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We discuss a fully relativistic Landau Fermi liquid theory based on the quantum hadrodynamics effective
field picture of nuclear matter. From the linearized kinetic equations we get the dispersion relations of the
propagating collective modes. We focus our attention on the dynamical effects of the interplay between scalar
and vector channel contributions. An interesting “mirror” structure in the form of the dynamical response in
the isoscalar-isovector degree of freedom is revealed, with a complete parallelism in the role respectively
played by the compressibility and the symmetry energy. All that seems to support the introduction of an
explicit coupling to the scalar-isovector channel of the nucleon-nucleon interaction. In particular we study the
influence of this couplingto a 5-meson-like effective fieldon the collective response of asymmetric nuclear
matter(ANM). Interesting contributions are found on the propagation of isovectorlike modes at normal density
and on an expected smooth transition to isoscalarlike oscillations at high baryon density. Important “chemical”
effects on the neutron-proton structure of the mode are shown. For dilute ANM we have the isospin distillation
mechanism of the unstable isoscalarlike oscillations, while at high baryon density we predict an almost pure
neutron wave structure of the propagating sounds.
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[. INTRODUCTION could be completely different in nuclear matter, due to me-
dium and many-body effects. In particular we can expect a
The quantum hadrodynami¢@HD) effective field model large contribution from exchange terms of the strongly
represents a very successful attempt to describe, in a fullpoupled isoscalar channels; see the discussion in[R@ffas
consistent relativistic picture, equilibrium and dynamicalwell as in[16].
properties of nuclear systems at the hadronic Idtel3]. (ii) This extension is not well supported by the existing
Very nice results have been obtained for the nuclear structurget of data, as remarked in Ref§,21-23. Clearly these
of finite nuclei[4—6], for the nuclear mattefNM) equation  negative outcomes are mainly derived from the lack of infor-
of state and liquid-gas phase transitig@$ and for the dy- mation on observables more sensitive to the density depen-
namics of nuclear collisiong8,9]. Relativistic random- dence of the symmetry term.
phase-approximatiofRRPA) theories have been developed We like to note that very recentligee the conclusions of
to study the nuclear collective resporfd®—15. Ref.[24]), the § channel has been reconsidered as an inter-
In this paper we present a relativistic linear responseesting improvement of covariant approaches, in the frame-
theory with the aim of a transparent connection between thevork of the EFT-DFT philosophy. One of the main tasks of
collective dynamics and the coupling to various channels obur work is just to try to select the dynamical observables
the nucleon-nucleon interaction. In particular we will focus more sensitive to it; see also the conclusions of RES).
our attention on the dynamical response of asymmetric In this respect the results reported here on the collective
nuclear matter since one of the main points of our discussioresponse can be useful in order to solve the open problem of
is the relevance of the coupling to a scalar isovector channethe determination of the scalar-isovector coupling. As al-
the virtual 8[ay(980)] meson, not considered in the usual ready remarked, contributions to this channel mainly come
dynamical studies. A related point of interest is the dynamifrom correlation effects. Therefore the correct microscopic
cal treatment of the Fock terms. approach should be to derive the relative coupling constant,
The isospin physics is assuming more and more relevandea a QHD mean field framework, from Dirac-Brueckner-
in connection to the new radioactive beam facilities and toHartree-Fock calculations. Several attempts have been re-
nuclear astrophysics. The introduction of the isovector-scalacently performedsee Refs[23,25,2§), but the results have
channel in covariant approaches can play a key role in thbeen up to now not fully model independent.

effective interaction in asymmetric matter; see Rf6]. An important outcome of our work is to show that the two
This point has not received great attention before for twoeffective couplings, vector and scalar, in the isovector chan-
main reasons. nel influence in a different way the statisymmetry energy

(i) The & channel has not been consideeedriori, juston  and dynamidcollective respongeproperties of asymmetric
the basis of the weak contribution to the free nucleonnuclear matter. This will open new possibilities for a phe-
nucleon interaction17,18. But in the spirit of theeffective  nomenological determination of these fundamental quanti-
field theoryas a relativisticdensity functional theorythe ties.

