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Non-Hermitian localization and population biology
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The time evolution of spatial fluctuations in inhomogenedwdimensional biological systems is analyzed.
A single species continuous growth model, in which the population disperses via diffusion and convection is
considered. Time-independent environmental heterogeneities, such as a random distribution of nutrients or
sunlight are modeled by quenched disorder in the growth rate. Linearization of this model of population
dynamics shows that the fastest growing localized state dominates in a time proportional to a power of the
logarithm of the system size. Using an analogy with a Sdimger equation subject to a constant imaginary
vector potential, we propose a delocalization transition for the steady state of the nonlinear problem at a critical
convection threshold separating localized and extended states. In the limit of high convection velocity, the
linearized growth problem ind dimensions exhibits singular scaling behavior described by a
(d—1)-dimensional generalization of the noisy Burgers’ equation, with universal singularities in the density of
states associated with disorder averaged eigenvalues near the band edge in the complex plane. The Burgers
mapping leads to unusual transverse spreading of convecting delocalized populations.
[S1063-651%98)01608-0
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I. LOCALIZATION AND POPULATION DYNAMICS tion number densitg(x,t), for which the reaction diffusion
equation is a straightforward generalization of the Malthus-
The mathematical analysis of spatial patterns in biologicalerhulst growth modef1]:
systems has been an object of intensive research for many
years[1,2]. Both the dynamics and the equilibrium proper-  dc(X,t)

+v-Ve(x,t)=DV2c(x,t)

ties of certain model systems have been worked out in detail. ot

Biological processes, such as the spread of a favored gene,

population growth of species, ecological competition, and so +[a+U(x)]e(x,t) —hc*(x,t),
on, are often a combination of diffusion and convection with (1.2

some kind of back reaction. These systems are not conserva-

tive; both growth and death terms, possibly involving non-whereU(x) is a zero mean quenched random variable, and
linearities, change the number of individuals involved. Awe take the convective velocityto be constant in space and
general form of such reaction-diffusion equation$lis time [4].

The homogeneous analog of this equation, without the
convection ternfi.e., U(x)=0 andv=0] was proposed by
Fisher[5] as a model for the spread of a favorable genetic
mutation. It is also useful as a description of a population
dynamics, for whicha is the difference between the linear
birth and death rate®) reflects the effect of migration, and
wherec(x,t) is the vector of reactant®.g., species of bac- the term —bc? represents some self-limiting process,
teria, nutrients, etg, D is a matrix of diffusivities, and(c) roughly proportional to the number of pairs of individuals at
describes the nonlinear reaction kinetics. The conservativpositionx. In the nonrandom casd(x)=0, there are two
termv- Vc represents a convective flux controlled by a drift spatially homogeneous fixed points: an unstable fixed point
velocity v, such as the flow of water in aqueous media,at c(x)=0, in which there is no population at all, and stable
winds, etc. fixed point atc* (x)=a/b, where the population saturates to

Although the literature discussing equations of this type ighe carrying capacity of the environment. Non-negative ini-
massive, the effect of spatial inhomogeneities in the undertial configurations evolve smoothly toward the stable fixed
lying medium is relatively unexploref@]. A disordered sub- point; analysis of the time development of spatial fluctua-
strate may manifest itself in the above formalism astions in this model reveals that equilibrium can be reached
quenched random diffusion constants, stochastic growth anda traveling solitonlike solutions, known as Fisher waves
death rates, or randomness in the reaction term; it may refle€t,5,6].
random concentration of environmental factors such as nu- It is interesting to consider Eql1.2) in the context of
trients or toxins, or an inhomogeneous illumination patternucleation and spinodal decomposition. In the absence of

dc
E+(V.V)c=f(c)+DV2c, (1.1

projected onto, e.g., photosynthetic bacteria. convection, we can rewrite E@1.2) as

In this paper we study the effect of such heterogeneities in
biological systems. As a model we take one of the simplest fz _ D(S—F (1.3
situations, the case ofsnglespecies, described by popula- at éc’ '
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where the potential is
F(c)=3(Vc)®+d(c) (1.9

with
1 1
@(C)Z—E[a'f‘U(X)]CZ‘F 3—DbC3. (1.5

The time evolution of a small concentration inhomogeneity
thus seems to resemble the dynamics of an order parameter
guenched below its critical point and subject to a cubic Lan-
dau potentiakb(c) [7]. However, the usual additive Lange-
vin thermal noise term is missing in the dynamics. This re-
flects the fact that our system admits an absorbing state, i.e.,
a population state that vanishes everywhere remains fixed at
zero. A second crucial difference arises because a smooth
non-negative initial condition will remain non-negative for
all times[8]. The Fisher growth model is thus an unusual
zero temperature “one-sided” spinodal decomposition prob- FIG. 1. Schematic of a disordered biological substrate subject to
lem. The one-sided nature of the dynamics ensures that ridiffusion and convection. The dark spots represent environmental
unphysical effects arise due to the unbounded potefti&) fluetuations, as exemplified by an inhomogen_eous pattern of light
at large negativec. Interesting studies exist of domain Projected onto a growing population of bacteria.

growth in, e.g., random Ising systems at zero-temperature

[9-11], but we are unaware of a similar body of work on ~a=10"3/sec, we find fluctuating Fisher wave velocities of
“one-sided” population growth models. Another area of ac-at most a few microns per second. Thus, we shall be prima-
tive research concerns zero temperature dynamical systemi$y concerned with small values of and low Reynolds
with multiplicative noisg 12]. Here, however, the noise typi- number flows in our analysis.

cally depends on both space and time, in contrast to the When randomness is introduced into Efj.2), constant
purely space-dependent functibh(x) in Eq. (1.2). configurations are no longer possible steady-state solutions.

In Eq. (1.2), both convection and random fluctuations of Instead, the steady state is spatially modulated, reflecting the
the growth rate have been added to the original Fisher modetompetition between the disorder and the diffusion term.
For the sake of concreteness, we can conside(Ef.as a Convection, on the other hand, tends to make the final state
model for a colony of bacteria that grows on an inhomoge-more uniform; for very high convection velocities, one might
neous substrate. The linear growth rate of the bacteria deexpect that each bacterium feels some ‘“effective medium”
pends on a spatially randothut inexhaustiblefood supply  average of the random environment as it drifts rapidly from
at each point, or other inhomogeneous, time-independentne site to the other. In this paper, we show that there is a
environmental factors such as the intensity of illumination.phase transition from one regime to the other in the linear-
By reducing the light intensity, this linear growth rate couldized growth problem and suggest that this sharp change of
presumably assume both positive and negative values at dibehavior persists in the steady state determined by the full
ferent points in space. The food or illumination are quencheghonlinear equation.
random variables. The bacteria diffuse, as well as undergo In order to simplify our problem, let us assume that a
convection due to flow of the ambient medium with velocity stable nonzero steady-state population prafii¢x), exists,

v (Fig. 1) [13]. as well as the unstablg(x)=0 steady state. The time evo-

In this simple model of bacterial population growth, we lution of small fluctuations around thegstable or unstabje
neglect the dynamics of a diffusing nutrient supply or feed-configurations is determined by linearizing E#.2) near the
back from waste produc{d]. For growth in an inhomoge- fixed point functions. Linearizing about the “Gaussian”
neous light source, for example, we might require a fixedfixed pointc(x)=0 leads to
homogeneous nutrient supply, possibly stabilized by large
nutrient diffusion constants. Wakitt al. [14] have studied

. o . . Jc
the growth ofBacillus subtilisunder various conditions, and —=~DV2%—v-Vc+[a+U(x)]c. (1.6)
found a large regime of low Agar density and high nutrient at
concentration that is well described by the homogeneous

analog of(1.2) without convection, consistent with our as- | inearization about the nontrivial stable steady-state con-

sumptions. figuration,c* (x), which satisfies
If the fluctuating growth ratdJ(x) is of order fa, we

shall see that convection will significantly perturb population
growth when the flow rater exceeds the corresponding
change in the Fisher wave velocity] sv;=2+D da. Upon
taking as an effective diffusion constant for a motile bacterideads to a similar equation foc'(x,t)=c(x,t)—c*(x),
D~6x10 % cnm?/sec[15] and growth rate fluctuationda  namely,

DV2c* —v-Vc* +[a+U(x)]c* —bc*2=0, (1.7



PRE 58 NON-HERMITIAN LOCALIZATION AND POPULATION BIOLOGY 1385

ac’ ) results of Refs[20] and[21] to the population biology prob-
—y =DVic'—v-Ve'+[a+ U’ (x)]c’ (1.8)  lem treated here in Appendix C.
After a Cole-Hopf transformation, i.e.,

with

\ ()]
D (x,t)

c(x,t)=exp

U’ (x)=U(x)—2bc*(x). (1.9 : (1.10

We shall assume that* (x) has no long range correlations, the linear growth model described by Ed.6) becomes
so that the linear operator in E(L.9 now involves a rede-

fined functionU’(x), with quenched random fluctuations atq)(x,t):DV2<I>(x,t)+£(Vd>)2
away from its mean value similar to those described by 2
U(x). —v-VO(x,)+a+U(x),  (1.1D

One main interest in this paper is the evolution of small
fluctuations about these fixed point configurations. Near thgyhile ¢’ (x,t)=exp[A®’(x,t)] generates a similar equation
unstablec(x)=0 configuration, fluctuations grow until they from Eq. (1.8) with U(x)—U’(x). Chenet al. [22] have
reach the point for which the linearization fails. On the otherproposed Eq(1.11) as a model for the dynamics of strongly
hand, small perturbations of the stable steté¢x) will de-  driven charge-density waves with quenched disorder. Later
cay, so that the linear approximation becomes better in timén this paper, we use Eq1.11) to study sample-to-sample
Thus, Egs(1.6) and(1.8) describe the short time growth of fluctuations in Inc(x,t) in the limit of high convection ve-
dilute populations or the long time decay to the stable statfocities. We obtain exact analytic results, which should be

