice coordinates in an involved manner. The summation over 
the intermediate states can be projected out simply by replacing the energy denominator 
by an average quantity which in the calculation will be determined variationally. Using 
completeness we write 

= v Q g Q V 6 a a q O 1 0 ) .  (10) 
Q 

The trial wavefunction for the Hamiltonian H’ is then extended to 

v’ = cg,o/O) + w 

F(C, g Q )  = C 2  + 

hQ = 1 - 0;. 

(11) 

(12) 

where c is a normalisation constant given by 

V i g i h Q  - 1 = 0 
Q 

with 

(13) 
In order to  find the optimal fit to gQ one has to minimise the expected value of H‘ in 
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the state (11) subject to the constraint (12). For the energy we obtain 

E(c,  g Q )  = ( ~ ‘ l ~ ‘ 1 ~ ’ )  (14) 
= c2e0 + (1 - 2c2)Ao f 2c V t g Q h Q  + v & g t ( e Q  - f Q  + h Q )  

Q Q 

where 

Thevariational procedure then requires a/dgQ(E - A F )  = 0, withA beingaLagrange 
multiplier. We find 

gQ/c  = -ha[(I  - eo + 2I.O - A)hQ + ep - f a ] - ’  (16) 
where 

and the expression 

E = e o - A o + A  (18) 
for the energy, which is to be minimised further with respect to rp0. 

The additive term A ,  by means of which the adiabatic theory goes over to the weak- 
coupling regime, depends implicitly on a and p through the transcendental equation 
(17). For a strong enough Coulomb attraction and/or large coupling constant, A tends 
to zero and the strong-coupling limit is readily obtained. However, as the coupling 
constant is shifted down to realistic values, such as for GaAs ((U = 0.07), the polaronic 
correction deviates considerably from Ao. For a loosely bound electron the strong- 
coupling approximation loses its validity, since in this limit the charge density fluctuations 
of the electron are no longer faster than the phonon frequencies. In a perturbation 
theoretic calculation this feature shows up in that the corresponding perturbation series 
becomes poorly convergent and one needs to include the remaining terms, other than 
n = 0, as well. This is accomplished in the present formulation, however, by solving the 
transcendental equation (17) for the Lagrange multiplier A .  

3. Results and conclusions 

For a finite-width quantum well with infinite potential barriers at z = &&L we take the 
same wavefunction used by Bastard (1981) for the donor electron: 

q0 = Ncos(nz/L) exp(-r/a). (19) 
Such a choice gives a reasonable description of the ground state starting from a thin layer 
of the well material going over to the bulk limit. We obtain closed analytic but rather 
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lengthy expressions for the set of equations (15). We therefore do not present them here 
and are content with stating the final results only. 

Before doing so, however, we would like to make a digression and summarise first 
the strictly two-dimensional results for completeness. In this way we achieve a means of 
testing the validity of the present formulation using the reasonably valid Feynman path- 
integral calculation adopted by Mason and Das Sarma (1986) for the same problem. We 
obtain 

A0 = Incuo-' 

eo = u - ~  - 2pa- '  

eQ = (q2  + e o ) ( l  - U $ )  + upq2ua2p 

where 

and 

U* 

4 p* = 1 + - (q ? q')2 

with E(m) being the complete elliptic integral of the second kind with parameter 

Because of the analytic complexity, the optimal fits to A and U have been performed 
numerically. Without the polaron effect (a = 0) we obtain trivially ho = 0, h = 0 and 
hence E = -p2:  the two-dimensional Rydberg which is four times that for the bulk case. 

Choosing (Y = 0.07 and p = 0.781 for GaAs we obtain E / p 2  = -1.196. For the case 
of deeper binding such as in a HgTe-CdTe quantum well structure with (Y = 0.40 and 
/3 = 1.572, the corresponding ratio is -1.388. The values obtained here are in perfect 
agreement with those derived by Mason and Das Sarma (1986) using the Feynman path- 
integral technique. 

In table 1 we tabulate the ground-state binding energy shift A E  = / E  - p2i as a 
function of p2 for (Y = 0.07. A comparison of our results with figure 3 of Mason and Das 
Sarma (1986) reveals that the formulation presented in this work yields almost identical 
values to those obtained by the path-integral calculation except for vanishingly small or 
very large p 2 .  In the absence of Coulomb binding with (Y = 0.07 we obtain E = -0.105, 
which differs from what should be expected for a free polaron by only about 5%.  The 
weakness of the theory in the limit p- 0 is because a 1s-like state for the electronic 

Table 1. The ground-state binding energy shift A E  of the 2D polaronic donor as a function 
of p' for a = 0.07. 