EFT-DFT framework; sefl9]), the relevance of this channel In the paper we will derive transparent analytical results.
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TABLE I|. Parameter sets. case of nonlinear self-interacting terms, including the Fock
corrections. We discuss the inclusion of theneson chan-
Parameter Set | Setll NLHF NL3  nel, also on the model parameters. In Sec. Il we present the

relativistic linear response equations. In Sec. IV we have a

f, (fm?) 11.27 same 9.15 15.73 ! . ; .
2 general discussion on the formal structure of the dispersion
f, (fm?) 6.48 same 3.22 10.53 :
£ (fm?) 10 8 19 134 relations, the role played b.y.th_e scalar-vector mesons, and
fP fm? 0 '00 2'0 1‘4 o.oo the comparison to nonrelativistic cases. Results for isovec-
o (f mf)l O'o ) 0 '09 (‘)0 tor(like) collective modes are presented in Sec. V, in particu-
A (fm™) 022 same 098 0L ar for the asymmetry and baryon density effects. The isos-
B —0.0039 same  —0.021 —0.003  calalike) response is analyzed in Sec. VI. Conclusions and

outlooks can be found in Sec. VII.

In order to show also some quantitative effects of the dy-

namical contribution of thé channel we have to fix in some Il. KINETIC EQUATIONS FROM A QHD EFFECTIVE

way the corresponding coupling. We have used a constant THEORY

value (see Table)l extracted from the analysis of R¢R23], o )

where it actually appears not strongly density dependent in a We start from the QHD effective field picture of the had-
wide range of baryon densities. Some results are also préonic phase of nuclear mattgt—3]. In order to include the
sented with the dynamics of Fock correlations explicitly ac-main dynamical degrees of freedom of the system we will
counted for[nonlinear Hartree-FockNLHF) case; see Sec. consider the nucleons couplgd to the isoscalar sealand

I1]. Now all the coupling constants will acquire some densityVector o mesons and to the isovector scataand vectorp
dependencg20]. mesons. ) ) ) ) ) )

A relativistic extension of the Landau linear response The Lagrangian density for this model, including nonlin-
theory of Fermi liquids has been considered before just star€ar isoscalar-scalar terms[31], is given by
ing from the relativistic form of the Landau parametf2g—

29]. We will shqw_tha_t thg full dlSpGI‘SIOI’\ relations obtamed L=y[y,(i0*~g,V*~g,B* 7)—(M—g,p—gs7 ]
from the relativistic kinetic equations present some interest- 1 a b 1
ing corrections that cannot be neglected. 2,2 3 4 v

The main physics results are the following. +§(&M¢aﬂ¢—ms¢ )= §¢ B Z¢ a ZW“”WM

(i) The important effect of a>-meson coupling on the
isovector collective mode at saturation baryon density. This n Emzv o 1((; &5 95— m2&) — EG .GMY
is of interest for the relativistic study of the giant dipole 2 v 2~ ° 4 Ky
resonance in heavy finite nuclei. It is important to note that
the inclusion of Fock terms acts in the same direction. +ImlB.. B’ 1)

(ii) The presence of noticeable “chemical effects” in the 2P '
propagating collective oscillations; i.e., the charge symmetry
of the “waves” is quite different from the asymmetry of the where =~ W*?(x)=d*V"(x) — 9" V*(X) and  G*"(x)
initial equilibrium matter. The effect is opposite for the un- = 9#B"(x) — 9" B*(X).
stable modes present at low densities, more proton rich, and Here ¢(x) is the nucleon fermionic field, ang(x) and
leads to the isospin distillation effect, and for the stabley”(x) represent neutral scalar and vector boson fields, re-
propagating sounds at high baryon density which appeagpectively.®x) andB”(x) are the charged scalar and vector
mostly like “pure neutron waves.” fields, andr denotes the isospin matrices.