Although we shall frame most of our discussion in terms ofapplicable both to linearized models of population dynamics
the unstable modes described by E#.6), a very similar  and to charge density waves.

analysis applies to Eq1.9). Equations(1.6) and(1.8) may also be written as
Similar equations emerge in a variety of physical situa-
tions, such as models of chemical reactions and neural net- dic=Lc, (1.12

works [1]. Miller and Wang and othergl6] have recently .
studied the spectrum of an operator describing diffusion of 4/here the Liouville operator, e.g.,
passive scalar subject to a spatially random, time- —NU2_\.
independent velocity field, but without simple multiplicative £=DVi-v-V+atU), (.13
randomness. A closely related physical system from whictyenerates the time evolution of the system. The spectra and
we intend to draw is ﬂUCtuating vortex lines in Superconduct'eigenvajues of random non-Hermitian Operators similar to
ors in the presence of columnar defects, with the externqi_:q_ (1.13 have attracted considerable interest recef2Bj.
magnetiC field tilted away from the direction parallel to the Provided linearization is an adequate approximation, the dy_
defects[17,18. The partition functionZ(x,t) for a single  namics of this system is determined by the eigenvalues and
line at positionx and heightt then satisfies Eq.1.6) where  the eigenvectors of. Near the stable fixed poirt* (x) one
D is given by temperature divided by the tilt moduld3,  expects only decaying modes, i.e., all real parts of the eigen-
=T/(Ze,), v is proportional to the tilt field, ant)(x) cor-  value spectrum of. are negative, while near the unstable
responds to the columnar disorder potential in the supercorstate c(x)=0 there are at least a few positive, growing
ductorV(x) normalized by the temperaturg(x) =V(x)/T. eigenstates. These expectations can be demonstrated explic-
Some basic facts about vortex lines are revived in Appendixtly when randomness is absent, i.6.(x)=0. In this case
A. It is interesting to note that Eq1.6) also describes the the right eigenvectors of the non-Hermitian operdtbid3
growth of monetary capital with diffusion, spatially varying about the unstable fixed point are simple plane waves
interest rates, and drift due to say population migration.  ¢R(x)~e'** that satisfy

Another related problem concerns diffusion and drift of
particles in a medium with randomly distributed trgpi®— LX) =T pR(X), (1.14
21]. The long time decay of the density of active particles as . .
obtained experimentally from, e.g., photoconduction studied'ith the complex eigenvalue spectrum
in guasi-one-dimensional polymef%9], is expected to ex- . 2
hib?t stretched exponentialeelgxation in the apbsence of a bias F(k)=a-iv-k=Dk" (119

[20,23. When a biasing electric field is present, the decayrne gperator, which corresponds to linearization about the
has a simple exponential prefactf21] with, however, a nntivial fixed pointc* (x)=a/b, has the same eigenfunc-
transition from stretched exponential to exponential decay iy with spectrum

the subleading behavior above a critical bias thresha@.

The coarse grained physics can be approximated bylE?). I''(k)=—a—iv-k—DK>. (1.16
without the nonlinearity antll (x) chosen so thatll growth

eigenvalues are negative whes=0. Our primary concern Provideda>0, the eigenvalues of E¢l.15 have a positive
here is with situations where at least some growth eigenvaleal part for smalk, while all the eigenvalues of Eq41.16

ues are positive. However, a delocalization transition hafiave a negative real part. Note that the eigenfunctions are
also been invoked to describe an abrupt onset of a drift vealways delocalized plane waves.

locity as a function of the bias as the particle density decays It is instructive to use the full nonlinear equati¢h.2)

in the trapping probleni21]. We discuss the relation of the [with U(x)=0] to trace the time evolution of a small ran-
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dom initial conditionc(x,t=0) in terms of the above eigen- dc(t) d

modes whera>0. Assume that initial conditions have con-  — g~ = 52 21 [€9%Cyre () +e79%C, o (1)]
tributions at all wave vector& including k=0. Although e

manyeigenmodes are unstable neéx)=0 and grow expo- , _ 2

nentially in time, thek=0 mode grows most rapidly. Once +§ [a"+U(x)]cx(t) b; (v, (.19

this uniform mode saturates at its fixed point value, it then, yore c (t) is the species population at the site§ of a
X

acts to suppress all other growing modes via mode coupling. gimensional hypercubic lattice, and tfe} are unit lattice
induced by the nonlinear term bc®(x,t). These expecta- \ectors. Heraw is proportional to the diffusion constant of

tions are illustrated via a mean field solution of E#.2) in the corresponding continuum modeVv4D//2) wherel, is

Appendix B. . . )

: .- . : . the lattice constant, ang=v/2D is proportional to the flow
ea:i—zh: dsgfgﬂ; f;?)rearc;[g rrlsgﬁzn(g;h;::g:{;égﬂ?@ﬂzr?frg:qedgrr;r_ate v. U(x) andb have the same interpretation as in the
ness is present. Whew=0, the operator=DV2+a continuum model, an&’'=a— 2w coslyl,. This choice of

: o ; . a’ ensures that the total population is conserved when
U IS Hermman_wnh real elg_envalues, and for strong =U(x)=0, as in the continuum Ed1.6). When linearized
enough disorder, all its eigenfunctions are real and locahzedéboutc 0 E (1.19 may be written as
the localization length is smallest in the tails of the energy x=5 EQ- (L y

band, corresponding to extreme valueduqi). In one and dey(t) -
two dimensions, it is widely believed thatl states are lo- TZZ L(X,X")Cy (1), (1.20
calized even for weak disord§?4]. x

Whenv#0, the Liouville growth operator is no |Onger where the discrete Liouville Operat(zi]’ is the matrix
Hermitian, although it can still be diagonalized using a sys- d
tem of left and right eigenvectors. Since the convection term 7= HZ 2 [e79%|x+e,)(x|+e%%|x)(x+e,]
in Eqg. (1.6) may be absorbed into the Laplacian by complet- 2% = v v
ing the squareV —V —v/2D, the right and left eigenfunc-
tions of the new Liouville operator are related to t‘be eigen- + > [a' +U(x)]|x)(x]. (1.2
functions of L(v=0) via an imaginary ‘“gauge X
transformation”; if ¢, ,—o(X) is an eigenfunction of the Her- As in the continuum case, the same equation arises when

mitian problem, ther25] linearized about the nontrivial fixed poief provided we
make the replacemertd (x) —U’(x) with U’(x) given by
R — aVvV-X/2D Eq' (1'9)
Pnv(X)=€ bnv=0(X), (1.17 Typical spectra for a 1000-site model in one dimension

with U(x) uniformly distributed in the intervdl—A,A] are
shown in Fig. 2 for three values gfcv [26].

For g less than a critical valug,, all eigenmodes are
localized, and the eigenvalues remain real and trivially re-
are the eigenfunctions of the non-Hermitian operator withiated to their values fog=0 via a shift like Eq(1.18. (Had
thesameeigenva'u&-n, up to a constant Shr{Ql], we not seta’=0 on FIgS. 2 and 3, all pIOtS would shift
rigidly to the left with increasindg|«=|v|.) Forg;<g<gs,
extended states with complex eigenvalues appear near the
center of the band. Localized states still appear near the band
edges. Folg>g,, every localized state is destroyed by the
non-Hermitian perturbation, and all states are extended. In
this limit, eigenfunctions are slightly perturbed Bloch
provided thaté,, the localization length in the nondriven states—the lattice version of plane waves. The spectrum is
problem, is less thab/v. Thus, for small convection veloci- well approximated by the disorder-free limit, i.e., the lattice
ties, there is aspectral rigidity — except for the shift, the analog of Eq(1.15
real eigenvalue spectrum is locked to the values it had for
v=0. As v increases, however, some eigenfunctions eventu- I'(k)=2w cos(kly+igly), (1.22
ally become extended and the dynamics becomes sensitive to
boundary effects. The correct eigenfunctions and eigenvalueherelo is the lattice constant and we have aet=0.
are no longer related to the=0 case by a simple transfor- With our definition of £, states near thtop of the band
mation. With periodic boundary conditions, complex eigen-should give a reasonable approximation to the spectrum of
values and delocalized modes appear whein becomes the continuous operatdf.14); Eq. (1.15 then describes the
smaller thané,. As v is increased, these delocalized statesupper edge of the ellipse of eigenvalues in Figc)2The
appear first at the band center, for which the localizatiorstates at the bottom of the band, on the other hand, have
length is maximal, then move outwards. spatial characteristics which are artifacts of the lattice dis-

These expectations for the eigenvalue spectrum have beenetization.
demonstrated by analytic work and a numerical analysis of a Figure 3 shows typical spectra for the discrete operator in
discrete lattice model, inspired by the physics of vortex lineswo dimensiong26]. Here, too, eigenfunctions near the top
[26]. The corresponding lattice discretization of the nonlin-of the band should give good approximation to growth
ear equation that motivates our present work reads modes in the continuum limit. Again, all eigenvalues remain

br ()= ¥ o(X)

2

€1 € (V)= e (v=0)— :—D, (1.18
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FIG. 2. Energy spectra of one-dimensional 1000-site lattice FIG. 3. Typical spectra of the two-dimensional tight-binding
model with randomnesa/w=1. We have sea’=0 for clarity in ~ non-Hermitian model with random site potential. We haveeset
all plots. The resulting spectrum for the same realization of the=0 for clarity in all plots.(a) Caseg<g;; delocalized states, real
random potentialU(x) e[ —A,A] is plotted here for three different spectrum(b) g; <g<g,; extended states with complex eigenvalues
values ofg. (a) Caseg<g;,; all eigenstates are localizeth) g, coexist with localized states with real eigenvalues near the center of
<g<gy; bubble of complex eigenvalues indicating extended state$he band(c) g,<g; states at the tails of the band become extended,
appears near the center of the bafwl.g,<g; all the eigenstates and there are complex eigenvalues even near the top of the band.
are extendedAfter Ref.[26]). (After Ref.[26].)

real and the eigenfunctions remain localized whieng,.  that of the disorder-free limit of the lattice model, similar to
For g;<g<g,, however, extended and localized states  the one-dimensional case. However, as mentioned in Ref.
existnear the center of the baf@6]. Wheng>g,, even the [26], this apparent simplification is actually a finite size ef-
most rapidly growing states at the top of the band are delofect in d=2: level repulsion leads to large modification of
calized. Fowerylargeg (not shown the spectrum resembles the Bloch wave functions and eigenvalues even for weak
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disorder in any sufficiently large system. Thus, chaotic speclike equation, one might hope that results from electron lo-
tra similar to Fig. &) are always expected for largedue to  calization theory would be applicable to the simple model of
disorder in the “thermodynamic limit” of large system sizes heterogeneous population dynamics discussed above. Of
ind=2. In Sec. IV we argue that the growth fgr-g, when  course, electronic states are either empty or full, according to
d=2 is in fact described by a d1)-dimensional Pauli exclusion principle. In contrashanyindividual mem-
Schralinger-like equation with space- and time-dependenbers of a species participate in the growth modes determined
randomness. The anomalous critical exponents that descrilley the continuum model equation studied here. Another dif-
this situation lead to universal power law singularities in theference is the form of the growth-limiting nonlinearity in Eq.
density of states near the band edge in the complex plane.(1.2).

