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Non-Hermitian localization and population biology

David R. Nelson and Nadav M. Shnerb
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
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The time evolution of spatial fluctuations in inhomogeneousd-dimensional biological systems is analyzed.
A single species continuous growth model, in which the population disperses via diffusion and convection is
considered. Time-independent environmental heterogeneities, such as a random distribution of nutrients or
sunlight are modeled by quenched disorder in the growth rate. Linearization of this model of population
dynamics shows that the fastest growing localized state dominates in a time proportional to a power of the
logarithm of the system size. Using an analogy with a Schro¨dinger equation subject to a constant imaginary
vector potential, we propose a delocalization transition for the steady state of the nonlinear problem at a critical
convection threshold separating localized and extended states. In the limit of high convection velocity, the
linearized growth problem ind dimensions exhibits singular scaling behavior described by a
(d21)-dimensional generalization of the noisy Burgers’ equation, with universal singularities in the density of
states associated with disorder averaged eigenvalues near the band edge in the complex plane. The Burgers
mapping leads to unusual transverse spreading of convecting delocalized populations.
@S1063-651X~98!01608-0#

PACS number~s!: 05.70.Ln, 87.22.As, 05.40.1j
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I. LOCALIZATION AND POPULATION DYNAMICS

The mathematical analysis of spatial patterns in biolog
systems has been an object of intensive research for m
years@1,2#. Both the dynamics and the equilibrium prope
ties of certain model systems have been worked out in de
Biological processes, such as the spread of a favored g
population growth of species, ecological competition, and
on, are often a combination of diffusion and convection w
some kind of back reaction. These systems are not conse
tive; both growth and death terms, possibly involving no
linearities, change the number of individuals involved.
general form of such reaction-diffusion equations is@1#

]c

]t
1~v•¹!c5f~c!1D¹2c, ~1.1!

wherec„x,t) is the vector of reactants~e.g., species of bac
teria, nutrients, etc.!, D is a matrix of diffusivities, andf(c)
describes the nonlinear reaction kinetics. The conserva
term v•¹c represents a convective flux controlled by a dr
velocity v, such as the flow of water in aqueous med
winds, etc.

Although the literature discussing equations of this type
massive, the effect of spatial inhomogeneities in the und
lying medium is relatively unexplored@3#. A disordered sub-
strate may manifest itself in the above formalism
quenched random diffusion constants, stochastic growth
death rates, or randomness in the reaction term; it may re
random concentration of environmental factors such as
trients or toxins, or an inhomogeneous illumination patte
projected onto, e.g., photosynthetic bacteria.

In this paper we study the effect of such heterogeneitie
biological systems. As a model we take one of the simp
situations, the case of asinglespecies, described by popula
PRE 581063-651X/98/58~2!/1383~21!/$15.00
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tion number densityc(x,t), for which the reaction diffusion
equation is a straightforward generalization of the Malth
Verhulst growth model@1#:

]c~x,t !

]t
1v•¹c~x,t !5D¹2c~x,t !

1@a1U~x!#c~x,t !2bc2~x,t !,

~1.2!

whereU(x) is a zero mean quenched random variable, a
we take the convective velocityv to be constant in space an
time @4#.

The homogeneous analog of this equation, without
convection term@i.e., U(x)50 andv50] was proposed by
Fisher @5# as a model for the spread of a favorable gene
mutation. It is also useful as a description of a populat
dynamics, for whicha is the difference between the linea
birth and death rates,D reflects the effect of migration, an
the term 2bc2 represents some self-limiting proces
roughly proportional to the number of pairs of individuals
position x. In the nonrandom caseU(x)[0, there are two
spatially homogeneous fixed points: an unstable fixed p
at c(x)[0, in which there is no population at all, and stab
fixed point atc* (x)[a/b, where the population saturates
the carrying capacity of the environment. Non-negative i
tial configurations evolve smoothly toward the stable fix
point; analysis of the time development of spatial fluctu
tions in this model reveals that equilibrium can be reach
via traveling solitonlike solutions, known as Fisher wav
@1,5,6#.

It is interesting to consider Eq.~1.2! in the context of
nucleation and spinodal decomposition. In the absence
convection, we can rewrite Eq.~1.2! as

]c

]t
52D

dF

dc
, ~1.3!
1383 © 1998 The American Physical Society
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where the potential is

F~c!5 1
2 ~¹c!21F~c! ~1.4!

with

F~c!52
1

2D
@a1U~x!#c21

1

3D
bc3. ~1.5!

The time evolution of a small concentration inhomogene
thus seems to resemble the dynamics of an order param
quenched below its critical point and subject to a cubic L
dau potentialF(c) @7#. However, the usual additive Lange
vin thermal noise term is missing in the dynamics. This
flects the fact that our system admits an absorbing state,
a population state that vanishes everywhere remains fixe
zero. A second crucial difference arises because a sm
non-negative initial condition will remain non-negative f
all times @8#. The Fisher growth model is thus an unusu
zero temperature ‘‘one-sided’’ spinodal decomposition pr
lem. The one-sided nature of the dynamics ensures tha
unphysical effects arise due to the unbounded potential~1.5!
at large negativec. Interesting studies exist of domai
growth in, e.g., random Ising systems at zero-tempera
@9–11#, but we are unaware of a similar body of work o
‘‘one-sided’’ population growth models. Another area of a
tive research concerns zero temperature dynamical sys
with multiplicative noise@12#. Here, however, the noise typ
cally depends on both space and time, in contrast to
purely space-dependent functionU(x) in Eq. ~1.2!.

In Eq. ~1.2!, both convection and random fluctuations
the growth rate have been added to the original Fisher mo
For the sake of concreteness, we can consider Eq.~1.2! as a
model for a colony of bacteria that grows on an inhomo
neous substrate. The linear growth rate of the bacteria
pends on a spatially random~but inexhaustible! food supply
at each point, or other inhomogeneous, time-independ
environmental factors such as the intensity of illuminatio
By reducing the light intensity, this linear growth rate cou
presumably assume both positive and negative values at
ferent points in space. The food or illumination are quench
random variables. The bacteria diffuse, as well as unde
convection due to flow of the ambient medium with veloc
v ~Fig. 1! @13#.

In this simple model of bacterial population growth, w
neglect the dynamics of a diffusing nutrient supply or fee
back from waste products@1#. For growth in an inhomoge
neous light source, for example, we might require a fix
homogeneous nutrient supply, possibly stabilized by la
nutrient diffusion constants. Wakitaet al. @14# have studied
the growth ofBacillus subtilisunder various conditions, an
found a large regime of low Agar density and high nutrie
concentration that is well described by the homogene
analog of~1.2! without convection, consistent with our a
sumptions.

If the fluctuating growth rateU(x) is of order da, we
shall see that convection will significantly perturb populati
growth when the flow ratev exceeds the correspondin
change in the Fisher wave velocity@1# dv f52ADda. Upon
taking as an effective diffusion constant for a motile bacte
D;631026 cm2/sec@15# and growth rate fluctuationsda
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;a51023/sec, we find fluctuating Fisher wave velocities
at most a few microns per second. Thus, we shall be pri
rily concerned with small values ofv and low Reynolds
number flows in our analysis.

When randomness is introduced into Eq.~1.2!, constant
configurations are no longer possible steady-state soluti
Instead, the steady state is spatially modulated, reflecting
competition between the disorder and the diffusion ter
Convection, on the other hand, tends to make the final s
more uniform; for very high convection velocities, one mig
expect that each bacterium feels some ‘‘effective mediu
average of the random environment as it drifts rapidly fro
one site to the other. In this paper, we show that there
phase transition from one regime to the other in the line
ized growth problem and suggest that this sharp chang
behavior persists in the steady state determined by the
nonlinear equation.

In order to simplify our problem, let us assume that
stable nonzero steady-state population profilec* (x), exists,
as well as the unstablec(x)[0 steady state. The time evo
lution of small fluctuations around these~stable or unstable!
configurations is determined by linearizing Eq.~1.2! near the
fixed point functions. Linearizing about the ‘‘Gaussian
fixed pointc(x)[0 leads to

]c

]t
.D¹2c2v•¹c1@a1U~x!#c. ~1.6!

Linearization about the nontrivial stable steady-state c
figuration,c* (x), which satisfies

D¹2c* 2v•¹c* 1@a1U~x!#c* 2bc* 250, ~1.7!

leads to a similar equation forc8(x,t)[c(x,t)2c* (x),
namely,

FIG. 1. Schematic of a disordered biological substrate subjec
diffusion and convection. The dark spots represent environme
fluctuations, as exemplified by an inhomogeneous pattern of l
projected onto a growing population of bacteria.
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]c8

]t
.D¹2c82v•¹c81@a1U8~x!#c8 ~1.8!

with

U8~x!5U~x!22bc* ~x!. ~1.9!

We shall assume thatc* (x) has no long range correlation
so that the linear operator in Eq.~1.9! now involves a rede-
fined function U8(x), with quenched random fluctuation
away from its mean value similar to those described
U(x).

One main interest in this paper is the evolution of sm
fluctuations about these fixed point configurations. Near
unstablec(x)[0 configuration, fluctuations grow until the
reach the point for which the linearization fails. On the oth
hand, small perturbations of the stable statec* (x) will de-
cay, so that the linear approximation becomes better in ti
Thus, Eqs.~1.6! and ~1.8! describe the short time growth o
dilute populations or the long time decay to the stable st
Although we shall frame most of our discussion in terms
the unstable modes described by Eq.~1.6!, a very similar
analysis applies to Eq.~1.8!.

Similar equations emerge in a variety of physical situ
tions, such as models of chemical reactions and neural
works @1#. Miller and Wang and others@16# have recently
studied the spectrum of an operator describing diffusion o
passive scalar subject to a spatially random, tim
independent velocity field, but without simple multiplicativ
randomness. A closely related physical system from wh
we intend to draw is fluctuating vortex lines in supercondu
ors in the presence of columnar defects, with the exte
magnetic field tilted away from the direction parallel to t
defects@17,18#. The partition functionZ(x,t) for a single
line at positionx and heightt then satisfies Eq.~1.6! where
D is given by temperature divided by the tilt modulus,D

5T/(2ẽ1), v is proportional to the tilt field, andU(x) cor-
responds to the columnar disorder potential in the superc
ductorV(x) normalized by the temperature,U(x)5V(x)/T.
Some basic facts about vortex lines are revived in Appen
A. It is interesting to note that Eq.~1.6! also describes the
growth of monetary capital with diffusion, spatially varyin
interest rates, and drift due to say population migration.