(iii ) A stimulating “mirror” structure of the isoscalar and From the Lagrangian, Eq1), with the Euler procedure a
isovector linear response, with the restoring forces given bget of coupled equations of motion for the meson and
the potential part respectively of the compressibility and thenucleon fields can be derived. The basic approximation in
symmetry energy. The interplay between the scalar and vegclear matter applications consists of neglecting all the
tor meson effective fields in the dynamics is very similar forterms containing derivatives of the meson fields, with respect
the two degrees of freedom, as already observed for statig the mass contributions. Then the meson fields are simply
propertieg 16]. The conclusion is that a formally consistent connected to the operators of the nucleon scalar and current
relativistic effective field model should include on the samedensities by the following equations:
footing isoscalar and isovector meson fieldeth scalar and
vector. 2 ) 23 o~

Our results around normal density can be used as general P/f,+ ADTHBOT=g()400) =ps, @
guidelines in predicting the behavior of volume collective

modes in finiteB-unstable nuclei. Similar study for asym- V() = () YY) =T o
metric NM have been performed in R¢80] using Skyrme-
like interactions. Apart the difference in the interactions é“(x)=pr(x)y"r¢(x),

used, in particular for the symmetry terms, we will see simi-
lar results and interesting new relativistic effects. R o
In Sec. Il we derive the kinetic equations in the general AX) =T sth(X) Tp(X), 3
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where d=g,¢, f,=(g,/m,)% A=alg®, B=b/g?, f,
:(gw/mw)zl fp:(gplzmp)z! andf52(95/m5)2.

For the nucleon fields we get a Dirac-like equation. In-
deed after substituting Eq§2) and (3) for the meson field

i . L L
59V FO0p) + v F O p) ~ MIFO(x,p)

(R ~ ~
operators, we obtain an equation which contains only 5 AL )Y £ 1,3, () ¥ = T ops(X)
nucleon field operators. All the equations can be consistently _ o
solved in a relativistic mean fieldRMF) approximation, Ffpsas(X)IFO(x,p)=0, i=n,p, (4
where most applications have been performed, in particular
in the Hartree schem(,5]. whereA =4, d,, with d, acting only on the first term of the

The inclusion of Fock terms is conceptually important products. Herepss=ps,—psn and jg,(x)=jh(x) =i} (x)
[32,33 since it automatically leads to contributions to vari- are the isovector scalar density and the isovector baryon cur-
ous channels, also in the absence of explicit coupling termgent, respectively. We have defined the kinetic momentum
We will discuss this point later. A thorough study of the Fock and effective masses as
contributions in a QHD approach with nonlinear self-

interacting terms has been recently performad], in par- p;i=pﬂ—7wj u(X) i?pj 3u(X),
ticular for asymmetric mattgr20].
The present approximation implies that retardation and Mi*:M_"f'UpS(X) i75p53(x), (5)

finite range effects in the exchange of mesons between
nucleons are neglected. Nevertheless, thanks to the smalith the effective coupling functions given by
Compton wavelengths of the mesoas w, p, and d, the

assumptions expressed by E(®. and (3) are quite reason- v @ 1ddx) 1 _. - d*®(x)
able. For light mesons such as pions this approximation is fg—p—s— 8 dpg(X) 2—pSTrF (%) dpsz(X)
not justified. However, in this case a perturbative expansion
in the pion-nucleon coupling constant seems to be reasonable 1 3
[32]. Moreover, it has been shown that the inclusion of pions + Efw+ Efr’_ §ff‘>"
does not change qualitatively the description of nuclear mat-
ter around normal conditior{82]. - 1d®d(x) 5

We remark that the kinetic approach discussed here is ©~g dp (x)+Z ot pr+ gfay
fully consistent with the previous approximation. We are s
concerned with a semiclassical description of nuclear dy- 1db(x) 1 1 9
namics, so that the nuclear medium is supposed to be in le:___+_ w— =+ =fs,
states for which the nucleon scalar and current densities are 8 dps(x) 2 2 8
smooth functions of the space-time coordinates.