B' 0 0.1 0.2 0.5 1 2 3 4 5 
AE(fiw0) 0.105 0.107 0.109 0.117 0.129 0.152 0.173 0.192 0.209 
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charge density becomes rather inadequate to reflect a correct description of the case 
where a frail Coulombic structure is dominated by the polaronic aspect. Within the 
framework of the same theory for a free polaron with a gaussian approximation for the 
variational electronic state (Erselebi and Siialp 1987) we in fact obtain E = -(n/2)(~ = 
0.110 in the weak-coupling limit. At the other extreme of rather strong Coulomb 
potentials (p2  >> 1) the path-integral theory gives somewhat underestimated values, 
since in this limit the hydrogen-like structure we have adopted is more appropriate than 
a gaussian-based approach. However, the discrepancy is still small for /3* not too large. 
For p2 = 5 ,  for instance, the resulting deviation of the path-integral calculation from the 
present theory is not more than 2%. 

For completeness, in figure 1 we provide a closer view of the small-p2 regime and 
compare our results with the approximation based on the effective mass argument- 
AE = (n/2)a + (n/8)ap2 (see Mason and Das Sarma 1986)-which proves to work well 
for small a and for small p2 (i.e., RZD -e hoo)  . We once again observe a very close 
agreement between the two approaches except when p2 4 1 and p2 S 1. The dis- 
agreement in the small-p2 limit is attributed to the present calculation for the reasons 
given above, whereas the deviation for comparatively stronger Coulomb binding is 
essentially because the approximate effective mass formula becomes no longer equi- 
valent to an electron orbiting together with its concomitant lattice deformation (i.e., the 
polaron state undergoes a change from a nearly free to a relatively localised one). 

Having reviewed the purely two-dimensional polaronic donor, we now continue with 

0.2 0 .A 
P 

0.6 

Figure 1. The polaronic shift A,!? plotted against j3 in the 2D approximation. The full and 
broken curves display the results of the present formulation and of the approximation based 
on the effective mass argument respectively. CY = 0.07. 
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Figure 2. The (Y dependence of A €  for the 3D and 2D cases as well as for L = 0.1 (in units 
of the unperturbed 3D Bohr radius). p = 0.781. 

our main theme and present an overview of the polaron effect in a finite-width quantum 
well with a, p and L being retained as free parameters. In figure 2 we provide an explicit 
plot of the a dependence for the phonon-induced shift A E  = lE(cu) - E ( a  = 0)i in the 
binding energy. We take p = 0.781 as for GaAs and display the general trend for 
two and three dimensions as well as for L = 0.1 (in units of the unperturbed three- 
dimensional Bohr radius, a3D = 2p- I ) .  

A more complete representation of the behaviour of the system is given in table 2 
where we tabulate an array of values for A E  over various well thicknesses ranging 
between the two-dimensional and bulk limits with CY = 0.02,0.05,0.1,0.2 andP2 = 0.1, 
2 ,  10. As expected the polaronic contribution to the binding increases in general with 
increasing degree of confinement (i.e., with increasingp2 or L-' as well as with increasing 

It should be evident that the three parameters ( a, p and L )  characterising the system 
do not all enter the problem in an independent way but together play a somewhat 
involved and interrelated role in the binding. In fact a careful examination of the various 
columns in table 2 (as well as figure 3) reveals that AEundergoes rather interesting types 
of variations when we vary L.  We observe that, for comparatively large values of p2,  A E  
increases monotonically as the dimensionality is reduced from three to two (cf. the curve 
for p2 = 10 in figure 3) .  Such a feature clearly originates from the fact that, with 
decreasing L ,  the electron is forced to orbit in two dimensions and the wavefunction is 
squeezed onto the Coulomb centre, resulting in stronger binding and hence an enhance- 
ment in the polaron effect. 

For weaker binding (small p2) the behaviour is rather different. Going from the bulk 
case to the two-dimensional limit there comes about a competitive interrelation between 
whether the charge distribution (and the lattice deformation) will be pushed onto the 
impurity centre or will expand to relax itself in the transverse directions. Starting from 
L 1 the effect of the expansion dominates first, causing the polaron effect to decrease. 
Meanwhile, with the contracting dimension the electronic cloud experiences an increas- 
ingly large pressure and therefore, after a certain well width, the degree of localisation 
of the electron-phonon system starts to increase, leading to larger polaronic con- 

4. 
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Table 2. The ground-state binding energy shift A E  for various well widths ranging between 
the 2D and bulk limits. (The well width Lis  given in unitsof the unperturbed 3D Bohr radius. 
2p-1). 