Another related problem concerns diffusion and drift
particles in a medium with randomly distributed traps@19–
21#. The long time decay of the density of active particles
obtained experimentally from, e.g., photoconduction stud
in quasi-one-dimensional polymers@19#, is expected to ex-
hibit stretched exponential relaxation in the absence of a
@20,21#. When a biasing electric field is present, the dec
has a simple exponential prefactor@21# with, however, a
transition from stretched exponential to exponential deca
the subleading behavior above a critical bias threshold@20#.
The coarse grained physics can be approximated by Eq.~1.2!
without the nonlinearity andU(x) chosen so thatall growth
eigenvalues are negative whenv50. Our primary concern
here is with situations where at least some growth eigen
ues are positive. However, a delocalization transition
also been invoked to describe an abrupt onset of a drift
locity as a function of the bias as the particle density dec
in the trapping problem@21#. We discuss the relation of th
y
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results of Refs.@20# and@21# to the population biology prob-
lem treated here in Appendix C.

After a Cole-Hopf transformation, i.e.,

c~x,t !5exp F l

2D
F~x,t !G , ~1.10!

the linear growth model described by Eq.~1.6! becomes

] tF~x,t !5D¹2F~x,t !1
l

2
~“F!2

2v•“F~x,t !1a1U~x!, ~1.11!

while c8(x,t)5exp@lF8(x,t)# generates a similar equatio
from Eq. ~1.8! with U(x)→U8(x). Chen et al. @22# have
proposed Eq.~1.11! as a model for the dynamics of strong
driven charge-density waves with quenched disorder. La
in this paper, we use Eq.~1.11! to study sample-to-sampl
fluctuations in lnc(x,t) in the limit of high convection ve-
locities. We obtain exact analytic results, which should
applicable both to linearized models of population dynam
and to charge density waves.

Equations~1.6! and ~1.8! may also be written as

] tc5Lc, ~1.12!

where the Liouville operator, e.g.,

L5D¹22v•“1a1U~x!, ~1.13!

generates the time evolution of the system. The spectra
eigenvalues of random non-Hermitian operators similar
Eq. ~1.13! have attracted considerable interest recently@23#.
Provided linearization is an adequate approximation, the
namics of this system is determined by the eigenvalues
the eigenvectors ofL. Near the stable fixed pointc* (x) one
expects only decaying modes, i.e., all real parts of the eig
value spectrum ofL are negative, while near the unstab
state c(x)[0 there are at least a few positive, growin
eigenstates. These expectations can be demonstrated e
itly when randomness is absent, i.e.,U(x)50. In this case
the right eigenvectors of the non-Hermitian operator~1.13!
about the unstable fixed point are simple plane wa
fk

R(x);eik•x that satisfy

Lfk
R~x!5Gkfk

R~x!, ~1.14!

with the complex eigenvalue spectrum

G~k!5a2 iv•k2Dk2. ~1.15!

The operatorL, which corresponds to linearization about th
nontrivial fixed pointc* (x)5a/b, has the same eigenfunc
tions, with spectrum

G8~k!52a2 iv•k2Dk2. ~1.16!

Provideda.0, the eigenvalues of Eq.~1.15! have a positive
real part for smallk, while all the eigenvalues of Eq.~1.16!
have a negative real part. Note that the eigenfunctions
always delocalized plane waves.

It is instructive to use the full nonlinear equation~1.2!
@with U(x)50] to trace the time evolution of a small ran
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dom initial conditionc(x,t50) in terms of the above eigen
modes whena.0. Assume that initial conditions have con
tributions at all wave vectorsk including k50. Although
manyeigenmodes are unstable nearc(x)[0 and grow expo-
nentially in time, thek50 mode grows most rapidly. Onc
this uniform mode saturates at its fixed point value, it th
acts to suppress all other growing modes via mode coup
induced by the nonlinear term2bc2(x,t). These expecta
tions are illustrated via a mean field solution of Eq.~1.2! in
Appendix B.

The spatial characteristics of the eigenfunctions of the
earized growth operator change dramatically when rand
ness is present. Whenv50, the operatorL5D¹21a
1U(x) is Hermitian with real eigenvalues, and for stron
enough disorder, all its eigenfunctions are real and localiz
the localization length is smallest in the tails of the ene
band, corresponding to extreme values ofU(x). In one and
two dimensions, it is widely believed thatall states are lo-
calized even for weak disorder@24#.

When vÞ0, the Liouville growth operator is no longe
Hermitian, although it can still be diagonalized using a s
tem of left and right eigenvectors. Since the convection te
in Eq. ~1.6! may be absorbed into the Laplacian by compl
ing the square,“→“2v/2D, the right and left eigenfunc
tions of the new Liouville operator are related to the eige
functions of L(v50) via an imaginary ‘‘gauge
transformation’’; iffn,v50(x) is an eigenfunction of the Her
mitian problem, then@25#

fn;v
R ~x!5ev•x/2Dfn;v50~x!,

~1.17!

fn;v
L ~x!5e2v•x/2Dfn;v50~x!

are the eigenfunctions of the non-Hermitian operator w
the sameeigenvalueen , up to a constant shift@21#,

en→en~v!5en~v50!2
v2

4D
, ~1.18!

provided thatjn , the localization length in the nondrive
problem, is less thanD/v. Thus, for small convection veloci
ties, there is aspectral rigidity — except for the shift, the
real eigenvalue spectrum is locked to the values it had
v50. As v increases, however, some eigenfunctions eve
ally become extended and the dynamics becomes sensiti
boundary effects. The correct eigenfunctions and eigenva
are no longer related to thev50 case by a simple transfor
mation. With periodic boundary conditions, complex eige
values and delocalized modes appear whenD/v becomes
smaller thanjn . As v is increased, these delocalized sta
appear first at the band center, for which the localizat
length is maximal, then move outwards.

These expectations for the eigenvalue spectrum have
demonstrated by analytic work and a numerical analysis
discrete lattice model, inspired by the physics of vortex lin
@26#. The corresponding lattice discretization of the nonl
ear equation that motivates our present work reads
n
g

-
-

d;
y

-

-

-

h

r
u-
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-
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n
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dcx~ t !

dt
5

w

2(
x

(
n51

d

@eg•encx1en
~ t !1e2g•encx2en

~ t !#

1(
x

@a81U~x!#cx~ t !2b(
x

cx
2~ t !, ~1.19!

where cx(t) is the species population at the sites$x% of a
d-dimensional hypercubic lattice, and the$en% are unit lattice
vectors. Herew is proportional to the diffusion constant o
the corresponding continuum model (w'D/l 0

2) wherel 0 is
the lattice constant, andg5v/2D is proportional to the flow
rate v. U(x) and b have the same interpretation as in t
continuum model, anda85a22w coshgl0. This choice of
a8 ensures that the total population is conserved whea
5U(x)[0, as in the continuum Eq.~1.6!. When linearized
aboutcx[0, Eq. ~1.19! may be written as

dcx~ t !

dt
5(

x8
L̃~x,x8!cx8~ t !, ~1.20!

where the discrete Liouville operatorL̃ is the matrix

L̃5
w

2(
x

(
n51

d

@e2g•enux1en&^xu1eg•enux&^x1enu#

1(
x

@a81U~x!#ux&^xu. ~1.21!

As in the continuum case, the same equation arises w
linearized about the nontrivial fixed pointcx* provided we
make the replacementU(x)→U8(x) with U8(x) given by
Eq. ~1.9!

Typical spectra for a 1000-site model in one dimens
with U(x) uniformly distributed in the interval@2D,D# are
shown in Fig. 2 for three values ofg}v @26#.

For g less than a critical valueg1, all eigenmodes are
localized, and the eigenvalues remain real and trivially
lated to their values forg50 via a shift like Eq.~1.18!. ~Had
we not seta8[0 on Figs. 2 and 3, all plots would shif
rigidly to the left with increasingugu}uvu.) For g1,g,g2,
extended states with complex eigenvalues appear nea
center of the band. Localized states still appear near the b
edges. Forg.g2, every localized state is destroyed by th
non-Hermitian perturbation, and all states are extended
this limit, eigenfunctions are slightly perturbed Bloc
states—the lattice version of plane waves. The spectrum
well approximated by the disorder-free limit, i.e., the latti
analog of Eq.~1.15!

G~k!52w cos~kl01 igl 0!, ~1.22!

wherel 0 is the lattice constant and we have seta850.
With our definition ofL̃, states near thetop of the band

should give a reasonable approximation to the spectrum
the continuous operator~1.14!; Eq. ~1.15! then describes the
upper edge of the ellipse of eigenvalues in Fig. 2~c!. The
states at the bottom of the band, on the other hand, h
spatial characteristics which are artifacts of the lattice d
cretization.

Figure 3 shows typical spectra for the discrete operato
two dimensions@26#. Here, too, eigenfunctions near the to
of the band should give good approximation to grow
modes in the continuum limit. Again, all eigenvalues rema
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real and the eigenfunctions remain localized wheng,g1.
For g1,g,g2, however, extended and localized statesco-
existnear the center of the band@26#. Wheng.g2, even the
most rapidly growing states at the top of the band are d
calized. Forvery largeg ~not shown! the spectrum resemble

FIG. 2. Energy spectra of one-dimensional 1000-site lat
model with randomnessD/w51. We have seta8[0 for clarity in
all plots. The resulting spectrum for the same realization of
random potentialU(x)P@2D,D# is plotted here for three differen
values ofg. ~a! Caseg,g1; all eigenstates are localized.~b! g1

,g,g2; bubble of complex eigenvalues indicating extended sta
appears near the center of the band.~c! g2,g; all the eigenstates
are extended.~After Ref. @26#!.
-

that of the disorder-free limit of the lattice model, similar
the one-dimensional case. However, as mentioned in R
@26#, this apparent simplification is actually a finite size e
fect in d52: level repulsion leads to large modification
the Bloch wave functions and eigenvalues even for we

e

e

s

FIG. 3. Typical spectra of the two-dimensional tight-bindin
non-Hermitian model with random site potential. We have seta8
[0 for clarity in all plots.~a! Caseg,g1; delocalized states, rea
spectrum.~b! g1,g,g2; extended states with complex eigenvalu
coexist with localized states with real eigenvalues near the cente
the band.~c! g2,g; states at the tails of the band become extend
and there are complex eigenvalues even near the top of the b
~After Ref. @26#.!
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disorder in any sufficiently large system. Thus, chaotic sp
tra similar to Fig. 3~c! are always expected for largev due to
disorder in the ‘‘thermodynamic limit’’ of large system size
in d52. In Sec. IV we argue that the growth forg.g2 when
d>2 is in fact described by a (d21)-dimensional
Schrödinger-like equation with space- and time-depend
randomness. The anomalous critical exponents that des
this situation lead to universal power law singularities in t
density of states near the band edge in the complex plan

If we take a gradient and setu(x,t)52¹F(x,t), the dy-
namical growth model~1.11! that results from a Cole-Hop
transformation reads

] tu~x,t !1~v•¹!u~x,t !1l@u~x,t !•¹#u~x,t !5D¹2u~x,t !