Within a mean field picture of the QHD model we focus 3 _ldog 1. 3. L ©
our analysis on a description of the many-body nuclear sys- P 8dpg(x) 4 ¢ 4 8%

tem in terms of one-body dynamics. This is enough for the
scope of the paper. Correlation effects can be effectively inwhere 8 TIEZ(X)=p§+ij'“+p§3+j3ﬂj 32 \We remind the
cluded at the level of coupling constants, as noted in theeader that we are dealing with a transport equation so the
discussion of the results. currents and densities, in general, are varying functions of
We will perform the many-body calculations in quantum the space-time, at variance with the case of nuclear matter at
phase space, introducing the Wigner transform of the onegquilibrium.
body density matrix for the fermion fiel85,36. The expression of Ed5) for the effective mass embodies
The one-particle Wigner function is defined as an isospin contribution from Fock terms also without a direct
inclusion of thes meson in the Lagrangian. The usual RMF
) 1 _ approximationHartree levelis covered by the Hartree-Fock
[F(x,p)]aﬁ=Wj d*Re PR results; one has has only to change the coupling functions
f.(i=0,w,p,8), Egs.(6), with the coupling constantf .

R
Xy

— R

x < L ¢“(X 2) > ’ Equilibrium properties: The nuclear equation of state

We will focus our study on the collective modes. In order
wherea and g8 are double indices for spin and isospin. Theto analyze the results it is essential to relate them to the
angular brackets denote statistical averaging and the coloresjuation of statéEOS), which we will briefly discuss in the
denote normal ordering. The Wigner function is a matrix infollowing. In particular, for the collective response in asym-
spin and isospin spaces; in the case of asymmetric NM it ignetric nuclear matter the behavior of the symmetry energy
useful to decompose it into neutron and proton component€g, , is important.
Following the treatment of the Fock terms in the nonlinear The energy density and pressure for symmetric and asym-
QHD model introduced in Ref§34,20, we obtain for the metric nuclear matter and thep effective masses can be
Wigner function the following kinetic equation: self-consistently calculated just in terms of the four boson
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coupling constants;=(g*/m?), i=0,w,p,8, and the two L L I e
parameters of ther self-interacting termsAEa/g?, and B
=b/g?; see Refs[34,20.

The isoscalar meson parameters are fixed from symmetric
nuclear matter properties a=0: saturation densitypq
=0.16 fm 3, binding energyE/A=—16 MeV, nucleon ef-
fective massM* =0.7My (My=939 MeV) [37], and in-
compressibilityK,, =240 MeV atpy. The fittedf,,f,,A,B
parameters are reported in Table I. They have quite standard 0.9
values for these minimal nonlinear RMF models. Set | and
set Il correspond to the best parameters within a nonlinear | | |
Hartree calculation, respectively, with thgset |, NLH—p) T T
and with thep+ & (setll,NLH—(p+ 6)) couplings in the Pu/Po
isovector channe(see the discussion in Rgf16]). NLHF
stands for the nonlinear Hartree-Eock scheme described be- FIG. 1. Baryon density variation of the isovector effective cou-

0 p-like

1.1—R + o-like

1.0

fi(ﬂn)/ﬂ(ﬂo)

4

[~
S

fore. pling when the Fock terms are included.
In the table we report also the NL3 parametrization,
widely used in nuclear structure calculatig89]. We remind We remark thatA(kg ,M*) is certainly very small at low

the reader that the NL3-saturation properties for symmetriclensities, and actually it can be still neglected up to a baryon

matter are chosen as,=0.148 fm 3, M*=0.6M, and densitypg=3p, (see Ref[16]).

Ky=271.8 MeV. The symmetry parameter isa, Then in the density range of interest here we can use, at

=37.4 MeV. the leading order, a much simpler form of the symmetry
The symmetry energy in ANM is defined from the expan-energy, with transparerit-meson effects:

sion of the energy per nucledB(pg,«) in terms of the

asymmetry parameter defined as

E ! k,2: +1 f—f M* 11
az_@:PBn_PBp:N_Z sym(PB)—EE 51Tt ; Ps- (12)
PB PB A
We have We see that, when thé is included, the observed, value

actually assigns the combinati({rip—f,s(M/EF)z] of the
e(pg,a) (p,6) coupling constants. ff;# 0, we have to increase the
E(pg,@)=——=E(pg) + Esynlpp)a®+O(a*) + - - - coupling(see Fig. 1 of Refl40]). In our calculations we use
Pe 5 the valuea,=32 MeV.
@) In Table I, set | corresponds tby=0. In set Il, f5 is
chosen as 2.0 ffn roughly derived from the analysis of Ref.

and so, in general, [23]. As already noted in the Introduction this choice is not

