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Giant Backscattering Magnetoresistance Resonance and Quantum Dot Electronic Structur
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We self-consistently calculate in 3D the magnetic field dependent potential contour and semiclassical
spectrum of a lateral quantum dot to analyze magnetotransport experiments. The spectrum differs
dramatically from what had previously been assumed due to magnetically induced terraces in the
potential. We show that a striking giant backscattering resonance in the data results from an increased
Fermi level density of states associated with a terrace in the potential.

PACS numbers: 73.20.Dx, 73.40.Gk, 73.50.Jt
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The introduction of self-consistency to the canonic
picture of a two-dimensional electron gas (2DEG) in
transverse magnetic fieldB has recently led to a reinter
pretation of the concept of edge states in the quantum H
regime [1]. For sufficiently smooth potentials it is no
recognized that the peculiar screening properties of e
trons in a magnetic field lead to a breakup of the 2DE
into incompressible and compressible regions of inte
and noninteger Landau level (LL) filling factors,n, re-
spectively. In compressible regions the Fermi energyEF

is pinned to a given Landau level, screening is good
the potential is flat or terrace shaped, and all the sta
of that Landau level are withinkBT of the Fermi surface.
As a sample edge or potential hill is approached, co
pressible strips, separated by incompressible strips, h
successively lowern pinned toEF , until a depletion re-
gion is reached.

It would be natural to expect transport anomalies
such a system which in the thermodynamic limit has
singular density of states (DOS) at the Fermi level. Ho
ever, in the standard Hall bar configuration, the curre
in oppositelypropagating incompressible strips are wide
separated on the scale of the magnetic length for ty
cal B, thus effectively suppressing backscattering. In t
case of a quantum dot having both adiabatically pro
gating and trapped edge channels, however, the sing
DOS in a trapped “edge ring” can serve as a reson
path for electrons to backscatter between channels p
agatingthrough the dot in opposite directions. McEue
et al. [2], in an important study, introduced a sel
consistent “addition spectrum” via a total energy fun
tional into the study of magnetotransport through a sm
quantum dot in thetunnelingregime. Nonetheless, som
studies continue to ignore self-consistency in the pot
tial altogether [3] while the so-called “Darwin-Fock” (DF
spectrum of an unrenormalized parabolic confining pot
tial continues to form the basis of much analysis [4].

In this Letter we present results of experiment and c
culation which show that, in an open lateral GaAs–AlGa
quantum dot, the quasisingularities of the Fermi level DO
on terraces are a source of remarkable transport an
alies or “giant backscattering resonances.” We perfo
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full 3D self-consistent electronic structure calculations f
our device using a Thomas-Fermi approximation modifi
to include magnetic field. From theB-dependent poten-
tial profiles we compute the semiclassical spectrum of
dot. The density of guiding center drift orbits in an ed
ring and their location relative to the propagating chann
permit an estimate, via an overlap matrix element, of
magnetic field trend of the couplingtsBd. The total cou-
pling (summed over states) exhibits a pronounced ma
mum when electrons depopulate from higher LLs at t
dot center, swelling the outer edge rings. Following K
czenow [5] we model the transmission through the dot
ascribing unitary scattering matrices between edge ch
nels at the dot corners nearest the quantum point con
(QPC) openings. Employing the computedtsBd at all four
assumed scattering locations we recover a resonance s
ing substructure similar to that which is experimenta
observed and related to areasbetweenthe edge states. A
fitting parameter, of the overall magnitude oft, is involved.

Dots were realized in a GaAs–AlGaAs wafer using
split-gate technique [6]. The wafer was patterned into
Hall bar with a carrier densitys3.524.4d 3 1011 cm22,
and a mobility35240 m2yV s. Samples were mounte
in a dilution refrigerator, and audio frequency magne
transport measurements were made at fridge temperat
down to10 mK. At high magnetic fields, the four-prob
configuration employed was sensitive only to edge st
transmission through the dot [7]. A source-drain volta
of less than3 mV was employed.

Figure 1(a) shows the resistanceR of a 1 mm square
dot [cf. upper inset, Fig. 1(a)]. In the transition from
two to one adiabatically transmitted edge channels,
fluctuation of the resistance around3.5 6 0.2 T results
from an Aharanov-Bohm (AB ) effect related to the ar
in a single QPC [6–8]. The resonant feature cente
at 2.7 T, however, was not observed in single QPC
and appeared to be correlated with the depopulation
a bulk LL. Similar resonances, all robust with respe
to thermal cycling, were also observed in other squ
dots of sizes0.4, 0.6, 1.0, and 2.0 mm. The features
were all coincident with bulk depopulations, although
resonance was not observed ateverybulk depopulation.
© 1996 The American Physical Society 2145
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FIG. 1. (a) The magnetoresistance of a1 mm quantum
dot at 10 mK, showing giant magnetoresistance resonan
near 2.7 T. Upper inset is device and measureme
schematic. Lower inset shows gate voltage dependence
another1 mm dot from a different wafer, from bottomVg ­
20.415, 20.419, 20.422, 20.424, and 2 0.436 V, vertical-
ly offset 0, 0.5, 1.0, 2.0, 4.0 hye2. (b) Expansion of resonan
feature in 1(a) (above) and as calculated from Eq. (4). Exp
mental curve is offset for clarity. Inset shows peak resista
versus TfKg on log scale.