1f~x!, ~1.23!

with f(x)5“U(x) and subject to the constraint“3u50.
This is a variant of thed-dimensional generalization of Burg
er’s equation with noise studied 20 years ago by For
et al. @27#. In the form~1.11!, such problems are sometime
referred to as ‘‘KPZ equations.’’

In Sec. V, we show that Eq.~1.23! is in the same univer-
sality class as a simpler (d21)-dimensional noisy Burgers
equation, and use this fact to study sample-to-sample fl
tuations of ln@c(x,t)# for large v. Thus, as the convectiv
velocity v grows from small toward large values, the mo
rapidly growing modes evolve from a dynamics described
Anderson localization into a regime related to the Burge
model for turbulence@28#.

The remainder of this paper is organized as follows.
Sec. II, we assume convective effects are small, and illust
the consequences of localization for ‘‘unbounded’’ popu
tion growth, i.e., growth at times before the nonlinear term
Eq. ~1.2! becomes important. In Sec. III, we describe ho
these nonlinearities affect the growth when only a few mo
are unstable relative to the statec(x)[0. Unlike growth in a
homogeneous environment, the most rapidly growing eig
function does not suppress all other unstable modes. We
gest that the steady state undergoes a delocalization tr
tion that occurs when the average growth rate or
convective velocityv is increased.

In Sec. IV, we study the linearized growth problem in t
large v limit, show that the physics is related to
(d21)-dimensional Schro¨dinger equation, and demonstra
that the average growth spectrum is singular ford>2. This
mapping leads touniversalpredictions for the randomness
dominated transverse wandering of a delocalized popula
as it drifts downstream. A (d21)-dimensional Burgers
equation is used to describe sample to sample fluctuation
ln @c(x,t)# in the limit of large v in Sec. V. A number of
related calculations are contained in three Appendixes.
pendix C contains a discussion of the stretched expone
relaxation expected for populations in a medium with ra
domly distributed traps.

II. UNBOUNDED GROWTH AND THE LOCALIZED
LIMIT

There is large literature on localization of electrons
disordered semiconductors@24#. Because the linearize
growth modes that arise from Eq.~1.2! obey a Schro¨dinger-
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like equation, one might hope that results from electron
calization theory would be applicable to the simple model
heterogeneous population dynamics discussed above
course, electronic states are either empty or full, accordin
Pauli exclusion principle. In contrast,manyindividual mem-
bers of a species participate in the growth modes determ
by the continuum model equation studied here. Another
ference is the form of the growth-limiting nonlinearity in Eq
~1.2!.

In this section, we explore the consequences of local
tion for the simple problem of ‘‘unbounded growth,’’ i.e
growth at times before the nonlinearity in Eq.~1.2! becomes
important. We assume homogeneous initial conditions, w
convection, and parameters~small b, for example! such that
the time domain over which unbounded growth occurs
very large. Effects of the nonlinear term will be discussed
Sec. III.

Although many modes may now be growing expone
tially, the fastest growing eigenfunction eventually dom
nates the center of mass of the evolving population distri
tion. We show here that the timet* it takes for the ‘‘ground
state’’ ~i.e., thefastestgrowing eigenfunction! to win out in a
large but finite domain grows very slowly as a function
the domain radiusR. The precise form oft* (R) depends on
the behavior of the density of localized states in the tail
the band of growth eigenvalues. For the simple discreti
growth model discussed in Sec. I,t* (R); ln2/d(R) whered
is the dimensionality of space. Comparable results in se
conductors are usually determined by electrons at Fermi
ergy in a partially filled band, and hence are less sensitiv
the form of the density of states. The time required
ground state dominance when populations grow in a spati
homogeneous environment is very different,t* (R);R2.

Given a time-independent Liouville operatorL, as in Eq.
~1.13!, we describe growth in terms of a complete set of l
and right eigenvectors$fn

L(x)% and$fn
R(x)%, with eigenval-

ues$Gn% ~the complex ‘‘energy spectrum’’!. The time evo-
lution of c(x,t) is then given by

c~x,t !5(
n

cnfn
R~x!eGnt, ~2.1!

where the coefficients$cn% are determined by the initial con
dition

cn5E ddx fn
L~x!c~x,t50!. ~2.2!

At long times the system will be dominated by th
‘‘ground state,’’ i.e., the state for which the real partGn is
maximal. Throughout this paper, we assume that there
such a state, i.e., that the real part of the spectrum is boun
above. The Liouville operator in Eq.~1.13! plays, with the
replacementt→2 i t and L→2H, a role similar to the
HamiltonianH in the Schro¨dinger equationi\] tc5Hc. We
shall often use nomenclature from quantum mechanics, s
as ‘‘energy spectrum’’ and ‘‘low-lying states.’’ However
because of the identificationH[2L, the ground state of the
Hamiltonian is actually the state with the maximal eige
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value of the Liouville operator, and the low-lying states
the Hamiltonian are those which grow fastest for the Lio
ville operator.

We assume a small convective velocity, so that the
and right eigenfunctions are described by slightly distor
versions of the localized state forv50, as in Eq.~1.17!, with
normalization

E ddx fm
L ~x!fn

R~x!5dm,n . ~2.3!

Deep in the band tail and close to the ground state, thenth
localized eigenfunction forv50 will have the approximate
form

fn,v50~x!;bne2knux2xnu, ~2.4!

where bn}kn
d/2 is a normalization constant andkn is the

inverse localization length associated with an eigenmode
cated at positionxn .

Of course, only the ground state is guaranteed to
strictly non-negative@29#, as implied by Eq.~2.4!. Orthogo-
nality with the ground state requires a small negative par
the localized excited state eigenfunctions. Nevertheless,
~2.4! should be a good approximation for all modes in t
tail of the growth spectrum, provided the disorder is stro
Strong disorder means that all states are well localized, w
approximately the same localization length. The six fas
growing modes on the square lattice that gave rise to
spectrum in Fig. 3~a! are shown in Fig. 4.

Suppose the environment has been inoculated wit
smalluniformpopulation of, say, bacteria at timet50. Then
the projections$cn% of this initial condition onto the local-
ized eigenmodes are approximately equal,cn'c0 for all n.
The normalized species concentration,

ĉ~x,t !5
c~x,t !

E ddx c~x,t !

~2.5!

is then given by

FIG. 4. The six fastest growing localized eigenfunctions for
two-dimensional lattice model~with v}g50), which gave rise to
the spectrum of Fig. 3~a!. ~Figure courtesy of Naomichi Hatano!.
f
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e
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:
th
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a

ĉ~x,t !'

fgs
R ~x!1( 8

n
fn

R~x!e2~Ggs2Gn!t

Ngs1( 8
n

Nne2~Ggs2Gn!t

, ~2.6!

whereNgs and the$Nn% are normalization constants,

Ngs5E ddx fgs
R ~x!, Nn5E ddx fn

R~x!. ~2.7!

We have separated out the ‘‘ground state,’’ i.e., the m
rapidly growing mode and the sums(n8 are over the remain-
ing excited states.

The time necessary for the ground state to dominate
normalized species concentration in a large region of sizR
is clearly of ordert* ;1/(Ggs2Gn* )[1/DG, whereGn* is the
growth rate of the first excited state in the region. Letg(G)
be the density of states per unit volume with growth rates
the interval betweenG andG1dG. Then, as we increaseDG
from zero, an excited state with gapDG will appear when

Rdg~DG!DG'1. ~2.8!

If g(DG) were approximately constant near the band ed
then DG;1/Rd and we would havet* (R);Rd. However,
there are in fact very few states in the tail of a band
localized eigenfunctions@24#. In Appendix C, we show that
for the simple lattice model of population growth discuss
in Sec. I,

Ggs'a81wd1D ~2.9!

and

g~DG!; exp @2~const/DG!d/2# ~2.10!

as DG→0. Solving Eq.~2.8! for large R now leads toDG
;1/ln (R/l0)

2/d wherel 0 is the lattice constant of the mode
The relaxation time for a system of sizeR is then

t* ~R!; ln2/d~R/ l 0!, localized growth. ~2.11!

The sparse population of growth rates near the gro
state results in slow logarithmic growth of the relaxati
time t* (R) with system sizeR. A very different size depen-
dence results for the delocalized modes of the homogene
model. For delocalized plane wave eigenfunctions descri
by a spectrum like Eq.~1.15!, there are many more state
close to the ground state. Whenv50 the density of states
g(DG);(DG)d/221 near the band edge in the delocaliz
limit, and the above argument leads to

t* ~R!;R2 ~delocalized growth!. ~2.12!

III. INTERACTIONS AND A DELOCALIZATION
TRANSITION

A complete analysis of the nonlinear ‘‘interaction’’ term
in Eq. ~1.2!, or its lattice equivalent Eq.~1.19!, is beyond the
scope of this paper. Some progress is possible, howe
when only a few strongly localized growth eigenvalues n
the band edge of the Liouville operator have a positive r
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1390 PRE 58DAVID R. NELSON AND NADAV M. SHNERB
part. In this limit, it is easy to demonstrate that localiz
population dynamics with interactions differs considera
from the dynamics of the plane waves, which describe po
lation growth in a homogeneous environment. We shall a
argue that the sharp mobility edge separating locali
eigenfunctions from delocalized ones@26# implies a delocal-
ization transition with increasing convective velocity or a
erage growth rate in population dynamics. This transition
clearly present in the linearized growth model, and we sh
give arguments that it may be present as well in steady-s
population distributions described by Eqs.~1.2! and ~1.19!.

Let us write Eq.~1.2! in the form

]c~x,t !