) 5 essential for our discussion: the aim of our work is just to
£ 1 9°E(pg, @) :EPB J°€ (8  show the new dynamical effects of themeson coupling and
M2 542 275502 to select the corresponding most sensitive observables.
a=0 PB3 pp3=0

In order to have the sama, we must increase the

In the Hart licit ion for th p-coupling constant of a factor of 3, up tg=2.8 fi?. Now
; n the Har reg case_lan dex_p |(;|Oe1xp.re55|on or the Symme,q symmetry energy at saturation density is actually built
ry energy can be easily derived0,16: from the balance of scaldattractive and vector(repulsive

contributions, with the scalar channel becoming weaker with

_ ke 1 1f M*Zpg increasing baryon densifjt6]. This is indeed the isovector
ESV"{pB)_EE+§ PPBT 5 PEX2[1+f,A(ke ,M*)] counterpart of the saturation mechanism occurring in the
_ isoscalar channel for the symmetric nuclear matter. From
=gkin 4 gpot (9 such a scheme we get further support for the introduction of

sym syms ) . .
the & coupling in the symmetry energy evaluation.

wherekg is the nucleon Fermi momentum corresponding to  When the s “channel” is included the behavior of the
ps, Ef=\(KZ+M*?) and M* is the effective nucleon Symmetry energy is stiffer at high baryon density for the

mass in symmetriélM, M* =M y—g, . relativistic mechanism discussed before. When the Fock
The integral terms are evaluated the new “effective” couplings, E@,
naturally acquire a density dependence. This is shown in Fig.
K2 1 for the isovector terms. The decrease of the “effectipe”
A(ke M*)= J d3k _3| Ps P8 coupling at high density accounts for a slight softening of the
(2m)° (K2+M*2)3/2 M* Ef symmetry energy. Details of the calculation can be found in

(10 Refs.[20,16].
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IIl. LINEAR RESPONSE EQUATIONS . 5 ~ (9~f5

F3(x)=—8f G3(x)+8f,y,G5(x)— 8(9_ pss G(X)
In this section we study collective oscillations that propa- Ps
gate in cold nuclear matter due to the mean field dynamics. Pr
In some sense we follow a relativistic extension of the +8—* Y,i5G(X). (16)
method introduced by Landau to study liquitie [41-43 J
and recently applied to investigate stable and unstable modes
in nuclear mattef30,44,43. The starting point is the kinetic
transport equatioit4). We look for solutions corresponding

to small oscillations oF(x,p) around the equilibrium value.
Therefore we put

The Hartree approximation is recovered by vanishing all
the derivatives inside the quanuué@{x) and]—'3(x) except

df g dps, since stillf =P (pg)/ps.

In order to obtain the equations for the collective oscilla-
tions we multiply Eqs(13) and(14) by v, . After perform-
E(x,p)=H(p)+G(x,p), (12) ing the traces, we equate to zero both the real ar)d imaginary
parts of the resulf10,11. Furthermore, by Fourier trans-
forming and integrating over the four-momentum, we get the
set of equations for the scalar and vector fluctuations of each
species (= 1,2 for proton, neutron, respectively

whereH(p) is the Wigner function at equilibriunisee the

Appendi® andG(x,p) represent its fluctuations.
For the equilibrium state the Wigner function contains

only the isoscalar term and the third component of the is- 2 o
ovector term. We limit ourselves to studying excited states in>" { 5.+ Si D (k) DS+4C"(')(k)BV,J Gyy(K)
these channels. Therefore we consider isovector density flug=1 MF

tuations withmy=0 only; i.e., we do not study processes

where a neutron converts into a proton or vice versa. In a @i v, | Psi 0 GH _
linear response scheme oscillations in the aforementioned H4C by + * —4Ctk) B “" Gy
channels are decoupled from the remaining ones; (
=+1). (17
In the linear approximation, i.e., neglecting terms of sec- 2 COn(k
ond order iné(x,p), the equations for the Wigner functions 2 { g+ ( Psi gk 4—* (k) v
: l J9u i)
become =1 *
i R ~ R _
5 9uY*Gay(x,p)+ (L, = 1,b,) ¥*G1)(x.p) —4COMK)BS; |Gy (k) — [ 4COMK)D}
. i N N N
— M Gyy(x,p)=| 1= 5 A | [Fx)+ Fo() A 5)(p), psi ., ,Ci(K)
2 —| = o.t4 i [G((K) [ =
M* M Mi :U~
(13
(18)
for protons, and )
with
> 0,7 Gy (xP) + (1,7, b,)¥*Giay(x,p) T i,