If we take a gradient and sefx,t) = — V®(x,t), the dy- In this section, we explore the consequences of localiza-
namical growth mode{1.11) that results from a Cole-Hopf tion for the simple problem of “unbounded growth,” i.e.,
transformation reads growth at times before the nonlinearity in E4.2) becomes

important. We assume homogeneous initial conditions, weak
Au(X,t)+ (V- V)u(x,t) +A[u(x,t) - V]u(x,t) = DV2u(x,t) convection, and parametefsmall b, for example such that

the time domain over which unbounded growth occurs is
very large. Effects of the nonlinear term will be discussed in
Sec. lll.

Although many modes may now be growing exponen-
p’ally, the fastest growing eigenfunction eventually domi-
nates the center of mass of the evolving population distribu-
tion. We show here that the tint& it takes for the “ground
state” (i.e., thefastestgrowing eigenfunctionto win out in a
large but finite domain grows very slowly as a function of
C't_he domain radiu®. The precise form of* (R) depends on
the behavior of the density of localized states in the tail of

velocity v grows from small toward large values, the mostthe band of growth eigenvalues. For the simple discretized

; ; —1n2/d
rapidly growing modes evolve from a dynamics described bﬁr?;’]VthdmOdel.d's?:ssid In Sec.(t_:f,(R) Inbl (R) V\/l?e(ed .
Anderson localization into a regime related to the Burgers"S € dimensionality of space. Lomparable resuits in semi-

model for turbulencé28]. conductors are usually determined by electrons at Fermi en-

The remainder of this paper is organized as follows. Ineray in a partially filled band, and hence are less sensitive to

Sec. Il, we assume convective effects are small, and iIIustratté1e form of the density of states. The time required for

the consequences of localization for “unbounded” popula—ground state dominance whe_n popula}tions grow in zzaspatially
tion growth, i.e., growth at times before the nonlinear term inhompgeneo_us e_nvwonment IS \_/ery_dlfferaﬁt(R)~R_ :
Eqg. (1.2 becomes important. In Sec. lll, we describe how Given a t|me—.|ndepender1t Liouville operatdr as in Eq.
these nonlinearities affect the growth when only a few mode§1-13. We describe growth in terms of a complete set of left
are unstable relative to the statex)=0. Unlike growth ina and right eigenvectors, ()} and{ ¢y (x)}, with eigenval-
homogeneous environment, the most rapidly growing eigend€Sil'n} (the complex “energy spectrum’ The time evo-
function does not suppress all other unstable modes. We sufjtion of c(x,t) is then given by
gest that the steady state undergoes a delocalization transi-
tion that occurs when the average growth rate or the R -
convective velocity is increased. c(x,)=2> capr(x)e, (2.1

In Sec. IV, we study the linearized growth problem in the "
large v limit, show that the physics is related to a
(d—1)-dimensional Schidinger equation, and demonstrate Where the coefficientic,} are determined by the initial con-
that the average growth spectrum is singularder2. This  dition
mapping leads tainiversalpredictions for the randomness-
dominated transverse wandering of a delocalized population
as it drifts downstream. A d—1)-dimensional Burgers Cn:f d% r(x)c(x,t=0). 2.2
equation is used to describe sample to sample fluctuations in
In[c(x,t)] in the limit of largev in Sec. V. A number of ] ) )
related calculations are contained in three Appendixes. Ap- At long times the system will be dominated by the
pendix C contains a discussion of the stretched exponentiaground state,” i.e., the state for which the real par is

relaxation expected for populations in a medium with ran-maximal Throughout this paper, we assume that there is
domly distributed traps. such a state, i.e., that the real part of the spectrum is bounded

above. The Liouville operator in Eq1.13 plays, with the
replacementt— —it and £L——"H, a role similar to the
Hamiltonian® in the Schrdinger equation d,c="Hc. We
shall often use nomenclature from quantum mechanics, such
There is large literature on localization of electrons inas “energy spectrum” and “low-lying states.” However,
disordered semiconductorf24]. Because the linearized because of the identificatioth= — £, the ground state of the
growth modes that arise from E€L.2) obey a Schrdinger-  Hamiltonian is actually the state with the maximal eigen-

+f(x), (1.23

with f(x)=VU(x) and subject to the constrai® xXu=0.
This is a variant of thel-dimensional generalization of Burg-
et al.[27]. In the form(1.11), such problems are sometimes
referred to as “"KPZ equations.”

In Sec. V, we show that Ed1.23) is in the same univer-
sality class as a simpled(- 1)-dimensional noisy Burgers’
equation, and use this fact to study sample-to-sample flu
tuations of Inc(x,t)] for largev. Thus, as the convective

Il. UNBOUNDED GROWTH AND THE LOCALIZED
LIMIT
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PR+ 2" pR(x)e” Tos ot
N n
C(x,t)~ . (2.9

whereNg and the{N,} are normalization constants,

Ngs=f d% @gy(x), Nn:f d% ¢n(x). (2.7

We have separated out the “ground state,” i.e., the most
rapidly growing mode and the sunxs, are over the remain-
ing excited states.
The time necessary for the ground state to dominate the
normalized species concentration in a large region of Bize
FIG. 4. The six fastest growing localized eigenfunctions for thejs clearly of ordett* ~ (T gs— ['*)=1/AT, wherel'} is the
two-dimensional lattice moddlvith v<g=0), which gave rise to growth rate of the first excited state in the region. béF)
the spectrum of Fig. @). (Figure courtesy of Naomichi Hatano e the density of states per unit volume with growth rates in
the interval betweel’ andI' +dI". Then, as we increasel’

value of the Liouville operator, and the low-lying states of ¢.0 zero. an excited state with gad" will appear when
the Hamiltonian are those which grow fastest for the Liou- ’

ville operator. Rdg(AF)Arml_ (2.9
We assume a small convective velocity, so that the left
and right eigenfunctions are described by slightly distortedf g(AI') were approximately constant near the band edge,
versions of the localized state for=0, as in Eq.(1.17), with  then AT ~1/R® and we would have* (R)~RY. However,
normalization there are in fact very few states in the tail of a band of
localized eigenfunctiong24]. In Appendix C, we show that,

for the simple lattice model of population growth discussed
J ddx ¢Lm(x)¢r?(x):5m,n- (23) in Sec. Ij p | populat grow ISCU
Deep in the band tail and close to the ground statenthe Ige=a’+wd+A 2.9
localized eigenfunction fov=0 will have the approximate and
form
AT)~ exp[— (constAT")9? 2.1
Bn—aX)~boe™ x4, (2.4 gAn = epl o eo

asAI'—0. Solving Eq.(2.8) for large R now leads toAT’

where b, x3? is a normalization constant and, is the  ~1/In (Rll,)2¢ wherel, is the lattice constant of the model.
inverse localization length associated with an eigenmode loThe relaxation time for a system of sigeis then
cated at positiorx,, .

Of course, only the ground state is guaranteed to be t*(R)~ In”%(R/lo), localized growth. (2.11)
strictly non-negativg29], as implied by Eq(2.4). Orthogo- .
nality with the ground state requires a small negative partin The sparse population of growth rates near the ground
the localized excited state eigenfunctions. Nevertheless, E§tate results in slow logarithmic growth of the relaxation
(2.4) should be a good approximation for all modes in thetime t*(R) with system siz&R. A very different size depen-
tail of the growth spectrum, provided the disorder is strongdence results for the delocalized modes of the homogeneous
Strong disorder means that all states are well localized, witfhodel. For delocalized plane wave eigenfunctions described
approximately the same localization length. The six fastesPY @ spectrum like Eq(1.15, there are many more states
growing modes on the square lattice that gave rise to thglose to the ground state. Wher=0 the density of states

Suppose the environment has been inoculated with #mit, and the above argument leads to
smalluniform population of, say, bacteria at tinhe-0. Then .
the projections{c,} of this initial condition onto the local- t*(R)~R?  (delocalized growth (212
ized eigenmodes are approximately eqeak:c, for all n.