]t
5Lc~x,t !2bc2~x,t !, ~3.1!

whereL is the Liouville operator~1.13!, and study the stead
state, which develops for long times. Upon expanding in
complete set of right eigenfunctions ofL, with eigenvalues
Gn ,

c~x,t !5(
n

cn~ t !fn
R~x!, ~3.2!

the dynamical equations read

dcn~ t !

dt
5Gncn~ t !2 (

m,m8
wn,mm8cm~ t !cm8~ t !, ~3.3!

where the mode coupling coefficients are

wn,mm85bE ddxfn
L~x!fm

R~x!fm8
R

~x! . ~3.4!

Upon combining the ‘‘gauge transformation’’ Eq.~1.17!
with the approximate form~2.4! of the localized eigenfunc
tions, the orthogonality condition~2.3! leads to@26#

fn
R.A ~2kn!d

G~d!V~d!
exp @v•~x2xn!/D2knux2xnu#,

fn
L.A ~2kn!d

G~d!V~d!
exp @2v•~x2xn!/D2knux2xnu#,

~3.5!

whereVd is the surface area of a unit sphere ind dimen-
sions.

Now consider what happens in, say, the lattice popula
growth model~1.19! when we vary the average growth ra
a8, starting with large negative values. As discussed in A
pendix C, the real part of the growth spectrum broadens
width of order wd1D about a8 due to diffusive hopping
between sites and randomness. If2a8@wd1D, then the
real parts of all eigenvalues in Eq.~3.3! are negative and the
population becomes extinct. As we increasea8, however, we
eventually reach the simple but interesting situation wher
small fraction of the eigenvalues becomes positive. T
coupled equations~3.3! then resemble the set of renorma
ization group recursion relations governing flows in t
space of Hamiltonian coupling constants that describe e
librium critical points to one loop order@30#. Here, an ex-
pansion ine542d is used to truncate an infinite set o
u-
o
d

s
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te

e

n

-
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e
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coupled differential equations. By analogy with critical ph
nomena, we call the modes with positive Re(Gn) ‘‘relevant
variables’’ and those with negative Re(Gn) ‘‘irrelevant vari-
ables.’’ To a first approximation, we can simply discard t
irrelevant variables in Eq.~3.3!, because their negative e
genvalues are not much affected by the dilute concentra
of growing modes~see below!, and they will eventually die
out.

The behavior of the relevant variables is also simple. B
cause these constitute only a small fraction of the total nu
ber of localized modes, they will be widely separated
space. The overlap integral that defines the coupling coe
cients in Eq.~3.5! will then be negligible unlessm5m85n
and the differential equations describing the localized eig
modes decouple,

dcn~ t !

dt
5Gncn~ t !2wncn

2~ t !, ~3.6!

where

wn[wn,nn5bE ddxfn
L~x!@fn

R~x!#2. ~3.7!

If the convective velocity is small, the eigenvaluesGn remain
locked at their values forv}g50, and the neglected term
are smaller by a power of exp@2kl#, where l is a typical
spacing between relevant eigenmodes.

The evolution ofc(x,t) at long times~after the irrelevant
variables have died off! is determined by substituting th
solutions of Eq.~3.6!,

cn~ t !5
cn~0!eGnt

11cn~0!~wn /Gn!~eGnt21!
, ~3.8!

into Eq.~3.2! and only summing over the unstable modes.
contrast to population dynamics in homogeneous me
where asinglek50 eigenfunction completely dominates th
steady state~see Appendix B!, the fastest growing localized
eigenfunction does not interact appreciably with the ot
relevant variables. The steady-state fixed pointc* (x) ap-
proached at long times is then characterized bymanyoccu-
pied modes,

c* ~x!5( 8
n

cn* fn
R~x!, ~3.9!

where the fixed point valuescn* are

cn* 5
Gn

wn
, ~3.10!

and(n8 means only unstable eigenfunctions make a nonz
contribution to the sum. This state is similar to the ‘‘Bo
glass’’ phase of flux lines in type II superconductors, whe
a plays a role of a chemical potential for vortices@18#. Un-
like the Bose glass, however, the number of degrees of f
dom associated with each occupied localized state is hig
variable. The ‘‘occupation number’’Nn of an unstable eigen
mode is, from Eq.~3.9!,
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Nn5cn* E ddx fn
R~x!. ~3.11!

We checked the above analysis in one dimension forg}v
50 by numerically determining the eigenfunctions in E
~1.21! for a particular realization of the uniformly distribute
random potentialU(x)P@2D,D# with a8 sufficiently nega-
tive so that only four eigenvalues on a 700 site lattice w
positive. This situation is qualitatively similar to that show
on the left side of Fig. 5, except that there is no bubble
delocalized states in the center of the band forg50. How-
ever, provided Re(Gn) is large and negative for these del
calized states, they rapidly die off and will not affect th
fixed point describing the steady state. We then determi
the steady state population distribution for the full nonline
equation~1.19! under the same conditions. This steady st
is compared with the four relevant eigenmodes of the line
ized problem in Fig. 6. The peaks in the exact steady s
~top part of the figure! do indeed occur precisely at the loc
tions of the four unstable growth eigenfunctions. It is easy
see from Eq.~3.4! that wn,nn5const3kn

d/2 . Since kn ~the
inverse width of the localized eigenfunctions! is approxi-
mately independent ofn and equal to the lattice constant
the tail of the band~see, e.g., Ref.@26#!, it follows from Eq.
~3.10! that theheightsof the peaks in the steady state a
proportional to the growtheigenvaluesof the unstable mode
in this simple model of population dynamics. We ha
checked that this relationship between peak heights
growth rates is satisfied by the steady state of Fig. 6 with
accuracy of a few percent. Thus, a population of bacte
described by Eq.~1.2! or Eq.~1.19! evolves toward a steady
state distribution given by the ground state and first few
cited states of a Schro¨dinger-like equation.

We next discuss the case shown schematically on
right side of Fig. 5, where a number ofdelocalizedstates

FIG. 5. Schematic of a one-dimensional eigenvalue spect
below and above the delocalization threshold. On the left, on
few localized states are unstable and the bubble of ‘‘irreleva
delocalized states has little effect on the steady state. Spectra o
right have unstable delocalized states arising either from an incr
in the average growth ratea ~top! or an increase in the convectiv
velocity v with a8 held fixed~bottom!.
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have become unstable. This regime could be accessed e
by increasing the mean growth ratea, or by increasingv,
which enlarges the bubble of extended states.~To pin the
center of the band one should actually increasev while hold-
ing a8(v) fixed.! Because the Liouville operator is real, the
delocalized modes occur in pairs: iffn

R(x) is a mode with
eigenvalueGn , thenfn

R(x)* is an eigenfunction with eigen
valueGn* . As shown in detail by Brauweret al. @31#, these
modes are~at least for weak randomness! approximately
plane waves, characterized by nonzero wave vector paik
and2k. The dynamics changes dramatically as soon as
first pair of delocalized eigenfunctions becomes releva
Now, there will be nontrivial mode couplings between t
newly unstable delocalized modes and each other, as we
with the unstable localized ones discussed earlier. By a
ogy with the physics of tilted vortex lines interacting wit
columnar defects@18,32#, we now expect macroscopic occu
pation of modes nearq50, similar to Bose-Einstein conden

m
a
’’
the
se

FIG. 6. Top: Steady-state population distribution for a 700-s
tight-binding model with site random growth rates and nonline
interactions~arbitrary normalization!. Bottom: Plots of the four un-
stable eigenfunctions obtained by linearizing the Liouville opera
for the same realization of the random potential about the stat
zero population. Normalization is according to Eq.~2.3!. The posi-
tions of these eigenfunctions match perfectly the peaks in the ste
state of the nonlinear problem. Theheights of the peaks in the
steady state are proportional to theeigenvaluesof the corresponding
eigenfunctions.
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1392 PRE 58DAVID R. NELSON AND NADAV M. SHNERB
sation. A broad backgroundextendedspecies population
should now be superimposed on the peaks that represen
calized modes, as indicated schematically in Fig. 7. The p
portion of, say, bacteria incorporated into this backgrou
should increase with increasinga. Delocalization arises be
cause populations can drift between growth ‘‘hot spots’’
stead of dying out when the convection velocity is hig
According to the mode couplings in the Fourier basis d
played in Eq.~B3! of Appendix B, the fixed point value fo
the q50 mode is determined by the values of the unsta
pairs (k,2k).

There should be a large difference in the response of
steady state to a small change inv for localized and delocal-
ized steady states. The spectrum ‘‘unzips’’ further into t
complex plane with increasingv}g as more modes deloca
ize. For spectra like that on the left side of Fig. 5, the
additional delocalized modes are irrelevant and should
affect the steady state. The only change occurs due to
distortion of the relevant localized modes according to E
~3.5!. For spectra like those on the right side of Fig. 5, ho
ever, increasingv ~with a8 constant! leads to morerelevant
delocalized modes, with large changes in the correspon
steady state. Note that the ‘‘carrying capacity’’ defined
Eq. ~3.11! divergeswheng→kn and a mode described by a
eigenfunction like Eq.~3.6! becomes delocalized. Howeve
coupling coefficients such as Eq.~3.7! remain finite at the
delocalization transition.

Although we have discussed the dynamics using o
dimensional spectra, we expect similar delocalization p
nomena with increasingv or a8 with two-dimensional spec
tra such as that in Fig. 3~b!. If a8 is adjusted so that only a
few localized modes are relevant, and the growth modes
strongly localized, the steady state should look like Fig
with peak heights proportional to the growth eigenvalu
With increasing growth rate or convection velocity, even
ally both delocalizedand new localized modes should sta

FIG. 7. Schematic ‘‘phase diagram’’ indicating regimes of l
calized steady states~lower left! and extended steady states~upper
right! as a function of the average growth ratea and the convection
velocity v. ~A region of large negativea where all initial popula-
tions eventually become extinct is not shown.!
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to participate in the steady state. The coexistence of local
and extended eigenmodes at the same real part of the en
in d52 was discussed in@26#: anisotropic localized eigen
functions for g50 will delocalize sooner if their most ex
tended direction coincides with the direction ofg. We expect
that the resulting extended state wave functions are strea
out in the direction ofg, and that these streaks will be re
flected into the steady-state species population.

It is possible that a delocalization transition arises ev
for v50 with increasinga ~or increasing diffusion constan
D). As the number or spatial extent of the relevant eige
modes goes up, eventually the localized states begin to o
lap. The steady state may become ‘‘extended’’ in this lim
in the sense that individual members of a species can
easily from one growth hot spot to another. Again, the
sponse of the steady state to a small change in convec
velocity ~away from zero! could be an indicator of this tran
sition. A sharp transition is suggested by analogy with
‘‘Bose glass’’ transition, which occurs for increasing ma
netic fields for vortices in type II superconductors with c
lumnar defects~see Appendix A and Ref.@18#!.