| Dﬁz?g"‘(_l)lﬂ?a"'ﬁgps (— )JTPS
—M3 é<2)<x,p)=(1— EA)[ﬁx)—fEa(x)]ﬂ(m(p),

dts
—(=1)'——ps,

(14) Ps

* _\_F _F * _ oﬂ; (ﬁ
foL neutions, whereM 7 M J‘gps fﬁESg and M3 _M _f (- 1).+Jf +—Ps (-1 )'_Psv
—fspstfspss. The quantitiesF(x) and F3(x) are the iso- Ips Ips
scalar and isovector components of the self-consistent field: _ _

v 9t o,
. - - i, BmFaJM—(—l) Tpalan
]—‘(x)z—8f,,G(x)+8fwyMG”(x)—8£psG(x)
S

. . - af, ot
afo’ afo' (91:0. B;S/,IJ ,u,pS_(_l)]-_,jpS'
— 8= psGH(X) = 8-——psG3(x) —8-—psG5(X) g 913

- The explicit expressions of the coefficier@§’(k), C{"(k),
+8‘9f_w ¥,0"G(x), (15) and C({})L(k), together_ with some of their properties, can be
dps found in the Appendix.
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We notice, however, that the formalism developed in the LT el LA RN R R
Hartree-Fock approximation allows us to achieve the set of | .
. . i (CYRS
equations valid also for an approach to QHD_based on a £ 1.02[P0 _
dependence on the scalar density of all couplingf]. In {.. [\ ]
particular in our case the coupling functions to the scalar- > il ]
isoscalar channel depend on all the isoscalar and isovector 1.01 A‘\\ P
densities and current$or details, se¢34]); then, it is even ZJ"»¥ ——————— fo
more general. 1,00 Lt SRR
The set of equations developed in the Hartree-Fock ap- o2 0—4(N—OZ§/AOB 10
proximation recover the ones corresponding to the usual Har- 0.0 e
tree approximatioiRMF). As already mentioned, it is easily o /l/;; -
obtained by considering the coupling to each channel & B T ?»9/- P (°b)_5
equal to the coupling constant of the corresponding meson. L -0af=" /L pv/ . =
The result is an appreciably plainer structure of the equations Y o6 3 A // . E
due to the constant value of all couplings, excépt{47]. 3// ¢
Equations(17) and(18) can be reduced to ‘°~8g7 . E
Y S I I
2 Ps 0.0 0.2 04 0.8
.21 r P i 4C(')(k)) G(j)(k) o = (N-Z)/A
] I FIG. 2. Isovectorlike modega) Ratio of zero-sound velocities
to the neutron Fermi velocit as a function of the asymmetr
+[4C(I)(k)D ]G(l)(k)] =0, (19 parametera for two values ())';‘Fnbaryon density. Long—da)s/hed Iin):e:
NLH—p. Dotted line: NLH-(8+p). (b) Corresponding ratios of
) (|))\( ) proton and neutron amplitudes. All lines are labeled with the baryon
Si

VIiGH (K) densityp,=0.16 fm 3. The solid circles in pandb) represent the
i)

3Gt trivial behavior of— (pp/py) Vs a.

5

A+4"— D
YERG M¥

protons move out of phase, while isoscalarlike modes are
characterized by neutrons and protons moving in phase
[30,48.