The normalized species concentration, IIl. INTERACTIONS AND A DELOCALIZATION
TRANSITION
c(x,t)= c(x.t) (2.5 A complete analysis of the nonlinear “interaction” terms
f o c(x.t) in Eq.(1.2), or its lattice equivalent qu._19), is b_eyond the
' scope of this paper. Some progress is possible, however,

when only a few strongly localized growth eigenvalues near
is then given by the band edge of the Liouville operator have a positive real
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part. In this limit, it is easy to demonstrate that localizedcoupled differential equations. By analogy with critical phe-
population dynamics with interactions differs considerablynomena, we call the modes with positive Rg) “relevant
from the dynamics of the plane waves, which describe popuvariables” and those with negative Rg&() “irrelevant vari-
lation growth in a homogeneous environment. We shall als@bles.” To a first approximation, we can simply discard the
argue that the sharp mobility edge separating localizedtirelevant variables in Eq(3.3), because their negative ei-
eigenfunctions from delocalized ong26] implies a delocal- genvalues are not much affected by the dilute concentration
ization transition with increasing convective velocity or av- of growing modegsee below, and they will eventually die
erage growth rate in population dynamics. This transition isout.

clearly present in the linearized growth model, and we shall The behavior of the relevant variables is also simple. Be-
give arguments that it may be present as well in steady-staieause these constitute only a small fraction of the total num-
population distributions described by Ed$.2) and(1.19. ber of localized modes, they will be widely separated in

Let us write Eq.(1.2) in the form space. The overlap integral that defines the coupling coeffi-
cients in Eq.(3.5 will then be negligible unlesmm=m’=n
gc(x,t) = Lo(x,t) —bc2(x,t), 3.1) and the differential equations describing the localized eigen-
at modes decouple,
where/ is the Liouville operatof1.13, and study the steady dcy(t) )
state, which develops for long times. Upon expanding in the gt~ nCa(t) =WnCq(1), (3.6)
complete set of right eigenfunctions gf with eigenvalues
T, where
c(x,t)=2, cy(t)PpR(x), 3.2
(x)= 2 a9 (32 W= n=b [ GOS0, @7

the dynamical equations read If the convective velocity is small, the eigenvaldésremain

dcy(t) locked at their values fovecg=0, and the neglected terms
qr~ InCa(D— > WommCm(Cm (1), (3.3 are smaller by a power of eXp-«I], wherel is a typical
m,m’ spacing between relevant eigenmodes.

The evolution ofc(x,t) at long timeg(after the irrelevant
variables have died dffis determined by substituting the
solutions of Eq.(3.6),

where the mode coupling coefficients are

Wiy = J d9Xh(X) R(X) i, (X) . (3.4)

cn(0)ent
1+c,(0)(w,/T,)(ent—1)

Upon combining the “gauge transformation” Ed1.17) Ch(t) = : (3.8

with the approximate forn2.4) of the localized eigenfunc-

tions, the orthogonality conditiof@.3) leads to[26] into Eq. (3.2 and only summing over the unstable modes. In

(2k,) contrast to population dynamics in homogeneous media,
¢§z \/W exp V- (X—Xn)/D — kX=X, where asinglek=0 eigenfunction completely dominates the
steady statésee Appendix B the fastest growing localized
Zr0) eigenfunction does not interact appreciably with the other
Pr=\ exp[— V- (X—Xp)/D— kp|X—Xq| 1, relevant variables. The steady-state fixed pat{x) ap-
" I'(d)Q(d) proached at long times is then characterizedsnyoccu-

(3.5  pied modes,

where Q4 is the surface area of a unit spheredrdimen-

sions. (=" crén(x), (3.9
Now consider what happens in, say, the lattice population

growth model(1.19 when we vary the average growth rate

a’, starting with large negative values. As discussed in Ap

pendix C, the real part of the growth spectrum broadens to a

width of orderwd+A abouta’ due to diffusive hopping C*:E (3.10

between sites and randomness.—f’'>wd+A, then the owy’ '

real parts of all eigenvalues in E(.3) are negative and the

population becomes extinct. As we increasehowever, we andX; means only unstable eigenfunctions make a nonzero

eventually reach the simple but interesting situation where &ontribution to the sum. This state is similar to the “Bose

small fraction of the eigenvalues becomes positive. Thalass” phase of flux lines in type Il superconductors, where

coupled equation$3.3) then resemble the set of renormal- a plays a role of a chemical potential for vorticegt8]. Un-

ization group recursion relations governing flows in thelike the Bose glass, however, the number of degrees of free-

space of Hamiltonian coupling constants that describe equidom associated with each occupied localized state is highly

librium critical points to one loop ord€gf30]. Here, an ex- variable. The “occupation numberN, of an unstable eigen-

pansion ine=4—d is used to truncate an infinite set of mode is, from Eq(3.9),

Wwhere the fixed point values) are
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FIG. 5. Schematic of a one-dimensional eigenvalue spectrum
below and above the delocalization threshold. On the left, only a
few localized states are unstable and the bubble of “irrelevant”
delocalized states has little effect on the steady state. Spectra on th
right have unstable delocalized states arising either from an increase
in the average growth ra (top) or an increase in the convective -
velocity v with a’ held fixed (bottom). 025 b . " . 1

First Four Eigenstates

Nn=c:§f d% @R(x). (3.1

We checked the above analysis in one dimensiongfoo E '
=0 by numerically determining the eigenfunctions in Eq. YR & i
(1.21) for a particular realization of the uniformly distributed 00 350.0 700.0

random potential(x) e[—A,A] with a" sufficiently nega- FIG. 6. Top: Steady-state population distribution for a 700-site
tive so that only four eigenvalues on a 700 site lattice Wergjgnt-pinding model with site random growth rates and nonlinear
positive. This situation is qualitatively similar to that Shown interactions(arbitrary normalization Bottom: Plots of the four un-
on the left side of Fig. 5, except that there is no bubble ofstaple eigenfunctions obtained by linearizing the Liouville operator
delocalized states in the center of the bandger0. How-  for the same realization of the random potential about the state of
ever, provided Rd(,) is large and negative for these delo- zero population. Normalization is according to E2.3). The posi-
calized states, they rapidly die off and will not affect the tions of these eigenfunctions match perfectly the peaks in the steady
fixed point describing the steady state. We then determinestate of the nonlinear problem. THeeightsof the peaks in the
the steady state population distribution for the full nonlinearsteady state are proportional to #igenvaluesf the corresponding
equation(1.19 under the same conditions. This steady stategigenfunctions.
is compared with the four relevant eigenmodes of the linear- ) ) )
ized problem in Fig. 6. The peaks in the exact steady Statgav_e become unstable. This regime could b_e acce;sed either
(top part of the figuredo indeed occur precisely at the loca- PY ncreasing the mean growth rage or by Increasingv,
tions of the four unstable growth eigenfunctions. It is easy tg¥hich enlarges the bubble of extended stat&®. pin the
see from Eq.(3.4) that w,, ,,=const Kg/Z_ Since k, (the ~ center of the band one should _actu_ally mcraas@lle hold-
inverse width of the localized eigenfunctionis approxi-  iNga’(v) fixed) Because the L|O.UV|I'I%0pelrator is real, these
mately independent af and equal to the lattice constant in delocalized modes occur in pairs: ¢f;(x) is a mode with
the tail of the bandsee, e.g., Ref26]), it follows from Eq.  eigenvalud,, then$i(x)* is an eigenfunction with eigen-
(3.10 that theheightsof the peaks in the steady state arevalueI'} . As shown in detail by Brauweet al.[31], these
proportional to the growtkigenvalue®f the unstable modes modes are(at least for weak randomngsapproximately
in this simple model of population dynamics. We haveplane waves, characterized by nonzero wave vector pairs
checked that this relationship between peak heights andnd —k. The dynamics changes dramatically as soon as the
growth rates is satisfied by the steady state of Fig. 6 with afiirst pair of delocalized eigenfunctions becomes relevant.
accuracy of a few percent. Thus, a population of bacteridNow, there will be nontrivial mode couplings between the
described by Eq(1.2) or Eq.(1.19 evolves toward a steady- newly unstable delocalized modes and each other, as well as
state distribution given by the ground state and first few exwith the unstable localized ones discussed earlier. By anal-
cited states of a Schdinger-like equation. ogy with the physics of tilted vortex lines interacting with
We next discuss the case shown schematically on theolumnar defectfl8,32, we now expect macroscopic occu-
right side of Fig. 5, where a number dklocalizedstates pation of modes near=0, similar to Bose-Einstein conden-