A more detailed discussion of these interesting delocal
tion transitions will be presented in a future publication@33#.
However, in the next two sections, we shall make so
progress in describing the low-lying states that describe
growth modes ind52 for large convective velocities.

IV. BURGERS EQUATION AND THE LIMIT OF LARGE v

A. Qualitative discussion

We now study ‘‘unbounded growth’’ in the limit of large
v, with the goal of better understanding complicated spec
like those for the two-dimensional linearized growth proble
shown in Fig. 3~c!. By largev we mean velocities so larg
that even the ‘‘ground state,’’ i.e., the growth mode with t
largest eigenvalue, is delocalized,

v@D/j0 , ~4.1!

wherej0 is the localization length of the most rapidly grow
ing eigenfunction. In this regime, it is helpful to exploit th
analogy with the equilibrium statistical mechanics of a
11)-dimensional vortex line described in Appendix A.
this analogy, a vortex trajectory represents the path taken
a particular growing population of, say, bacteria. These
jectories allow us to take a Lagrangian as opposed Eule
perspective on the fluid dynamics. As is evident from F
11, whenv→` the component of the ‘‘magnetic field’’ tilt-
ing the equivalent elastic vortex line leads to configuratio
more nearly perpendicular to the columnar defects repres
ing the disordered growth rates. The transverse fluctuat
of the tilted vortex line’s trajectory are unimpeded in thet
direction, while in thex-y plane it sees the cross sections
the columnar defects. One might guess that in this large
limit the vortex simply wanders diffusively along thet di-
rection, but acts like a directed polymer in a~111!-
dimensional medium with pointlike disorder when project
into thex-y plane. More generally, the physics of tilted vo
tex lines with columnar pins ind11 dimensions should be
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PRE 58 1393NON-HERMITIAN LOCALIZATION AND POPULATION BIOLOGY
related to directed polymers in (d21)11 dimensions with
pointlike disorder. A great deal is known about these pr
lems @34#.

To apply similar ideas to linearized population grow
models, we assume thatv is in the x direction, and rewrite
Eq. ~1.16! as

] tc1v]xc5D]x
2c1D¹'

2 c1@a1U~x,r'!#c, ~4.2!

wherer' represents all spatial coordinates perpendicula
x. Specifically, we explore the long-time dynamics genera
by this equation with a delta function initial condition,

lim
t→0

c~x,r' ,t !5d~x!dd21~r'! ~4.3!

corresponding to a point inoculation of population at the o
gin. We look for a delocalized solution valid for long time
in the limit of largev. The overall exponential time depen
dence generated bya, the constant part of the growth rat
and the diffusion with drift we expect in the (x,t) variables
may be incorporated via the substitution

c~x,r' ,t !5
eat

A4pDt
e2~x2vt !2/4DtW~x,r'!, ~4.4!

where W(x,r') is to be determined. Note thatc(x,r' ,t)
becomes proportional tod(x) as t→0, so the initial condi-
tion ~4.3! requires

lim
x→0

W~x,r'!5dd21~r'!. ~4.5!

Upon inserting Eq.~4.4! in ~4.2!, we find

v]xW~x,r'!1
~x2vt !

t
]xW~x,r'!

5D]x
2W~x,r'!1D¹'

2 W~x,r'!1U~x,r'!W~x,r'!.

~4.6!

According to the ansatz~4.4!, c(x,r' ,t) is only appreciable
for

ux2vtu < 2ADt ~4.7!

so the second term on the left-hand side of Eq.~4.6! is
smaller than the first by a factor of orderAD/tv2, and can be
neglected in the limit of long times. In the remaining equ
tion for W(x,r'), which has no explicit time dependence, w
expect that the term]x

2W(x,r') can be neglected for largex
and t compared to the singlex derivative, which appears o
the left-hand side. The resulting equation is an imagin
time Schro¨dinger equation, wherex plays the role of
‘‘time,’’

v]xW~x,r'! '
t,x→`

D¹'
2 W~x,r'!1U~x,r'!W~x,r'!.

~4.8!

Note that the random ‘‘potential’’U(x,r') depends both on
the ‘‘time’’ x and on the additional (d21) spatial directions.
-

o
d

-

-

y

Consider the application of this mapping to tw
dimensional species populations with strong convection.
sume for simplicity thata.0, so that the population grow
on average as it convects and diffuses downstream. For fi
x, the solutionW(x,y) of the resulting (111)-dimensional
Schrödinger equation@subject to the boundary conditio
~4.5!# describes the distribution iny of a growing species
population that has traveled through random distribution
growth rates for a time of ordert5x/v. The results of exten-
sive studies of the Schro¨dinger equation in 111 dimensions
@34# with a space- and time-dependent random potential m
be interpreted as follows: For any fixedy value, imagine
tracing the genealogy of, say, all bacteria that have reach
particular position (x,y). As x→`, the overwhelming ma-
jority of bacteria near the point(x,y) will have evolved
along a spatially convoluted optimal path of especially f
vorable growth rates.The fraction of bacteria whose ance
tors come along this route is favored over all routes
W(x,y) by an exponential factor; exp@c8xv#, wherec8 is a
constant. The exponentv ~which describes the fluctuation
in the ground state energy in the analogous problem in
statistical mechanics of flux lines! in known to bev51/3
exactly @34#. Any particular pathy(x) of optimal evolution
itself wanders with typical transverse fluctuations, which b
have like

FIG. 8. ~a! Trajectories for a growing species that will produc
a particularly large population at the point (x,y) at time of order
t5x/v. The population associated with a given point is spread o
a region with typical streamwise sizeADx/v. For largex, bacteria
that have traveled along such a path of favorable growth rates
dominate the population at (x,y). ~b! Schematic of the logarithm o
the populationc(x,y,t5x/v) discussed above as a function ofy.
Typical fluctuations in population size away from simple expone
tial growth are of order exp@c8xv#, and the population from an
initial source of point inoculation has spread out a distance of or
xz.
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y~x!;xz, ~4.9!

wherez5(v11)/252/3 is a universal critical exponent, in
dependent of the exact probability distribution of the ra
domness and other details.Because2/3.1/2, this optimal
path will be well defined even in the presence of diffusionA
schematic of a set of optimal paths is shown in Fig. 8~a!. The
population distributionc(x,y,t5x/v) is sketched in Fig.
8~b!. The exponentz also controls the overall transvers
spread iny of the spatially varying population for fixedx.
This ‘‘superdiffusive’’ spreading (z.1/2) arises because tra
jectories that would be rare in conventional diffusion lead
strong amplification if they pass through regions of partic
larly favored growth. The exponentv determines thesizeof
the fluctuations inc(x,y,t5x/v), which ride on top of an
overall exponential growth,c(x,y,t5x/v);eax/v.

Similar behavior is expected for the (211)-dimensional
random Schro¨dinger equation, which results for convectin
populations with randomness ind53, with the universal ex-
ponentsz'0.59'3/5 andv52z2151/5 @34#. The grow-
ing population again becomes streaked out in a stream
direction, but with a nontrivial wandering transverse to t
stream.

B. Average growth spectrum

We now study largev growth spectra like those in Figs
2~c! and 3~c! averaged over many realizations of the dis
der. Reference@26# presents numerical evidence and quali
tive arguments that the effect of disorder on the spectrum
the non-Hermitian operator~1.13! in onedimension for large
v is in fact very weak@35#. It was argued that the mor
complicated chaotic eigenvalue spectra observed ind52
were due to level repulsion of discrete eigenvalues in
complex plane. Here we first show explicitly that perturb
tion theory in the disorder simply leads to a ‘‘free particle
dispersion relation like Eq.~1.15! with renormalized values
of a, v, andD in onedimension. We then demonstrate th
the same perturbation analysis is singular in higher dim
sions, consistent with the mapping onto
(d21)-dimensional random Schro¨dinger equation describe
above.

For a given configuration of growth rates, we apply sta
dard second-order perturbation theory@36# to the operator
~1.13!. The resulting growth rate spectrum, starting with
plane wave set of basis functions reads

e~k!5e0~k!1^kuUuk&1(
q

z^quUuk& z2

e0~k!2e0~q!
1O@U3~x!#,

~4.10!

where for a basis appropriate to the lattice growth mo
~1.21! with N sites, we have

uk&5
1

AN
(

x
eik•xux&, ~4.11!

and

e0~k!5a2 iv•k2Dk21O~k3!, ~4.12!

with
-

-

se

-
-
of

e
-

t
-

-

l

^quUuk&5
1

N(
x

ei ~k2q!•xU~x!. ~4.13!

The averages over disorder are easily calculated by first
ing this lattice model, and then passing to the continu
limit. With U(x) uniformly distributed in the interval
@2D,D#, we have

U~x!U~x8 !̄5 1
3 D2dx,x8 ~4.14!

where the overbar represents a disorder average. It foll
that

^kuUuk &̄50 ~4.15!

and

u^quUuk&u 2̄5D2/3N. ~4.16!

With v in thex direction, we average over disorder and ta
the limit N→` in Eq. ~4.10!, and find

ē~kx ,k'!5e0~kx ,k'!1
1

3
l 0
dD2E dqx

2p E dd21q'

~2p!d21

3
1

iv~qx2kx!1D~q22k2!
, ~4.17!

wherel 0 is the spacing of an underlying lattice cutoff and w
have kept only the smallk expansion displayed in Eq.~4.12!.

Evaluation of the average spectrum is particularly sim
in one dimension, because the transverse wave vectork'

andq' are absent. Upon extending the integration limits
qx to 6`, settingqx2kx5px and symmetrizing inpx , we
have

ē~kx!5a2 ivkx2Dkx
2

1
1

3
l 0D2E

2`

` dpx

2p

D

D2px
22~ iv12Dkx!

2

5a2 ivkx2Dkx
21

l 0D2i

6~ iv12Dkx!
. ~4.18!

Expanding the disorder correction inkx leads to renormal-
ized values ofa, v, andD

aR5a1 l 0D2/6v, ~4.19a!

vR5v2 l 0D2D/3v2, ~4.19b!

DR5D12l 0D2D2/3v3. ~4.19c!

We see that disorder increases the mean growth rate,
creases the effective convective velocity, and increases
effective diffusion constant in an expansion in the dime
sionless ratiol 0D2D/v3.