Further, they generally showed substructure, as with
resonance in Fig. 1(a), which is expanded in Fig. 1(
Also, as shown in Fig. 1(a), lower inset, for adifferent
1 mm dot made from a different wafer with simila
carrier concentration, the resonance generally beco
stronger with more negative gate voltage, suggesting
focusing by the QPC is enhancing scattering into high
LLs. This contrasts with the experiment of van We
et al. [8] where the saddle point of the QPCs are on
a small fraction ofEF above the potential floor of the
ungated 2DEG regions. Thus in that experiment, wh
the second Landau level (l ­ 1, see below) depopulate
at the saddle,l ­ 2 no longer exists in the dot as
possible resonant backscattering path.

The 3D electronic structure calculation has been
scribed previously [9,10]. The essential modification he
2146
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is the expression for the electron density in the magne
field dependent Thomas-Fermi approximation [2,11,12]

nsx, y, zd ­
1

2p,2
c

X
l,s

ffs2l 1 1dmp
BB 1 gmBBs

1 ´sx, y; Bd 2 EFg jjxyszdj2 ,

(1)

where,c is the magnetic length,l and s represent Lan-
dau level and spin, respectively, andm

p
B ; eh̄y2mpc ­

sm0ympdmB. jxyszd and´sx, y; Bd are the wave function
and energy of the lowestz subband atx, y. The Fermi
function and energy aref andEF, and the Landég factor
is taken as the bare value for GaAs (20.44). Note that,
in contrast to Ref. [12], the calculation is fully 3D (ther
is no translationally invariant direction). For this devic
only the lowestz subband is occupied [9–11]. The re
sults which we discuss here are based on self-consis
calculations carried out atT ­ 100 mK.

Figure 2 summarizes the evolution of the effective 2
potential contours withB. Potential is plotted as a func-
tion of area A of equipotential orbits about the dot cen
ter, ´sA, Bd. The equipotential contours become near
square at the Fermi surface and the terraces are there
much wider in the corners. The total electron number
the dot isN ø 2800 and varies (albeit in a complex fash
ion, peaking at aroundB ­ 3 T) by less than64 elec-
trons throughout. Thus, as the central terrace withl ­ 3
(n ­ 7, 8) deepens with increasingB, shrinks in area, and
depopulates altogether atB ø 3 T, the lowerl terraces,
particularlyl ­ 2, take up thel ­ 3 electrons. Growth
of l ­ 1 is clearly visible andl ­ 0, corresponding to
the adiabatically propagating states, can just be discern
A closer view of the region above3 T (not shown) reveals
spin split terraces forl ­ 2 (n ­ 5 and6).

Using the abové sAm, Bd for orbits whose areaAm

intercepts m flux quanta, the semiclassical electron
spectrumis

El,m,s ­ s2l 1 1dmp
BB 1 gmBBs 1 ´sAm, Bd , (2)

FIG. 2. Orbit potential as a function of the enclosed area a
B. The n ­ 7, 8 terrace disappears abruptly atB ø 3 T.
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FIG. 3. Semiclassical spectrum of then ­ 4 state as a
function of B measured from the Fermi surface. Every 5
level plotted. Upper inset, expansion of spectrum near Fe
surface. Lower inset, spin-split state (n ­ 3) spectrum showing
inflection occurring severalkBT below the Fermi surface.

which will be reasonable so long as higher order fluc
ations in the potential are small over the length scale,c

[13]. The spectra for the differentn differ only in their
linear B dependence in the first two terms of Eq. (2).
Fig. 3, we plot the spectrum for then ­ 4 states as a
function of B. Dark regions of the spectrum and infle
tion lines reveal the presence of terraces. The disapp
ance of the central,l ­ 3 terrace atB ø 3 T is clearly
seen by the sudden rise of all the low energy states (wh
are localized near the dot center). The two insets show
states ofn ­ 3 andn ­ 4 within a fewkBT of the Fermi
surface. The inflection line for then ­ 4 states are, in
contrast ton ­ 3, right at the Fermi surface.