T
e
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Aa to participate in the steady state. The coexistence of localized
and extended eigenmodes at the same real part of the energy
in d=2 was discussed if26]: anisotropic localized eigen-
functions forg=0 will delocalize sooner if their most ex-
tended direction coincides with the directiongpfWe expect
that the resulting extended state wave functions are streaked
out in the direction ofg, and that these streaks will be re-
flected into the steady-state species population.
X It is possible that a delocalization transition arises even
for v=0 with increasinga (or increasing diffusion constant
D). As the number or spatial extent of the relevant eigen-
c*(x) modes goes up, eventually the localized states begin to over-
lap. The steady state may become “extended” in this limit,
in the sense that individual members of a species can hop
A A . k . easily from one growth hot spot to another. Again, the re-
> sponse of the steady state to a small change in convection
velocity (away from zerp could be an indicator of this tran-
Y sition. A sharp transition is suggested by analogy with the
) . o . “Bose glass” transition, which occurs for increasing mag-
FIG. 7. Schematic “phase diagram” indicating regimes of l0- natic fields for vortices in type Il superconductors with co-
c_allzed steady §tate{tower leff) and extended steady sta(empt_ar lumnar defectgsee Appendix A and Ref18]).
right) as a function of the average growth ratand the convection A more detailed discussion of these interesting delocaliza-
;/iglr?sf:lgxl/gﬁtﬁalzegtlzgo%elagiznr:;(:?:trl:cl)?s\/\rllgsvrre] allinitial popula- i yransitions will be presented in a future publicatj@3)].
Y ' However, in the next two sections, we shall make some
progress in describing the low-lying states that describe the
sation. A broad backgrounéxtendedspecies population growth modes ird=2 for large convective velocities.
should now be superimposed on the peaks that represent lo-
calized modes, as indicated schematically in Fig. 7. The pro-
portion of, say, bacteria incorporated into this backgroundyy. BURGERS EQUATION AND THE LIMIT OF LARGE v
should increase with increasirsg Delocalization arises be- o ] ]
cause populations can drift between growth “hot spots” in- A. Qualitative discussion
stead of dying out when the convection velocity is high. We now study “unbounded growth” in the limit of large
According to the mode couplings in the Fourier basis dis, with the goal of better understanding complicated spectra
played in Eq.(B3) of Appendix B, the fixed point value for |ike those for the two-dimensional linearized growth problem
the q=0 mode is determined by the values of the unstablgshown in Fig. ). By largev we mean velocities so large
pairs K, —K). that even the “ground state,” i.e., the growth mode with the
There should be a large difference in the response of thargest eigenvalue, is delocalized,
steady state to a small changeviffor localized and delocal-
ized steady states. The spectrum “unzips” further into the v>D/&, (4.1)
complex plane with increasing=g as more modes delocal-
ize. For spectra like that on the left side of Fig. 5, these
additional delocalized modes are irrelevant and should nowhere is the localization length of the most rapidly grow-
affect the steady state. The only change occurs due to thieg eigenfunction. In this regime, it is helpful to exploit the
distortion of the relevant localized modes according to Eqanalogy with the equilibrium statistical mechanics of a (2
(3.5). For spectra like those on the right side of Fig. 5, how-+ 1)-dimensional vortex line described in Appendix A. In
ever, increasiny (with a’ constant leads to moreelevant  this analogy, a vortex trajectory represents the path taken by
delocalized modes, with large changes in the corresponding particular growing population of, say, bacteria. These tra-
steady state. Note that the “carrying capacity” defined byjectories allow us to take a Lagrangian as opposed Eulerian
Eg.(3.11) divergeswheng— k, and a mode described by an perspective on the fluid dynamics. As is evident from Fig.
eigenfunction like Eq(3.6) becomes delocalized. However, 11, whenv—o the component of the “magnetic field™ tilt-
coupling coefficients such as E¢B.7) remainfinite at the ing the equivalent elastic vortex line leads to configurations
delocalization transition. more nearly perpendicular to the columnar defects represent-
Although we have discussed the dynamics using oneing the disordered growth rates. The transverse fluctuations
dimensional spectra, we expect similar delocalization pheef the tilted vortex line’s trajectory are unimpeded in the
nomena with increasing or a’ with two-dimensional spec- direction, while in thex-y plane it sees the cross sections of
tra such as that in Fig.(B). If a’ is adjusted so that only a the columnar defects. One might guess that in this large tilt
few localized modes are relevant, and the growth modes aidnit the vortex simply wanders diffusively along thedi-
strongly localized, the steady state should look like Fig. 4rection, but acts like a directed polymer in @+1)-
with peak heights proportional to the growth eigenvaluesdimensional medium with pointlike disorder when projected
With increasing growth rate or convection velocity, eventu-into thex-y plane. More generally, the physics of tilted vor-
ally both delocalizedand new localized modes should start tex lines with columnar pins i+ 1 dimensions should be

<Y
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related to directed polymers ird(-1)+1 dimensions with y
pointlike disorder. A great deal is known about these prob-
lems[34].

To apply similar ideas to linearized population growth 0-
models, we assume thatis in the x direction, and rewrite
Eqg.(1.16 as

ac+vd,c=Do2c+DV2c+[a+U(x,r )], (4.2

wherer, represents all spatial coordinates perpendicular to (a)
x. Specifically, we explore the long-time dynamics generated
by this equation with a delta function initial condition,

In c(x,y,t = xv)

lime(x,r, ,t)=48(x)89"%(r,) 4.3
t—0

corresponding to a point inoculation of population at the ori-
gin. We look for a delocalized solution valid for long times
in the limit of largev. The overall exponential time depen-
dence generated by, the constant part of the growth rate,
and the diffusion with drift we expect in the,t) variables
may be incorporated via the substitution

~ax/v

at %6
c(X,r ,t)= me’(x’”‘)z"‘DtW(x,rl), (4.4 (b)

FIG. 8. (a) Trajectories for a growing species that will produce
where W(x,r,) is to be determined. Note that(x,r, ,t) a particularly large population at the point,¢) at time of order
becomes proportional t6(x) ast—0, so the initial condi- t=x/v. The population associated with a given point is spread over

tion (4.3 requires a region with typical streamwise sizfDx/v. For largex, bacteria
that have traveled along such a path of favorable growth rates will
limW(x,r,)=6""%r,). (4.5 dominate the population ak{y). (b) Schematic of the logarithm of
x—0 the populationc(x,y,t=x/v) discussed above as a function yof
Typical fluctuations in population size away from simple exponen-
Upon inserting Eq(4.4) in (4.2, we find tial growth are of order exfc'x”], and the population from an
) initial source of point inoculation has spread out a distance of order
- s
vawir )+ S o wixer, ) X

t Consider the application of this mapping to two-

= D(g)z(w(x,ri) + DVfW(x,rL) +U(X,r  YW(X,r ;). dimensional species populations with strong convection. As-
sume for simplicity thag>0, so that the population grows
(4.6 on average as it convects and diffuses downstream. For fixed
X, the solutionW(x,y) of the resulting (3 1)-dimensional
Schralinger equation[subject to the boundary condition
(4.5)] describes the distribution iy of a growing species
_ population that has traveled through random distribution of
x-vt] < 2Dt S growth rates for a time of order=x/v. The results of exten-
so the second term on the left-hand side of E46) is sive s';udies of the Schd_dnger equationin +1 dimensi(_)ns
smaller than the first by a factor of ordgb/tv?, and can be [34]. with a space- and time-dependent random potential may
neglected in the limit of long times. In the remaining equa-be |lnterpreted as follows: For any f'ng value, imagine
tion for W(x,r , ), which has no explicit time dependence, we tracing the genealogy of, say, all bacteria that have reached a

expect that the terna)z(W(x,rL) can be neglected for large particular position X,y). As x—e, the overwhelming ma-

andt compared to the singbe derivative, which appears on jority of bact_erla near the pom(_x,y) will have evc_)lved
the left-hand side. The resulting equation is an imaginar long a spatially convoluted thlmal path_of especially fa-
time Schidinger equation, wherex plays the role of orable growth ratesThe fraction of bacteria whose ances-

“time.” tors come along this route is favored over all routes in
ime, . ’ ’
W(x,y) by an exponential factor exp[c'x”], wherec' is a
SW(XT) ~ DV2W(X.r, ) +UXr YWX.r, ). constant. The exponemt (which describes the fluctuatigns
03\ L)tyxﬂw LW ) FURE)WOGT) in the ground state energy in the analogous problem in the
(4.9 statistical mechanics of flux lingsn known to bew=1/3
exactly [34]. Any particular pathy(x) of optimal evolution
Note that the random “potentialU(x,r,) depends both on itself wanders with typical transverse fluctuations, which be-
the “time” x and on the additionald— 1) spatial directions. have like

According to the ansat@#.4), c(x,r, ,t) is only appreciable
for
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~x¢
y(X)~x¢, 4.9 (q|U|k>=%2 ei(k_q)'XU(X). 4.13
wherel=(w+1)/2=2/3 is a universal critical exponent, in- X
dependent of the exact probability distribution of the ran-
domness and other detailBecause2/3>1/2, this optimal
path will be well defined even in the presence of diffusfon.
schematic of a set of optimal paths is shown in Fig)8The
population distributionc(x,y,t=x/v) is sketched in Fig.
8(b). The exponent{ also controls the overall transverse —
spread iny of the spatially varying population for fixexl. UX)U(X") =346 x (4.14
This “superdiffusive” spreading{> 1/2) arises because tra- )
jectories that would be rare in conventional diffusion lead to'vhere the overbar represents a disorder average. It follows
strong amplification if they pass through regions of particu—that
larly favored growth. The exponent determines thaizeof
the fluctuations inc(x,y,t=x/v), which ride on top of an (k|U[k)=0 (4.19
overall exponential growthg(x,y,t=x/v)~e¥".

Similar behavior is expected for the 421)-dimensional and
random Schrdinger equation, which results for convecting
populations with randomness éh= 3, with the universal ex- [{(g|U|Kk)|?=A%/3N. (4.16
ponents{~0.59~3/5 andw=2{—1=1/5 [34]. The grow-
ing population again becomes streaked out in a streamwisé/ith v in thex direction, we average over disorder and take
direction, but with a nontrivial wandering transverse to thethe limit N—« in Eq. (4.10, and find
stream.

The averages over disorder are easily calculated by first us-
ing this lattice model, and then passing to the continuum
limit. With U(x) uniformly distributed in the interval
[—A,A], we have

e(ky k)= €o(K, K )+1|dA2j% dd_i
B. Average growth spectrum XL V™R 370 2 (27T)d71
We now study largey growth spectra like those in Figs.
2(c) and 3c) averaged over many realizations of the disor- « 1
der. Referencg26] presents numerical evidence and qualita- iv(gy— ke +D(g°—k?)’
tive arguments that the effect of disorder on the spectrum of
the non-Hermitian operatdf..13 in onedimension for large wherel is the spacing of an underlying lattice cutoff and we
v is in fact very weak[35]. It was argued that the more have kept only the smakl expansion displayed in E¢4.12.
complicated chaotic eigenvalue spectra observedi#2 Evaluation of the average spectrum is particularly simple
were due to level repulsion of discrete eigenvalues in thén one dimension, because the transverse wave vektors
complex plane. Here we first show explicitly that perturba-andq, are absent. Upon extending the integration limits on
tion theory in the disorder simply leads to a “free particle” gy to o, settinggy—k,=px and symmetrizing irp,, we
dispersion relation like Eg(1.15 with renormalized values have
of a, v, andD in onedimension. We then demonstrate that

(4.17)

the same perturbation analysis is singular in higher dimen- e(ky)=a—ivk,—Dk2

sions, consistent with the mapping onto a

(d—1)-dimensional random Schdimger equation described 4 EI Azf” dpx D

above. 39% J_.2m D?p2—(iv+2Dky)?