The new growth eigenfunctions are slightly perturb
plane waves@36#
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uk&85uk&1 (
q5” k

^quUuk&
e0~k!2e0~q!

uq& ~4.20!

and are clearly still delocalized. Equation~4.19b! suggests
that localization sets in whenever

l 0D2D

v3 *1, ~4.21!

i.e., localization occurs when the effective drift velocity
renormalized to zero. The physical basis for this criterion
as follows. In the absence of convection, themaximum
growth rate associated with the operator~1.13! ~i.e., the
ground state eigenfunction of the corresponding Ham
tonian! will be given by minimizing the variational function

W@c~x!#5

E F ~D/2!@dc~x!/dx#22
1

2
U~x!c2~x!Gdx

E c2~x!dx

.

~4.22!

The random potentialU(x) in the continuum limit now has
correlator

U~x!U~x8!5 1
3 D2l 0d~x2x8!, ~4.23!

wherel 0 is a microscopic cutoff, of order the lattice consta
in a discrete growth model like Eq.~1.21!. We assume an
exponentially localized nodeless ‘‘ground state’’ grow
eigenfunction centered on the originc0(x); exp (2kuxu),
and replace the random part of Eq.~4.22! by its root-mean-
square value. Upon neglecting dimensionless coefficient
order unity, we find

W~k!;Dk22D~ l 0k!1/2, ~4.24!

which is minimized fork5k0, with

k0'~D l 0
1/2/D !2/3, ~4.25!

and we again neglect constants of order unity. The ‘‘gau
transformation’’~1.17! allows this state to remain localize
only if v/D<k0, which is equivalent to the criterion~4.21!.

We now demonstrate the singularities that arise for la
vuux̂ in higher dimensionsd>2. Upon setting

px5qx2kx , p'5q' ~4.26!

and symmetrizing inpx , Eq. ~4.17! becomes

ē~kx ,k'!5a2 ivkx2Dxkx
22D'k'

2

1
1

3
D2l 0

dE dpx

2p E dd21p'

~2p!d21

3
Dxpx

21D'~p'
2 2k'

2 !

@Dxpx
21D'~p'

2 2k'
2 !#22px

2~ iv12Dxkx!
2 ,

~4.27!

where we have separated the diffusion term ine0(kx ,k')
into components parallel and perpendicular tov with Dx
s

l-

t

of

e

e

5D'5D. It is tedious but straightforward to demonstra
that a, v, andDx suffer only finite renormalizations simila
to Eqs.~4.19! when this formula is expanded inkx . How-
ever, upon settingkx50 and we find a diverging renorma
ization of D' in the long wavelength part of the integral,

D'
R5D'1

D2l 0
d

12v E dd21p'

~2p!d21

1

p'
2 1 less singular terms.

~4.28!

Consider the meaning of this infrared divergence ford52.
In a finite system of spatial extentLy!Lx in the y direction,
we have

D'
R'D'F11a

D2l 0
2

vD'

LyG , ~4.29!

wherea is a positive dimensionless coefficient. Thus a ‘‘fre
particle’’ spectrum of the form

ē0~kx ,ky!'aR2 ivRkx2Dx
Rkx

22D'
Rky

2 ~4.30!

is only a good approximation providedv is large enough
such that

D2l 0
2

vD'

Ly<1. ~4.31!

Equation ~4.31! is consistent with numerical results and
criterion based on a level repulsion argument for the latt
model @26#. However, for any fixed value ofv, there will
alwaysbe nontrivial changes in the growth spectrum for s
ficiently largeLy , consistent with chaotic spectra like th
exhibited in Fig. 3~c!. The mapping onto the physics of
(d21)-dimensional random Schro¨dinger equation suggest
that, when evaluated to all orders in perturbation theory,
renormalized wave-vector-dependent transverse diffus
constant actually diverges asq'→0 @34#, D'

R(q');q'
1/z22 ,

so that the disorder averaged renormalized spectrum t
the form, valid for small wave vectors,

ē~kx ,k'!'aR2 ivRkx2Dx
Rkx

22A'k'
1/z . ~4.32!

The diverging diffusion constant embodied in Eq.~4.32! is
another manifestation of the anomalous spreading of pop
tions summarized in Fig. 8. Withz52/3, we have

ē~kx ,ky!'aR2 ivRkx2Dx
Rkx

22A'ky
3/2 ~ two dimensions!.

~4.33!

This growth spectrum implies that length scales in the tra
verse direction scale with the 2/3 power of streamwise len
scales, consistent with Eq.~4.9!. The exponent 3/2 control
ling transverse fluctuations also appears in the renorma
tion group treatment of fluctuations in ln@c(x,t)# presented
in Sec. V. Ind53, the mapping onto a random Schro¨dinger
equation leads to an exponentz'3/5, and the small wave
vector form

ē~kx ,k'!'aR2 ivRkx2Dx
Rkx

2

2A'k'
5/3 ~ three dimensions!. ~4.34!



ct
-

so
-
a

-

ic

e
ro

th

e
he

u

le

-
th
l-

ns
o

t us

ce
sed

-

-
y of
the
e
elf

ures
en-

near

is
ht-
der
two
mi-

e-
us
ob-
all

the

A,
ent

nti-

s

by
ct-
iza-
th-

e

1396 PRE 58DAVID R. NELSON AND NADAV M. SHNERB
It is interesting to compute the consequences of spe
like Eqs.~4.33! and~4.34! for a density of states in the com
plex plane, defined by

g~e1 ,e2!5E dkx

2p E dd21k'

~2p!d21
d@e12Re ē~kx ,k'!#

3d@e22Im ē~kx ,k'!#. ~4.35!

Note that this is the density of states associated with di
dered averagedeigenvalues. If the fluctuations of the eigen
values away from their average values are small, this qu
tity will be the same as the disordered averagedensity of
statesstudied, e.g., in Ref.@23#. We measure energies rela
tive to aR so that the top of the band~corresponding to the
ground state of the equivalent Hamiltonian! occurs near the
origin. Straightforward calculations then lead to the pred
tions

g~e1 ,e2!50, e1.0 or e2
2.2e1vR

2/Dx ;

g~e1 ,e2!}~ ue1u2Dx
Re2

2/vR
2 !21/3,

otherwise~ two dimensions! ~4.36!

and

g~e1 ,e2!50, e1.0 or e2
2.2e1vR

2/Dx ;

g~e1 ,e2!}~ ue1u2Dx
Re2

2/v2!1/5,

otherwise~ three dimensions! ~4.37!

close to the band edge.
These results are valid for small real and imaginary en

giese1 ande2. The density of states is thus identically ze
outside a parabolic boundary, as in Fig. 3~c! and similar to its
behavior in a pure system. However, it diverges as
boundary is approached ind52 andvanishescontinuously
in d53 with new universal critical exponents when disord
is present. Disorder thus has a strong influence in the t
modynamic limit for largev when d>2, even though all
states are delocalized. In ahomogeneousgrowth model, this
density of states has a square root divergence near the bo
ary in d52 and approaches a constant ind53.

As a crude approximation, one could use theaverage
growth spectrum to estimate the behavior of, for examp
c̄(x,y,t) in d52,

c̄~x,y,t !'E dkx

2p E dky

2p
eē~kx ,ky!teikxx1 ikyyc~kx ,ky ,t50!,

~4.38!

wherec(kx ,ky ,t50) is the Fourier transformed initial con
dition. However, it is easier and more systematic to study
statistics of ln@c(x,t)#, as is often case for systems with mu
tiplicative noise. This is done in the next section.

V. SPACE-TIME FLUCTUATIONS OF ln †c„x,t…‡

In this section we give a detailed analysis of the respo
of a homogeneous biological system to the introduction
ra

r-

n-

-

r-

e

r
r-

nd-

,

e

e
f

quenched random inhomogeneities in the growth rate. Le
look, for concreteness, at ahomogeneousinitial condition,
i.e.,c(x,50)5const, which then evolves under the influen
of some kind of quenched spatial randomness. As discus
in Sec. I, if the initial, constant densityc(x,t50) is very
small compared toa/b, the short time dynamics of this sys
tem is determined by Eq.~1.6!, and forc(x,t)'c* (x), i.e.,
near the stable fixed point, the long-time decay intoc* is
given by Eq.~1.8!. The dynamic renormalization group ap
proach presented here is thus directly relevant to the deca
small unstable fluctuations into the steady state or to
growth of unstable modes ifb is small enough such that th
long-time behavior of the linearized problem manifests its
before the nonlinear reaction term in Eq.~1.2! becomes im-
portant. Moreover, as discussed in Sec. III, the basic feat
of the linearized problem, such as its eigenvalues and eig
states, can be used in certain limits to assess the nonli
time evolution, as in Eq.~3.3!.

The motivation for our renormalization group analysis
the following. We have already seen in Sec. IV that a strig
forward attempt to calculate the effect of quenched disor
on the growth spectrum leads to infrared divergences in
or more dimensions. A standard method for treating dyna
cal systems of this kind~see, e.g., Ref.@27#! is to systemati-
cally rescale length and time, while eliminating short wav
length degrees of freedom. By studying how vario
coupling constants change under this procedure, one can
tain, under favorable circumstances, exact results, valid to
orders in perturbation theory. We shall see that this is
case for our problem, at least ind52. Our analysis confirms
the mapping to a lower dimensional problem in Sec. IV
and allows us to demonstrate explicitly that the expon
zeta that appears in Eq.~4.9! in two dimensions isz52/3.
However, the analysis of scaling functions and other qua
ties is most straightforward in thelogarithm of the popula-
tion density.

We assume the term2bc2 in Eq. ~1.2! is negligible, and
use the fact thatc(x,t) is always non-negative to define it
logarithmF(x,t), via the transformation

c~x,t !5e~l/2D !F~x,t !1atc~x,t50!. ~5.1!

With vi x̂, the functionF(x,t) then satisfies~for a uniform
initial species population!

] tF1v]xF5D¹2F1
l

2
~¹F!21U~x!, ~5.2!

with the initial conditionF(x,t50)50. An identical equa-
tion was studied numerically and via a scaling ansatz
Chenet al. @22# as a model of charge density waves intera
ing with quenched disorder. Here, we use the renormal
tion group to study this problem analytically using the me
ods of Ref.@27#.

We have singled out the direction parallel to the drift asx,
while the (d21)-dimensional perpendicular space will b
denotedr' , as in Sec. IV. Equation~5.2! takes the form
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] tF~r' ,x,t !1v]xF~r' ,x,t !