AE(fiw0) 

CY = 0.02 (Y = 0.05 (Y = 0.10 (Y = 0.20 

L (2P-I) p’ = 0.1 

2D 0.0311 0.0771 0.1517 0.2960 
0.1 0.0173 0.0435 0.0873 0.1731 
0.2 0.0165 0.0415 0.0838 0.1679 
0.5 0.0148 0.0373 0.0759 0.1551 
1 0.0134 0.0334 0.0682 0.1411 
2 0.0131 0.0315 0.0620 0.1268 
3D 0.0194 0.0480 0.0944 0.1840 

p* = 2 

2D 0.0435 0.1090 0.2189 0.4412 
0.1 0.0332 0.0827 0.1654 0.3324 
0.2 0.0305 0.0760 0.1520 0.3056 
0.5 0.0256 0.0633 0.1264 0.2543 
1 0.0219 0.0534 0.1059 0.2121 
2 0.0197 0.0466 0.0906 0.1786 
3D 0.0206 0.0514 0.1024 0.2035 

8 2  = 10 

2D 0.0793 0.1988 0.3991 0.8042 
0.1 0.0657 0.1641 0.3286 0.6605 
0.2 0.0607 0.1513 0.3028 0.6085 
0.5 0.0502 0,1247 0.2491 0.4998 
1 0.0411 0.1018 0.2026 0.4093 
2 0.0331 0.0821 0.1627 0.3237 
3D 0.0266 0.0665 0.1331 0.2670 

tributions to the binding (cf. the curve for p2 = 0.1 in figure 3). For comparatively 
stronger Coulomb attraction this salient feature becomes less prominent and does not 
even show up, since the starting state of the system will already be a localised one. 

We now confine our discussions to a GaAs-based quantum structure and give the 
relevant results in table 3. We at once observe that A€ increases by a fairly large 
factor of about 1.74 when the dimensionality is reduced from three to two. Such an 
enhancement in the overall polaron effect should not be misleading, mainly because the 
purely two-dimensional limit of the model is only interesting from a formal point of view 
and obviously cannot produce a reliable physical picture. For actual well widths of 
interest the polaronic corrections to the energy are much lower than those indicated by 
the two-dimensional approximation. In going from the bulk case to L = 20 A, for 
instance, the increase in A€ is only about 1%. For thicker well widths the situation is 
even more drastic. In contrast to what is usually expected, the phonon contributions to 
the ground level do not become enhanced but are reduced (by about 6% for L = 50 A 
and by 8% for L = 100 A) compared with the three-dimensional case. The reason for 
such a large discrepancy between our finite-width results and those of Mason and Das 
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I \ 

t 0.013 

I , 

Figure 3. The ground-state binding energy shift A E  plotted against L (in units of the 
unperturbed 3D Bohr radius). The energy scale on the left (right) is for p2 = 0.1 (10). CY = 
0.02. 

Sarma (1986) is essentially due to their interpolation scheme based on the effective 
mass argument, which strictly requires the free-polaron energy to be totally separable. 
Although the approximate effective mass approach marginally holds true for GaAs in 
purely two and three dimensions, this does not seem to be the case for a finite-width 
quantum well. It should be noted that the energy expression (18) involves implicitly 
some fraction of the bound-state energy of the free polaron, which itself is -a in three 
dimensions and -(n/2)a in two dimensions. In fact the percentage of the free-polaron 
energy which actually plays a significant role in the binding and the percentage which 
can be regarded as separable depend on a and p, and also on L.  With parameter values 
appropriate to GaAs, the effective mass formula for the two-dimensional case is only 
approximately valid, yielding a slightly overestimated polaron effect, A E  = 0.127 (cf. 
figure 1). The corresponding three-dimensionalvalue is A E  = a + (a/6)(P2/4) = 0.072, 
which is inevitably larger than that obtained in the present calculation ( A E  = 0.069). 
The discrepancy is, however, rather small in both extremes of the well size. With L 
introduced into the model as a further parameter the discrepancy grows larger and, 
starting from either the two-dimensional or the bulk limit, A E  calculated in this way 
rapidly becomes much smaller than the approximate results of the approach based on 
the effective mass argument. As we pointed out earlier in this section, the well width does 
not play its role independently in the binding but also seriously affects the contributions of 
the remaining parameters (Y and p, therefore altering the qualitative aspects of the 
effective mass argument. In our opinion it is this interrelation among a, p and L which 

Table 3. A E  as a function of L for a GaAs-based quantum well structure (p  = 0.781, CY = 
0.07). 

L ( A )  2D 10 20 50 100 200 3D 
A E ( h o o )  0.1195 0.0736 0.0696 0.0650 0.0636 0.0612 0.0688 
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sets the results of the present theory apart from the interpolation scheme of Mason and 
Das Sarma (1986). 

In conclusion, we have formulated the problem of a bound polaron confined in a 
semiconductor quantum well structure using the variational approach proposed by 
Devreese etaZ(l982). We observe that for not too strong Coulomb potentials the polaron 
contribution to the binding goes through a minimum as the well width is varied between 
the bulk and two-dimensional limits. What is more unusual is that the phonon-induced 
shift in the energy levels may be even smaller than in the bulk except for narrow quantum 
wells. It should be emphasised that this striking feature applies to the most commonly 
studied GaAs-based quantum structure. 
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