For a given configuration of growth rates, we apply stan-
dard second-order perturbation thed6] to the operator
(1.13. The resulting growth rate spectrum, starting with a
plane wave set of basis functions reads

loA2i

—a_j —Dk? o
=a—ivky Dkx+6(iu+2DkX)'

(4.18

KalUlK)P Expanding the disorder correction ky leads to renormal-
e(K)=eo(K) +(k|U|K)+ >, ———-""—+0[U3x)], ized values ofa, v, andD
g €o(K)—€o(q)
(4.10 ag=a+,A%/6v, (4.193

where for a basis appropriate to the lattice growth model
(1.21) with N sites, we have vr=v—loA’D/3v?, (4.190
1 _ Dr=D+21,A%D?%3v3. (4.199
k)= =2 €*¥x), (4.19

\/N X We see that disorder increases the mean growth rate, de-
creases the effective convective velocity, and increases the
effective diffusion constant in an expansion in the dimen-

eo(k)=a—iv-k—Dk2+O(k®), (412  Sionless ratidoA®D/v>,
The new growth eigenfunctions are slightly perturbed

with plane wave$36]

and
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(a|Ulk) =D, =D. It is tedious but straightforward to demonstrate
é (K —en(d) (K)— eo(q) |a) (4.20 thata, v, andD, suffer only finite renormalizations similar
atk =0 0 to Egs.(4.19 when this formula is expanded ik, . How-

and are clearly still delocalized. Equati¢4.19b suggests €ver, upon setting, =0 and we find a diverging renormal-

k)" =k)+

that localization sets in whenever ization of D, in the long wavelength part of the integral,
l0A%D AAS d9tp, 1
R_ 0 L .
_03_21, (4.21) DT'=D,+ 12 —(277)0'*1 Ef+ less singular terms.

i.e., localization occurs when the effective drift velocity is (4.29
renormalized to zero. The physical basis for this criterion isConsider the meaning of this infrared divergence der2.
as follows. In the absence of convection, theaximum |n a finite system of spatial exteht<L, in they direction,
growth rate associated with the operafdrl3 (i.e., the we have
ground state eigenfunction of the corresponding Hamil-

; ; ; P ot ; 22
tonian will be given by minimizing the variational function 1+ A IOL

o —2

DR~D, oD,

, (4.29

(D/2)[dc(x)/dx]2—%U(x)cz(x) dx

whereq is a positive dimensionless coefficient. Thus a “free

We(x)]= particle” spectrum of the form
f c?(x)dx B
(4.22 eo(Ky.ky) ~ar—ivgk,— Dkz—DFk;  (4.30
The random potentidl (x) in the continuum limit now has 1S only a good approximation provided is large enough
correlator such that
T YT 2/2
UOOU() = 2A2168(x—x'), .23 Ao 1 431

vD, ¥
wherel, is a microscopic cutoff, of order the lattice constant *
in a discrete growth model like Eq1.21). We assume an Equation(4.31) is consistent with numerical results and a
exponentially localized nodeless “ground state” growth criterion based on a level repulsion argument for the lattice
eigenfunction centered on the origity(x)~ exp (—«Jx|),  model[26]. However, for any fixed value of, there will
and replace the random part of 6¢.22 by its root-mean- alwaysbe nontrivial changes in the growth spectrum for suf-
square value. Upon neglecting dimensionless coefficients dfciently largeL,, consistent with chaotic spectra like that

order unity, we find exhibited in Fig. 8c). The mapping onto the physics of a
(d—1)-dimensional random Schiimger equation suggests
W(x)~Dk?~A(lox)™, (424 that, when evaluated to all orders in perturbation theory, the
hich is minimized forx = ith renormalized wave-vector-dependent transverse diffusion
which'is minimiz K= Ko, WI constant actually diverges as —0 [34], DR(q,)~qY¢ "2,
Ko~ (A1Y2D)23 (4.25  So that the disorder averaged renormalized spectrum takes

the form, valid for small wave vectors,
and we again neglect constants of order unity. The “gauge _
transformation”(1.17) allows this state to remain localized e(ke k) ~ag—ivgk—DRKE—A k4. (4.32
only if v/D=< kg, which is equivalent to the criteriof%.21).

We now demonstrate the singularities that arise for largd he diverging diffusion constant embodied in E¢.32) is
v||X in higher dimensionsi=2. Upon setting another manifestation of the anomalous spreading of popula-

tions summarized in Fig. 8. Witli=2/3, we have

Px=G—ke, PL=0 429 €(ky ky)~ag—ivgk,—DRKZ—A k¥ (two dimensions
and symmetrizing irp,, Eq. (4.17 becomes (4.33
— A ) K2 2 This growth spectrum implies that length scales in the trans-
ek ki) =a-ivk= Dy =Dk verse direction scale with the 2/3 power of streamwise length
1 ,q( 9P dd-1p, scales, consistent with E¢4.9). The exponent 3/2 control-
+ §A IOJ 27| 51 ling transverse fluctuations also appears in the renormaliza-
T (2m) tion group treatment of fluctuations in [la(x,t)] presented
Dxp2+DJ_(p2 —K?) in Sec. V. Ind= 3, the mapping onto a random ScHinger
X 5 ZX 5 ZL 2% 5 equation leads to an exponef#=3/5, and the small wave
[Dxpx+DL(pL_kL)] _px(|U+2kax) vector form
(4.27

€(ky k. )~ag—ivgky—DJK:
where we have separated the diffusion termejtk, k) 53 _ _
into components parallel and perpendicularvtavith D, —A kY™ (three dimensions (4.34
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It is interesting to compute the consequences of spectrguenched random inhomogeneities in the growth rate. Let us
like Egs.(4.33 and(4.349) for a density of states in the com- look, for concreteness, at lromogeneousnitial condition,
plex plane, defined by i.e.,c(x,=0)=const, which then evolves under the influence
of some kind of quenched spatial randomness. As discussed

dk, [ d97 %k, — in Sec. |, if the initial, constant densitg(x,t=0) is very

g(e1, €)= f ZJ Wa[fl_ Re e(ky ki)] small compared ta/b, the short time dynamics of this sys-
tem is determined by Ed1.6), and forc(x,t)~c*(x), i.e.,
X S ex—Im e(ky,k,)]. (4.35  hear the stable fixed point, the long-time decay iotois

given by Eq.(1.8). The dynamic renormalization group ap-
Note that this is the density of states associated with disorproach presented here is thus directly relevant to the decay of
dered averagedigenvalueslf the fluctuations of the eigen- small unstable fluctuations into the steady state or to the
values away from their average values are small, this quargrowth of unstable modes if is small enough such that the
tity will be the same as the disordered averatpmsity of long-time behavior of the linearized problem manifests itself
statesstudied, e.g., in Ref23]. We measure energies rela- before the nonlinear reaction term in Ed.2 becomes im-
tive to ag so that the top of the ban@orresponding to the portant. Moreover, as discussed in Sec. Ill, the basic features
ground state of the equivalent Hamiltonjasccurs near the of the linearized problem, such as its eigenvalues and eigen-
origin. Straightforward calculations then lead to the predic-states, can be used in certain limits to assess the nonlinear
tions time evolution, as in Eq3.3).
The motivation for our renormalization group analysis is
d(€1,€)=0, €>0 or e&>—€vi/Dy; the following. We have already seen in Sec. IV that a stright-
forward attempt to calculate the effect of quenched disorder
. on the growth spectrum leads to infrared divergences in two
or more dimensions. A standard method for treating dynami-
otherwise (two dimensiony (4.39  cal systems of this kin@see, e.g., Ref27]) is to systemati-
cally rescale length and time, while eliminating short wave-
and length degrees of freedom. By studying how various
coupling constants change under this procedure, one can ob-
tain, under favorable circumstances, exact results, valid to all
orders in perturbation theory. We shall see that this is the
case for our problem, at leastdh=2. Our analysis confirms
the mapping to a lower dimensional problem in Sec. IV A,
and allows us to demonstrate explicitly that the exponent
zeta that appears in E¢4.9) in two dimensions ig=2/3.
However, the analysis of scaling functions and other quanti-
ties is most straightforward in thlegarithm of the popula-

E](‘Elafz)‘x(|‘51|_[))F({f%/UZR)ill3

g(€;,€,)=0, €,>0 or 6§>—elvé/Dx;
g(e1,€2) (|| —DReGv?)™,
otherwise (three dimensions (4.37

close to the band edge.

These results are valid for small real and imaginary ener
giese; ande,. The density of states is thus identically zero tion densit
outside a parabolic boundary, as in Figc)3and similar to its |or\1N ensity. the t b in Eq. (1.2 | liaibl d
behavior in a pure system. However, it diverges as the € assume the termbe=in q-(1.2) is negligiv’e, anc
boundary is approached oh=2 andvanishescontinuously use the fact thaﬂ:(x,t) is always non.-negatlve to define its
in d=3 with new universal critical exponents when disorderloga”thmq)(x’t)’ via the transformation
is present. Disorder thus has a strong influence in the ther-
modynamic limit for largev when d=2, even though all _ _(N2D)D(x 1)+ at _
states are delocalized. Inn@mogeneougrowth model, this cixt=e c(x,t=0). .
density of states has a square root divergence near the bound-
ary ind=2 and approaches a constantis 3. i ~ . . .

yAIS a crude ap?p?roximation one coulld use theerage With v||x, the function®(x,t) then satisfiegfor a uniform

; ’ ; initial species population
growth spectrum to estimate the behavior of, for example,

c(x,y,t) ind=2,

— dk, [ dk, — I aDP+va <b=DV2<1>+§(V<b)2+U(x) (5.2
C(X,y,t)%fzj Eee(kx’ky)telkxx+lkyyC(kX,ky,tZO), t X 2 ) .