5D'¹'
2 F~r' ,x,t !1Dx]x

2F~r' ,x,t !1l'~¹'F!2

1lx~]xF!21U~r' ,x!, ~5.3!

with D'5Dx5D, and l'5lx5l. The random function
U(r' ,x) satisfies

U~r' ,x!U~r'8 ,x8!5Yd~x2x8!dd21@r'2r'8 #, ~5.4!

where the correlator strength is related to the spr
@2D,D# of growth rates in a lattice model byY}D2l 0

d .
We now impose a change of scale

r'→sr' , ~5.5a!

x→shx, ~5.5b!

t→szt, ~5.5c!

F→saF, ~5.5d!

wheres is a renormalization group scale factor.
Under this scale transformation the parameters of

~5.3! change according to

D'→sz22D' ,

Dx→sz22hDx ,

Y→s2z22a2~d21!2hY,

l'→sz1a22l' ,

lx→sz1a22hl' ,

v→sz2hv. ~5.6!

If the nonlinearities are absent, i.e.,lx5l'50, Eq.~5.3!
becomes exactly solvable. In this case,F(r' ,x,t) is given
by

F~r' ,x,t !5E
2`

` dv

2pE2`

` dkx

2p E dd21k'

~2p!d21

3F~k' ,kx ,v!eik'•r'eikxxe2 ivt, ~5.7!

where the Fourier transform ofF(r' ,x,t) satisfies

F~k' ,kx ,v!5G0~k' ,kx ,v!U~k' ,kx ,v!. ~5.8!

Note that since the disorder is time independent, its Fou
transform satisfies

U~q' ,qx ,v!5Ũ~q',qx!2pd~v!,

and

^Ũ~k,kx!Ũ~k8,kx8!&5Y~2p!dd~k'2k'8 !d~kx2kx8!.
~5.9!

The bare propagatorG0(k' ,kx ,v) is
d

q.

er

G0~k' ,kx ,v!5
1

2 iv1 ivkx1Dxkx
21D'k'

2 . ~5.10!

In this case the naive scaling treatment gives exact res
From Eqs.~5.6! one finds that keepingD' , D, andv fixed
under the scale transformation requires

z52, h52, a5
32d

2
. ~5.11!

The term proportional toDx then scales to zero, confirmin
that it is negligible at long wavelengths and low frequenc
compared to the single derivative in the convective term. T
same analysis suggests that the nonlinear couplinglx is also
irrelevant,lx→s2(11d)/2lx , while l'→s(32d)/2l' so that
d53 is the upper critical dimension for this problem.

These results become easier to understand if we cons
their impact on a concrete physical quantity. Following R
@22#, we consider the sample-to-sample fluctuations
F(r' ,x,t) in different random environments all with th
same physical dimensionsLx andL' ,

W~Lx ,L'!5F2~x,r' ,t !5 ln2@c~x,r' ,t !e2at#.
~5.12a!

For population dynamics of, say, bacteria, one could divid
single large colony into many patches with these dimensi
to calculate the average. It is straightforward to show that
simple scaling of the linear theory sketched above imp
that W(Lx ,L') takes the form, ford52,

W~Lx ,L'!5Lx
xh~L' /Lx

z!, ~5.12b!

where x51/2 andz51/2. To obtain Eq.~5.12b!, use Eq.
~5.23! below with the Gaussian exponents from Eq.~5.11!.
The same results follow directly from Eq.~5.8! @22#

W~Lx ,L'!5E
qx,Lx

21

dqx

2p E
q',L'

21

dq'

~2p!

Y

v2qx
21D'

2 q'
4 ,

~5.12c!

which also leads to the conclusion thath(x);x for largex.
Chenet al. simulated the full nonlinear equation~5.2! in d
52 and foundx50.560.05 andz50.8560.05. Below we
determine these exponents exactly.

To consider systematically the effect of the nonlineariti
we perform a perturbative expansion around the exact s
tion embodied in Eqs.~5.7!–~5.10! in powers ofl' andlx .
We begin by rewriting Eq.~5.7! as an integral over the mo
mentum up to some cutoff:

F~r' ,x,t !5E
2`

` dv

2pE2`

` dkx

2p E
0

L dd21k'

~2p!d21

3F~k' ,kx ,v!cik'•r'eikxxe2 ivt. ~5.13!

Here, L is a cutoff initially of orderl 0
21, where l 0 is a

microscopic length scale of order the lattice constant. Eq
tion ~5.3! now becomes
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FIG. 9. ~a! Diagrammatic representation of the integral equation~5.14!. ~b! Iteration solution of Eq.~5.14! and this meaning of the verte
in this diagrammatic series.
n

e
or-
F~k' ,kx ,v!5G0~k' ,kx ,v!FU~q' ,qx ,v!

1E
2`

` dV

2p E
2`

` dqx

2p E
0

L dd21q'

~2p!d21

3S 2
l'

2
q'•@k'2q#'2

lx

2
qx@kx2qx# D

3F~k'2q' ,kx2qx ,v2V!F~q,qx ,V!G ,

~5.14!

which can be represented graphically as in Fig. 9~a!. The
formal iterative solution of Eq.~5.14! is shown in Fig. 9~b!.
The self-energyS(k' ,kx ,v) @Fig. 10~a!# yields the

renormalized velocityvR and diffusion constantsD'
R and

Dx
R . The renormalization ofY is represented by the graph i

Fig. 10~b!, and vertex renormalization graphs forlx andl'

are shown in Fig. 10~c!. The corrections tol' , lx , Dx , and
v do not diverge in the infrared limit in any dimension; naiv
perturbation theory yields, however, infrared divergent c
rections toD andY for d<3 as one takes the limitk→0,

dD5Kd21S l2Y

2D2uvu D S 32d

4d24D E
0

L

dqqd24, ~5.15!

dY5Kd21S l2Y

8D2uvu D E0

L

dqqd24, ~5.16!
t
FIG. 10. ~a! One-loop correction to the self-energy obtained by averaging over the noise.~b! Perturbative correction to the two-poin

function F(x,t)F(0,0)̄. ~c! Three diagrams that contribute to the one-loop effective vertex renormalization.
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where Kd5Sd /(2p)d and Sd is the surface area of th
d-dimensional unit sphere. Equation~5.15! is similar to the
result ~4.28! obtained by considering the average grow
rate. Equations~5.15! and~5.16! confirm that the upper criti-
cal dimension of theory isd53, below which renormaliza-
tion group techniques are needed to take care for the infr
divergences of the loop integrals. Upon carrying out the p
cedure of Ref.@27#, we find that the renormalization grou
flow equations for the relevant variables take the form

dD'

dl
5D'Fz221Kd21S 32d

4d24Dg2G , ~5.17!

dD

dl
5DF2z2d1122a2h1Kd21

g2

4 G , ~5.18!

dl'

dl
5l'@a1z22#, ~5.19!

dv
dl

5v@z2h#. ~5.20!

We have sets[e2 l , reduced the cutoff fromL to e2 lL, and
the corrections to the naive scaling results~5.6! are propor-
tional to the dimensionless coupling constant,

g2[
Dl2

2D3uvu
. ~5.21!

The couplingsDx and lx again scale to zero, even at th
nontrivial fixed point discussed below.

We now seth5z and a522z to ensure thatl' and v
remain unchanged by our renormalization procedure. Us
Eqs.~5.17!–~5.20! we can calculate the flow of the couplin
constantg,

dg

dl
5

32d

2
g1KdS 2d25

4d24Dg3. ~5.22!

The fixed pointg* is obtained by takingdg/dl50. For d
52 ~i.e., two-dimensional disordered growth model with o
parallel and one perpendicular direction! the Gaussian fixed
point atg* 50 is unstable, whileg* 5(2/Kd21) is an attrac-
tive fixed point that corresponds toa51/2, z53/2, andh
53/2 (h should be equal toz since there are no infrare
diverging corrections tov).

We now integrate the recursion relations untill is large,
so that all transients have died off. The renormalizat
group homogeneity relation for the mean square fluctuati
in ln @c(x,r',t)e2at# in a system with dimensionLx andL'

then reads

W~Lx ,L'!5e4l 22zlW~Lxe
2zl,L'e2 l !. ~5.23!

The prefactor follows from Eq.~5.5d!, with h5z and a
522z; we expect these results to be correct to all orders
perturbation theory due to the Galilean invariance of
problem after averaging over disorder@34#. Upon choosing
l 5 l * such thatLxe

2zl* 51, Eq.~5.23! can be rewritten in a
scaling form similar to~5.12b!,
ed
-

g

n
s

n
e

W~Lx ,Ly!5Lx
4z22h~L' /Lx

z!, ~5.24!

where

z51/z. ~5.25!

We have thus confirmed the scaling ansatz Eq.~5.5b! @22#
with the specific predictionsh51/z52/3 and x54z22
52/3. These exact exponents differ, however, from the
merical estimates of Chenet al. @22#; it would be interesting
to see if the agreement improves with larger system size

For d53, there is no perturbatively accessible fixed po
of the one-loop recursion relation~5.22!. However, extensive
numerical work exists suggesting a stable nontrivial fix
point with z'5/3 @34#. Thus we predict from Eq.~5.23! that
the scaling relation~5.5b! holds, with z51/z53/5 and x
54z2252/5 in d53.

Our analysis of the evolution of ln@c(x,t)# shows in effect
that the asymptotic behavior of the nonlinear equation~5.2!
has the same critical exponents as a conventional noisy
gers equation@24# with one less dimension. The same d
mensional reduction for critical exponentsd→(d21) was
described for the original linearized growth model in Se
IV A. A related dimensional reduction has been found
Tang et al. @37# for a model of driven depinning in aniso
tropic media, and by Obuhkov for directed percolation@38#.

It is interesting to comment about the role ofv in this
perturbative renormalization calculation. The small dime
sionless parameter of the series,g, is proportional to 1/v and
diverges asv→0. Whenv→0 the theory is in the strong
coupling limit where we expectlocalizedstates in the band
tail. A signal of this phase transition is the~finite! one loop
correction tov obtained from Eq.~5.14!:

dv}2vE dqqd22

~4DxD'q21v2!3/2
. ~5.26!

Although this correction is finite it suggests the existence
a critical value ofv below whichvR is zero, consistent with
localized states unaffected by convection.
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APPENDIX A: POPULATION DYNAMICS AND VORTEX
CONFIGURATIONS

In this appendix we review the statistical mechanics o
superconducting vortex line with a columnar pinning pote
tial @18#, and show that its partition function evolves wit
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sample thickness in the same way as the linearized pop
tion dynamics problem studied here. The different config
rations of the vortex line, described here simply as an ela
string, are related to possible space-time trajectories of po
lations that diffuse, grow, and drift in an inhomogeneous
time-independent environment.