The terrace-induced enhancement of then ­ 4 Fermi
level DOS, in contrast to a single edge state at
Fermi surface as conceived in the standard Bütti
picture, makes possible a van Hove–like singularity
the inter-Landau level scattering. Following Kirczeno
[5,14] we calculateR by placing discrete scattering even
t
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FIG. 4. Schematic illustrating calculation of backscatterin
from edge state1, through confined edge ring2 to edge
state3. Four identical scattering events (a)–(d) placed at ri
corners. Currents incoming to scattering eventa are Ja1 and
Ja2; outgoing areJa10 andJa20 . Interedge state areasA1 andA2
greatly exaggerated with respect to trapped state areaV.

between propagating and trapped channels (Fig. 4).
noted previously, the terraces are widest near the
corners. This combines with the known result [15] th
inter-Landau level scattering is greatest where the ed
channels bend most sharply. Thus we have coup
the free edge channels to the trapped channel o
at the corners, as indicated. Each scattering even
characterized by a unitary,2 3 2 matrix relating the two
ingoing and two outgoing edge currents, for example:µ

r 0
a ta

ta ra

∂ µ
Ja1
Ja2

∂
­

µ
Ja10

Ja20

∂
, (3)

where theJ ’s are indicated in Fig. 4. We make the sim
plest possible assumption that all four scattering eve
are identical. Including the accumulated phases accord
to Ref. [5] and assuming weak scattering (jtj ø jr j )
r ø jrj expipy2) it is straightforward to derive the ex-
pression for the reflection coefficient of edge staten

through trapped staten0,
Rn,n0sE, Bd ­
4jtj4jrj4s1 1 cosA1d s1 1 cosA2d

j1 2 jrj4 1 jrj2jtj2feisV1A1d 1 eisV1A2dg 1 jtj4eisV1A11A2dj2
. (4)
ote
the

om
Here jrj2 ­ 1 2 jtj2 by unitarity. V, A1, and A2 are
fluxes through corresponding areas labeled in Fig. 4;
gether witht they depend onn, n0, E, and B and result
from the self-consistent calculation.Vn0 sE, Bd can be de-
termined directly from Fig. 2.A1 andA2 are determined
from spacing between edge states. The sumA1 1 A2 is
taken to equal only75% of the interedge state flux, s
the scattering is not precisely at the corners. Coupling
inner (n ­ 528) states is negligible. So, assuming sp
o-

to

conservation, the dot resistance is calculated as

R21sBd ­
e2

h

Z
dE

df
dE

f2 2 R1,3sE, Bd 2 R2,4sE, Bdg .

The calculated characteristic forT ­ 50 mK is shown in
Fig. 1(b) beneath the expanded experimental trace. N
that when plotted on the same scale as Fig. 1(a),
calculated resistance peaks sharply nearB ­ 2.7 T with
no additional features. Structure in the peak results fr
2147
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changing fluxbetweenLLs. When V is a multiple of
2p the leading term in Eq. (4) goes asjtj4 f1 2 cossA1 1

A2dg. The highB wing on the calculated resonance (B ø
2.95 T) is absent from the experimental trace, implyin
that tsBd, which determines the overall shape, is mo
sharply peaked than our calculations indicate. Furth
AB oscillations are observable in the experimental tra
but are much more pronounced in the calculation. T
action of the terraces can be thought of as broaden
the AB peaks so that they overlap and produce t
giant resonances. Additionally, broadening of the trapp
levels viat, not included in the calculation, may smear th
AB oscillations.

The position, approximate width, and internal structu
of the calculated result agree remarkably well with expe
ment. Interestingly, the calculated resonant backscatte
occurs in only one of two spin-split channels.R1,3 is
almost uniformly negligible compared toR2,4. Separate
terraces forn ­ 3 and4 do not exist at thisB. However,
spin splitting is still much greater thankBT . Thus
only the n ­ 4 states are dense at the Fermi surfa
(cf. Fig. 3, inset) and serve to produce a van Hov
like backscattering anomaly. This behavior is consist
with one 1 mm dot sample [main part of Figs. 1(a
and 1(b)] where the resistance rises only to the n
plateau. However, smaller dots (0.4 and 0.6 mm) and
one nominally identical1 mm dot have shown resistanc
resonances which goabove the next plateau (say from
0.5 hye2 to 20 hye2), implying backscattering of both
spin species,n ­ 1 and2.

Finally, the calculated temperature dependence of
peak resistance [Fig. 1(b), inset] differs appreciably fro
the observation. Experimentally, a clear threshold beh
ior out to ,0.5 K (comparable to the bare spin splitting
is observed, beyond which the feature rapidly disappe
As noted earlier, the electronic structure is calculated
100 mK. Therefores the calculated resistance depends
T only throughdfydE. We repeated the self-consiste
calculation at0.5 K, however, but this appeared to hav
little effect on the characteristic, and the peak amplitu
continued to fall well below the low temperature valu
and below experiment. We do not as yet have an exp
nation for this threshold behavior.

In conclusion, we have analyzed magnetotransport d
using the evolving self-consistent electrostatic poten
of a quantum dot. Within the semiclassical pictur
the spectrum of a quantum dot is radically differe
from the normal Darwin-Fock–like spectrum which ha
served as the basis of conventional wisdom for ma
years. Inflection lines in the spectrum, which result fro
terraces in the magnetic field evolving potential, produ
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a significant increase in the Fermi surface density
states. This can cause a van Hove–like singularity in th
Landau level coupling which leads to the experimental
observed giant backscattering resonances. An analysis
the transmission using the computed couplings and bas
on discrete scattering events at the dot corners accou
well for the resonant structure.
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