(4.38

wherec(k,,k,,t=0) is the Fourier transformed initial con- With the initial condition®(x,t=0)=0. An identical equa-

dition. However, it is easier and more systematic to study théion was studied numerically and via a scaling ansatz by
statistics of Ifc(x,t)], as is often case for systems with mul- Chenet al.[22] as a model of charge density waves interact-
tiplicative noise. This is done in the next section. ing with quenched disorder. Here, we use the renormaliza-

tion group to study this problem analytically using the meth-
ods of Ref[27].
We have singled out the direction parallel to the drifias
In this section we give a detailed analysis of the responswhile the (d—1)-dimensional perpendicular space will be
of a homogeneous biological system to the introduction ofdenotedr, , as in Sec. IV. Equatiofb.2) takes the form

V. SPACE-TIME FLUCTUATIONS OF In [c(x,t)]
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D (r, X, ) +va,P(r, ,X,t)
=D, V2®(r, x,t)+Dyd2P(r, ,x,t)+ A, (V,P)?
+}\X(axq))2+u(rL1X)! (53)

with D, =D,=D, and A | =
u(r, ,x) satlsfles

Ur, x)u(r] x)=Ysx—x")é4r, —r!], (5.9

where the correlator strength is related to the sprea

[—A,A] of growth rates in a lattice model b\ﬁocAz/g.
We now impose a change of scale

r,—sr,, (5.5a9
X— 87X, (5.5b

t— s, (5.50
d—s"D, (5.50

wheres is a renormalization group scale factor.

Under this scale transformation the parameters of Eq.

(5.3) change according to
D,—s* %D, ,
D,—s? 27D,
Y g2z 2a—(d=D=ny
N, sFaT2y
O ) Wi
v—ST T, (5.6)

If the nonlinearities are absent, i.a,=\, =0, Eq.(5.3
becomes exactly solvable. In this cadg(r, ,x,t) is given

by

d9 1k,
D(r, x,t)= 700277‘1100 J(Zw)d 1

X Pk, ky,w)e'ke Trelkxgmiot (57
where the Fourier transform @b (r, ,x,t) satisfies
(I)(ki vkwi)=G0(kL!kX!w)U(kL1KXaw)- (58)
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Ax=M\. The random function
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Go(ky ky, @)= (5.10

—iw+ivketDki+D k?°

In this case the naive scaling treatment gives exact results.
From Eqgs.(5.6) one finds that keepin®, , A, andv fixed
under the scale transformation requires

3—d

z=2, R (5.1

77:2, a=

q’he term proportional t®, then scales to zero, confirming
that it is negligible at long wavelengths and low frequencies
compared to the single derivative in the convective term. The
same analysis suggests that the nonlinear coupling also
irrelevant, \,—s~ T2\ while A, —sCG"92\ | so that
d=3 is the upper critical dimension for this problem.

These results become easier to understand if we consider
their impact on a concrete physical quantity. Following Ref.
[22], we consider the sample-to-sample fluctuations in
®(r, ,x,t) in different random environments all with the
same physical dimensions, andL , ,

W(L,, L, )=®2(x,r, ,t)=In[c(x,r, ,t)e 3.
(5.123

For population dynamics of, say, bacteria, one could divide a
single large colony into many patches with these dimensions
to calculate the average. It is straightforward to show that the
simple scaling of the linear theory sketched above implies
thatW(L,,L,) takes the form, fod=2,
W(Ly,L)=Lgh(L, /Ly), (5.12b
where y=1/2 and{=1/2. To obtain Eq.5.12b, use Eq.

(5.23 below with the Gaussian exponents from E§.11).
The same results follow directly from E¢.8) [22]

d_qf da, Y
<L t2m ) g < H(2m) vPog+ DI’
(5.120

W(LX,LL)ZIq

which also leads to the conclusion thgix) ~x for largex.

Chenet al. simulated the full nonlinear equatig®.2) in d

=2 and foundy=0.5x0.05 and{=0.85+0.05. Below we
determine these exponents exactly.

To consider systematically the effect of the nonlinearities,
we perform a perturbative expansion around the exact solu-
tion embodied in Eqs5.7)—(5.10 in powers of\; and\,.

We begin by rewriting Eq(5.7) as an integral over the mo-

Note that since the disorder is time independent, its Fouriefentum up to some cutoff:

transform satisfies

U(q, ,0x,©)=0(q.,0,)27 8 w),

and

(O(k,k)U(K" k) =Y (2m)8(k, —k{ ) S(ke—ky).

(5.9

The bare propagatddq(k; ,k,,) is

®(ri,x,t)=f_w f_w fA i)l: 1

XCD(kL ,kx,w)CIki'rielkXX Io)’[ (5 13)

Here, A is a cutoff initially of orderly?*, wherel, is a
microscopic length scale of order the lattice constant. Equa-
tion (5.3) now becomes
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i X = —X + ————>—o< </
/ kj__ q, kn_ q, Q-0
k kua O———o0 o = % k(k - q) - %"k (kn - qn)

s \
() q,9,Q

FIG. 9. (a) Diagrammatic representation of the integral equatma4). (b) Iteration solution of Eq(5.14) and this meaning of the vertex

in this diagrammatic series.

(I)(kL !kxaw):GO(kL !kX!w) U(QL 1qwi)

f—oc f—oo fo (dzdﬂ-)ld !

Ay Ax
- TqL : [kL_QJL_ ?QX[kX_qX]

X

X(I)(kL_QL vkx_qX!w_Q)q)(qinIQ) '

(5.19
which can be represented graphically as in Figr).9The

I

a)

formal iterative solution of Eq(5.14) is shown in Fig. ).
The self-energy3(k, ,ky,w) [Fig. 10@)] yields the

renormalized velocityvz and diffusion constant®? and

DY. The renormalization oY is represented by the graph in

Fig. 10b), and vertex renormalization graphs fog and\ |

are shown in Fig. 1@). The corrections ta, , A,, D,, and

v do not diverge in the infrared limit in any dimension; naive

perturbation theory yields, however, infrared divergent cor-

rections toD andY for d<3 as one takes the limk—O0,

sD=K MY ) (3-d fAd ¢4 (51

—Nd-1 2D2|U| 4d—4 0 q ’ ( . 5)
ANZY ) (A 4

5Y:Kd—1(m) fo dgof 4, (5.16

b)

RS

AP AP

FIG. 10. (a) One-loop correction to the self-energy obtained by averaging over the ribjs@erturbative correction to the two-point
function ®(x,t)d(0,0). (c) Three diagrams that contribute to the one-loop effective vertex renormalization.




PRE 58 NON-HERMITIAN LOCALIZATION

where Kq=S,/(27)% and Sy is the surface area of the
d-dimensional unit sphere. Equati@b.15 is similar to the
result (4.28 obtained by considering the average growth
rate. Equation$5.15 and(5.16) confirm that the upper criti-
cal dimension of theory isl=3, below which renormaliza-
tion group techniques are needed to take care for the infrar

cedure of Ref[27], we find that the renormalization group
flow equations for the relevant variables take the form

ST PP Pl P 5.1
“ar Durm 2t Kaafgg4)9T) B9
dA 9°
— =A|2z-d+1-2a—p+Ky1—|, (5.18
dl 4
WZRL[Q‘FZ—Z], (5.19
dv
mzv[z—n]. (5.20

We have ses=e "', reduced the cutoff fromk toe 'A, and
the corrections to the naive scaling resuylist) are propor-
tional to the dimensionless coupling constant,

AN?
2D3|v

2

g (5.21

K
The couplingsD, and \, again scale to zero, even at the
nontrivial fixed point discussed below.

We now setp=z and a=2—2z to ensure thakh, andv

remain unchanged by our renormalization procedure. Using

Egs.(5.17—(5.20 we can calculate the flow of the coupling
constantg,

The fixed pointg* is obtained by takingig/dI=0. Ford

dg_ 3—-d
d 2

2d-5
4d—4

9.

g+Kd( (5.22

=2 (i.e., two-dimensional disordered growth model with one

parallel and one perpendicular directiche Gaussian fixed
point atg* =0 is unstable, whilg* = (2/K4_) is an attrac-
tive fixed point that corresponds t@=1/2, z=3/2, and »
=3/2 (n should be equal t@ since there are no infrared
diverging corrections t@).

We now integrate the recursion relations untis large,

AND POPULATION BIOLOGY 1399
W(Ly,Ly) =Ly "2h(L, /LY), (5.24

where
=1z (5.25

divergences of the loop integrals. Upon carrying out the proe}%/e have thus confirmed the scaling ansatz &bb [22]

with the specific predictionsp=1/z=2/3 and y=4(—-2
=2/3. These exact exponents differ, however, from the nu-
merical estimates of Chegt al.[22]; it would be interesting

to see if the agreement improves with larger system sizes.

Ford=3, there is no perturbatively accessible fixed point
of the one-loop recursion relatidb.22. However, extensive
numerical work exists suggesting a stable nontrivial fixed
point with z~5/3[34]. Thus we predict from Eq5.23 that
the scaling relation5.5b holds, with {=1/z=3/5 and x
=4{—-2=2/5ind=3.

Our analysis of the evolution of fre(x,t) ] shows in effect
that the asymptotic behavior of the nonlinear equati®2)
has the same critical exponents as a conventional noisy Bur-
gers equatiorf24] with one less dimension. The same di-
mensional reduction for critical exponemnds—(d—1) was
described for the original linearized growth model in Sec.
IV A. A related dimensional reduction has been found by
Tang et al. [37] for a model of driven depinning in aniso-
tropic media, and by Obuhkov for directed percolati8].

It is interesting to comment about the role ®fin this
perturbative renormalization calculation. The small dimen-
sionless parameter of the serigsjs proportional to &/ and
diverges av—0. Whenv—0 the theory is in the strong
coupling limit where we expedbcalizedstates in the band
tail. A signal of this phase transition is tl&nite) one loop
correction tov obtained from Eq(5.14):

d -2
5v°<—vf qqd

(4D,D, g2+ 0v?)%?
Although this correction is finite it suggests the existence of
a critical value ofv below whichuvg is zero, consistent with
localized states unaffected by convection.