Consider a superconductor sample of thicknessL, pierced
by ‘‘columnar pins,’’ which are long aligned columns o
damaged material, illustrated schematically in Fig. 11. T
vortex can usually be described by a single valued trajec
r (t), where we assume defects are aligned with thet direc-
tion, t̂5x3y. The free energy of this problem may be wr
ten as:

F@r ~t!#5
e

2E0

L

dtS dr ~t!

dt D 2

1
1

2E0

L

dt V@r ~t!#

2H'

f0

4pE0

L

dtS dr

dzD , ~A1!

wheree is the tilt modulus of the flux line and the elast
contribution (e/2)@dr (t)/dt#2 is the first nontrivial term in
the small tipping angle expansion of the line energy o
nearly straight vortex line.V(r ) is the random potential tha
arises from at-independent set of disorder-induced colu
nar pinning potentials~with its average value subtracted off!,
andH' is a perpendicular magnetic field.

The partition functionZ(x,t;x0,0) associated with a vor
tex which starts at positionx0 at the bottom of the sampl
(t[0) and terminates at positionx at temperatureT some-
where in the interior at heightt is given by a path integral:

Z~x,t;x0,0!5E
r ~0!5x0

r ~t!5x
Dr ~t!e2F[ r ~t!]/T. ~A2!

FIG. 11. Vortex line in a superconductor with columnar diso
der. If H'50, the flux line is localized, i.e., trapped by one or fe
pins into some region in the plane perpendicular to the correla
disorder. The coordinatet along the columns plays role of time. A
the external magnetic field is tilted away from the columns, the fl
line tends to delocalize and tilt in the direction of the external fie
la-
-
ic
u-
t

e
ry

a

-

Standard path integral techniques@17# may be used to show
thatZ(x,t;x0,0) obeys the Schro¨dinger-like equation

2T
]Z
]t

52
T2

2e
¹2Z2

T

e
h'•“Z1

h'
2

2e
Z1V~x!Z,

~A3!

where h'[H'f0/4p is the dimensionless perpendicul
field. Thus, the growth of the partition functionZ(x,t) of a
flexible line with heightt is the same as linearized popul
tion growth model Eq.~1.6!, with the identificationst→t,
D→T/e, v→h' /e, U(x)→V(x)/T, anda→h'

2 /2eT.
Because

lim
t→0
Z~x,t;x0,0!5dd~x2x0! ~A4!

the full partition functionZ(x,t;x0,0) is in fact the Green’s
function for Eq.~1.6!, assuming a delta function initial con
dition of population at positionx0 and timet5t50.

APPENDIX B: MEAN FIELD THEORY OF
HOMOGENEOUS POPULATION DYNAMICS

We start with the homogeneous analog of Eq.~1.2!,

]

]t
c~x,t !1v•“c~x,t !5D¹2c~x,t !1ac~x,t !2bc2~x,t !.

~B1!

Upon decomposingc(x,t) into Fourier modes

c~x,t !5
1

V(
k

ck~ t !eik•x, ~B2!

whereV is the volume of ad-dimensional box with periodic
boundary conditions, we have

dck~ t !

dt
5Gkck2

b

V(
q,q8

cq~ t !cq8~ t !dk,q1q8 , ~B3!

with the complex growth spectrum

Gk5a1 iv•k2Dk2. ~B4!

In the spirit of Bogoliubov approximation for the collectiv
excitations in superfluids, we separate out thek50 mode
and write

dc0~ t !

dt
5ac02

b

V
c0

22F b

V (
qÞ0

cq~ t !ck2q~ t !G , ~B5!

dck~ t !

dt
5Gkck2

2b

V
c0~ t !ck~ t !

2F b

V (
qÞ0,q8Þk

cq~ t !ck2q8~ t !G . ~B6!

The mean field approximation consists of neglecti
terms in the modes withkÞ0, shown in brackets in Eqs
~B5! and~B6!. The approximate differential equations whic
remain have solutions

d

x
.
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c0~ t !5
V c̄0eat

F11
bc̄0

a
~eat21!G , ~B7!

ck~ t !5
ck~0!eGkt

F11
bc̄0

a
~eat21!G2 , ~B8!

wherec̄05Vc0(t50). The time evolution ofc(x,t) is now
completely determined by inserting these results into
~B2!. Note that there are many growing modes withkÞ0 at
short times whena.0. However, whent@ ln(bc̄0 /a) the de-
nominators of Eqs.~B7! and ~B8! causec0(t) to approach
c05a/b, and all modes withkÞ0 to decay away with the
spectrum~1.16!.

APPENDIX C: DENSITY OF STATES
NEAR THE BAND EDGE

In this appendix we calculate the density of states~DOS!
in the tail of the band of growth rates, i.e., near the grou
state. We set the growth biasa[0, since it does not affec
the statistics of the DOS. The discussion below assumes
calized eigenmodes in the ‘‘relevant’’ or unstable part of t
spectrum, where the convection termg}v just produces a
trivial shift in the eigenvalues, and hence we neglectg as
well.

Consider, then, ad-dimensional hypercubic lattice with
edge lengthl 0, where the potential energy at each site is
the rangeU(x)P@2D,D#. Unbounded probability measure
may give different results.

The continuum Liouville operator approximated by t
lattice model may be written as

L5D¹21U~x!. ~C1!

It is easy to see that the DOS functionr(E) in this model is
bounded from above byD, such thatr(E)→0 asE→D. The
tail of the DOS is determined by the range of energies
which the DOS is determined by rare events, character
by large spatial regions with low potential energy@39#.

Let us estimate these fluctuations in the following wa
the probability to find a hypersphere of radiusR that contains
only blocks of potential energyU larger thanD2V0 is ap-
proximately

P~R,U.D2V0!'S V0

2D D ~R/ l 0!d

'exp F S R

l 0
D d

lnS V0

2D D G .
~C2!

The energy of a state confined by this rare fluctuation
given approximately by

E'D2V02D/R2, ~C3!

so that the probability to get an energy betweenE and E
1dE using a sphere of radiusR is p(R,E)
;]P/]V0uV05E , i.e.,
.

d

lo-
e

n
d

:

s

p~R,E!; exp F S R

l 0
D d

lnS 1

2
2

E

2D
2

D

2R2D D G . ~C4!

This expression is well defined forAD/D2E<R,`. Opti-
mizing p(R,E) with respect toR gives, up to logarithmic
corrections, a maximum at the lower limitR*
'AD/(D2E), so that as E→D from below, p(E)
[p(R* ,E) vanishes according to

p~E!; exp $2~D/ l 0
2@D2E# !d/2%. ~C5!

Now the DOS is proportional top(E), i.e., at the tail of the
distribution we haveg(E);g0p(E), whereg0 is some nor-
malization of order the DOS in the middle of the band.

Let us consider now the tight-binding analog of the abo
model witha850. The on-site potential isU(x), taken from
a square distribution in the range@2D,D#. The Liouvillian
is, from Eq.~1.21!,

L̃5
w

2(
x

(
n51

d

@ ux&^x1enu1ux1en&^xu#1(
x

U~x!ux&^xu.

~C6!

The eigenenergies of this Hamiltonian are bounded,2D
2w,en,D1w with w;D/ l 0

2. The states in the tails corre
spond to rare spatial fluctuations ofU(x). The probability to
find such fluctuations~e.g., a region of radiusR in which the
on-site potential is within a specified energy intervalV0 of
the maximum valueD) is the same as in the previous mode
The energy spectrum of such fluctuation is given appro
mately by

e5D2V01w(
n51

d

cos~knl 0!, ~C7!

wherek'kmin;1/R. Thus, states in this tail obey the relatio

e;D1w2V02w/R2 ~C8!

so that a result of the form Eq.~C5! is applicable here also
with the energy measured from the edge of the band defi
by the lattice model@40#.

We can use the density of states result~C5! and the ei-
genvalue spectra displayed in Figs. 2 to understand the
sults of Refs.@20# and @21# for particles diffusing and drift-
ing with random traps in one dimension. We start with t
expansion ofc(x,t) in the complete set of eigenfunctions o
Eq. ~1.2! with b50, as in Eq.~2.1!. For v5g50, all eigen-
valuesGn are real and negative for this problem. As di
cussed in@21#, the eigenvalues close to zero arise from t
rare regions discussed above for the density of states.
spectrum for the lattice model will look like Fig. 2~a!, with,
however, the top of the band just touching the origin. Up
assuming a uniform initial conditionc(x,0), we take allcn
;const and integrate over space to obtain

Ntot5E ddxc~x,t !}E
2`

0

g~G!eGtdG, ~C9!
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whereg(G) is the density of states. Att→`, the behavior of
the total number of surviving particles is dominated by e
ergies near the top of the band, where

g~G!} exp @2uG0 /Gud/2#. ~C10!

A saddle point evaluation of Eq.~C9! in d dimensions then
leads to

Ntot~ t !} exp @2~ t/t0!d~d12!#, ~C11!

in agreement with Refs.@20# and @21#.
For v5g,g1, the effect of nonzero convection is simp

a rigid downward shift of the spectrum, by an amount
v2/4D @21#. When g.g1 in one dimension, the bubble o
delocalized states shown in Fig. 2~b! will appear in the center
of the band of negative eigenvalues. However, the beha
of the density of states at the top of band is unchanged,
we find

Ntot~ t !} exp F2
v2t

4DG exp @2~ t/t0!1/3# ~C12!
rg

o
sio
nt
, e

e-
es

w

,

-

,

d-
-

f

or
nd

in agreement with Ref.@20#. Delocalization affects the long
time decay only wheng.g2, whenall states are delocalized
as in Fig. 2~c!. The density of states in one dimension is th

g~DG!}1/~DG!1/2, ~C13!

which leads an additional exponential contribution to the
cay of Eq.~C9! ~up to logarithmic corrections!, in qualitative
agreement with the transition as a function of the bias fou
by Movagharet al. @20#. It would be interesting to use th
spectra displayed in Figs. 2 and 3 to extract the short
intermediate time behavior ofNtot , as well as the effect of
drift in higher dimensions.

Note that the delocalization transition that describes p
ticles diffusing and convecting in the presence of traps
curs at thetop of the band. For population biology problem
one must considerpositivegrowth eigenvalues and the phe
nomena of interest typically occur forg1,g,g2. The local-
ization transition of interest to us in this paper occurs wh
the mobility edgecrosses the origin, as in Fig. 5.
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