(5.2
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APPENDIX A: POPULATION DYNAMICS AND VORTEX
CONFIGURATIONS

In this appendix we review the statistical mechanics of a
superconducting vortex line with a columnar pinning poten-
tial [18], and show that its partition function evolves with
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FIG. 11. Vortex line in a superconductor with columnar disor-
der. If H, =0, the flux line is localized, i.e., trapped by one or few

pins into some region in the plane perpendicular to the correlated

disorder. The coordinate along the columns plays role of time. As

DAVID R. NELSON AND NADAV M. SHNERB

PRE 58

Standard path integral techniquds’] may be used to show
that Z(x, 7;X0,0) obeys the Schdinger-like equation

h2

T T i
Z——h, - VZ+—Z+V(XZ,

iz

T
(A3)

where h, =H, ¢y/4m is the dimensionless perpendicular
field. Thus, the growth of the partition functiof(x, ) of a
flexible line with heightr is the same as linearized popula-
tion growth model Eq(1.6), with the identificationsr—t,
D—T/e, v—h, le, U(X)—V(x)/T, anda—h?/2¢T.

Because

lim Z(x, 7;X0,0) = 6%(X—Xo)

7—0

(A4)

the full partition functionZ(x, 7;Xq,0) is in fact the Green’s
function for Eq.(1.6), assuming a delta function initial con-
dition of population at positiox, and timet=r=0.

APPENDIX B: MEAN FIELD THEORY OF
HOMOGENEOUS POPULATION DYNAMICS

the external magnetic field is tilted away from the columns, the flux

line tends to delocalize and tilt in the direction of the external field.

sample thickness in the same way as the linearized popul
tion dynamics problem studied here. The different configu
rations of the vortex line, described here simply as an elast
string, are related to possible space-time trajectories of pop
lations that diffuse, grow, and drift in an inhomogeneous bu
time-independent environment.
Consider a superconductor sample of thickriesgierced
by “columnar pins,” which are long aligned columns of

We start with the homogeneous analog of Eq2),

a—ic(x,t) +v-Ve(x,t)=DVZ2c(x,t)+ac(x,t) —bc?(x,t).
. ®

E[Upon decomposing(x,t) into Fourier modes

1 )
c(x,t)= 5; c(t)e'k X, (B2)

damaged material, illustrated schematically in Fig. 11. Thgynere() is the volume of al-dimensional box with periodic
vortex can usually be described by a single valued trajectorysndary conditions, we have

r(7), where we assume defects are aligned with#hrec-
tion, 7=xXy. The free energy of this problem may be writ-

ten as:
dT(

®o

Hogn

L L

dr(7)\? 1
ar +§fo dr V[r(7)]

Joer g

where € is the tilt modulus of the flux line and the elastic
contribution (/2)[dr(7)/d7]? is the first nontrivial term in

Flr1-5

0

dr

dz (A1)

the small tipping angle expansion of the line energy of a

nearly straight vortex linev(r) is the random potential that
arises from ar-independent set of disorder-induced colum-
nar pinning potentialéwith its average value subtracted Joff
andH, is a perpendicular magnetic field.

The partition functionZ(x, 7;x,0) associated with a vor-
tex which starts at positior, at the bottom of the sample
(7=0) and terminates at positionat temperaturd some-
where in the interior at height is given by a path integral:

r(r)=x
DI’( T)efﬂr(r)]/T.

=Xp

Z(X,T;X0,0)= j

r(0)

(A2)

de(t) b
Tdr =T'c— 52’ Cq(t)cq’(t)ak,quq’ ) (B3)
a9
with the complex growth spectrum
I'=a+iv-k—DK>. (B4)

In the spirit of Bogoliubov approximation for the collective
excitations in superfluids, we separate out kve0 mode
and write

deg(t) b b
#: Co— o~ E;o Cq(t)Ck_q(t)}, (BS)
dee(t) 2b
it =T Cy— ﬁco(t)ck(t)
“lg 2 Cboeq®]. (86
q#0,q" #k

The mean field approximation consists of neglecting
terms in the modes wittk#0, shown in brackets in Egs.
(B5) and(B6). The approximate differential equations which
remain have solutions
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Oc.edt R\ (1 E D

bcy
1+ —(e?'— 1)}
a This expression is well defined fafD/A — E<R<c. Opti-
mizing p(R,E) with respect toR gives, up to logarithmic
ck(0)e'¥ 89 corrections, a maximum at the lower limitR*
2 ~\D/(A—E), so that asE—A from below, p(E)
=p(R*,E) vanishes according to

c()=

Co at_
1+ a (e*'—-1)

_ . _ 2r A _ET O
wherecy=Qcy(t=0). The time evolution ot(x,t) is now P(E)~ exp{—(D/I[A~E]%}. €9

completely determined by inserting these results into Eq, . _ . .
(B2). Note that there are many growing modes wkth 0 at gligmgzﬁoaov\lse'ﬁ;’\/rng)t'onal t(pE()E)V,V;].;éat tirs];es:)ar:;fnt:re
short times whemm>0. However, wher>In(bg,/a) the de- Y oPLE). do

. f Eqs(B7) and (B8 h malization of order the DOS in the middle of the band.
nominators of Eqs(B7) an (B8) causeco(t) to approac Let us consider now the tight-binding analog of the above
co=alb, and all modes wittkk#0 to decay away with the

model witha’ =0. The on-site potential ig(x), taken from
spectrum(1.16. a square distribution in the rangie-A,A]. The Liouvillian
is, from Eq.(1.20),
APPENDIX C: DENSITY OF STATES
NEAR THE BAND EDGE

d
~ W
In this appendix we calculate the density of stadle®9 L= Eg ,,21 [ (x+e|+ |X+eV><X|]+§ U)[x)(X].

in the tail of the band of growth rates, i.e., near the ground (Co)
state. We set the growth bi@s=0, since it does not affect
the statistics of the DOS. The discussion below assumes IoFhe eigenenergies of this Hamiltonian are bounded)
calized eigenmodes in the “relevant” or unstable part of the—w< e, <A +w with w~ D/IS. The states in the tails corre-
spectrum, where the convection tegrv just produces a spond to rare spatial fluctuations 0{x). The probability to
trivial shift in the eigenvalues, and hence we neglgds find such fluctuationge.qg., a region of radiuR in which the
well. on-site potential is within a specified energy intervg| of
Consider, then, al-dimensional hypercubic lattice with the maximum valu\) is the same as in the previous model.

edge lengtH,, where the potential energy at each site is inThe energy spectrum of such fluctuation is given approxi-
the rangeJ(x) e[ —A,A]. Unbounded probability measures mately by

may give different results.

The continuum Liouville operator approximated by the d
lattice model may be written as 6=A—V0+WE cos(k,lo), (C7)
v=1
L=DV?+U(x). (Cy

wherek~Kk,,~1/R. Thus, states in this tail obey the relation
It is easy to see that the DOS functip(E) in this model is
bounded from above b, such thap(E)—0 asE—A. The e~A+w—Vy—W/R? (C8)
tail of the DOS is determined by the range of energies in
which the DOS is determined by rare events, characterizego that a result of the form E¢C5) is applicable here also,
by large spatial regions with low potential enef@g]. with the energy measured from the edge of the band defined
Let us estimate these fluctuations in the following way:by the lattice modeJ40Q].
the probability to find a hypersphere of radRighat contains We can use the density of states reg@f) and the ei-
only blocks of potential energy larger thanA—V, is ap-  genvalue spectra displayed in Figs. 2 to understand the re-

proximately sults of Refs[20] and[21] for particles diffusing and drift-
ing with random traps in one dimension. We start with the
Vo (Rilg)* R\ [V, expansion oft(x,t) in the complete set of eigenfunctions of
P(R,U>A—V0)~(ﬂ> ~exp (E) In<ﬂ) Eq. (1.2 with b=0, as in Eq.(2.1). Forv=g=0, all eigen-

(C2) valuesT', are real and negative for this problem. As dis-
cussed if21], the eigenvalues close to zero arise from the
The energy of a state confined by this rare fluctuation ida"® regions discussed above for the density of states. The
given approximately by spectrum for the lattice modeI.W|II look I_|ke F|g.(®., Wlth,
however, the top of the band just touching the origin. Upon
E~A—V,—D/R? (3 assuming a uniform initial condition(x,0), we take allc,
~const and integrate over space to obtain

so that the probability to get an energy betwderand E

+dE wusing a sphere of radiusR is p(R,E) N, ‘:J ddxc(x t)ocfo g(T)e'tdr (C9)
~dPINoly,-., i-e., © ’ e ’
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whereg(I') is the density of states. At—«, the behavior of in agreement with Ref20]. Delocalization affects the long
the total number of surviving particles is dominated by en-time decay only wheg>g,, whenall states are delocalized,
ergies near the top of the band, where as in Fig. Zc). The density of states in one dimension is then

g(I)= exp[—|To/T|*2]. (C10

g(AT) o 1/(AT)Y?, (C13

A saddle point evaluation of EGC9) in d dimensions then

I . " . I
eads to which leads an additional exponential contribution to the de-

cay of Eq.(C9) (up to logarithmic correctionsin qualitative
agreement with the transition as a function of the bias found
in agreement with Ref§20] and[21]. by Movagharet al. [20]. It would be interesting to use the
Forv=g<g,, the effect of nonzero convection is simply spectra displayed in Figs. 2 and 3 to extract the short and
a rigid downward shift of the spectrum, by an amount ofintermediate time behavior df,,;, as well as the effect of
v?/4D [21]. Wheng>g; in one dimension, the bubble of drift in higher dimensions.
delocalized states shown in Figh2 will appear in the center Note that the delocalization transition that describes par-
of the band of negative eigenvalues. However, the behavidicles diffusing and convecting in the presence of traps oc-
of the density of states at the top of band is unchanged, ancurs at theop of the band. For population biology problems,
we find one must considepositivegrowth eigenvalues and the phe-
nomena of interest typically occur forp<g<g,. The local-

Nio(t) < eXp[_(t/to)d(dﬂ)]y (C1)

v2
BT (C12

Niot(t) = exp exp[— (t/tg)*?]

ization transition of interest to us in this paper occurs when
the mobility edgecrosses the origin, as in Fig. 5.
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