~[4CONK)DEIG ;) (K) (20

with D =dd/dps+(—1)'"If 5, DY =f,+(—1)""if,.
The physics effects appear more transparent and_ we will IV. ROLE OF SCALAR-VECTOR FIELDS IN THE
follow the Hartree scheme in the next sections, keeping well
. . L A DYNAMICAL RESPONSE
in mind that the Fock contributions can be easily included.
We expect to have some extra contributions in the various Before showing numerical results for the dynamical re-
interaction channels without qualitative modifications of thesponse of asymmetric nuclear matter, in various baryon den-
physical response. sity regions and using the different effective interactions, we
The normal collective modes are plane waves, charactewould like to analyze in detail the structure of the relativistic
ized by the wave vectdrk“=(k°0,0]k|)]; they are deter- linear response theory in order to clearly pin down the role of
mined by solving the set of homogeneous equati@®sand each meson coupling.
(20). The solutions correspond only to longitudinal waves

and do not depend okP and|k| separately, but only on the
A. Isovector response

ratio
o One may expect that onca, is fixed, the velocity of
_k_ sound is also fixed27]. On the other hand, our results
US_|k| : clearly indicate a different dynamical response with or with-

out thed-meson channel, for interactions which geractly

The sound velocities are given by valuesgffor which the  the same a parameter(see Figs. 2 and)3dn the following.
relevant determinant of the gdfqs.(17) and(18)] vanishes, In order to get a clear understanding of this effect we will
i.e., the dispersion relations. In correspondence the neutrogonsider the case of symmetric nuclear matter in the Hartree
proton structure of the eingenvectdriormal modescan be  scheme, where the dispersion relations are assuming a trans-
derived. It should be remarked that in asymmetric nucleaparent analytical form.
matter isoscalar and isovector components are mixed in the For symmetric NM the densities, the effective masses,
normal modes. Here this can be argued by the fact that iand the coefficient€()(k), C{)(k), andC{),(k) are equal
each of the equationd9) and(20) both proton-neutron den- for protons and neutrons. Now it is also pOSSIble to decouple
sities and currents appear. the collective modes intpure isoscalar and isovector oscil-

However, we remind the reader that one can still identifylations [30]. After a straightforward rearrangement of Egs.
isovectorlike excitations as the modes where neutrons and9) and(20), we have, for the isovector modes,
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LT el LA RN R R to evaluate the expression inside the square brackets. Look-
- @ ] ing at Figs. 2, 3, and 6 this is a good approximation within
{a 102 1 3%. Equation(22) assumes a quite clear form
> ] EX f K2 ( M*
1.01 ) - 1+ ERoN— = —fs—=3ps|pe|e(s)=0,
[ 2 e\ R
1.00 P I WS P @3
02 04 08 08 1.0
o = (N-Z)/A where the potential part of the symmetry energy explicitly
LU o L L appears in the dispersion relations, lpihed to an impor-
_o.2 o 3 tant correction termwhich shows a different, ,f ; structure
& with respect to that oEg‘y’}n, Egs.(9) and(11). We can easily
Q@ —0.4 E have interactions with the same @alue at normal density
& _o08 3 but with very different isovector responsgé.g., when we
] include thes channel we know that we have to increase the
-08 E f, coupling in order to have the sarag [see the discussion
PP N I I of Egs.(9) and(11)], but now the “restoring force[coeffi-
00 02 N°'z4 i o6 cient of the Lindhard function in Eq23)] will be strongly
= (8-2)/ reduced.
FIG. 3. The same as Fig. 2 but for NLH@olid lines and Equation(23) suggests to define an effective symmetry
NLH— (8+p) (dotted lines. energy like
'2: *
* __Epot _ _P _ .
o5+ =8 (1-02)|1, 505~ 81,ColKI3ps50, Feym= B 5;2(1 fﬁpSE*;Z)pB' 29

which acts as a restoring force for the isovector mode. We
Ps 5 can see that once the symmetry energy is fixed its effect on
W_Sc(k) f56psat8F,Co(k)(1—v5)dp3=0. the dynamical response depends on the strength of each is-
(21 ovector field. In particular we can easily verify that thg
factor inside the brackets in E(R4) is a second-order cor-

We stress that the structure is the same for the isoscalar efgction and the “leading contribution” to the reduction
citations; of course, one has to change the isovector fluctua® Esyn= ESym~ ESym is essentially given by the coupling of
tions with the isoscalar onesfg, dps) and the coupling the p-meson field. On the other hand, we kn¢20] that
constants of isovector mesons with those of the isoscal?nce the symmetry energy at saturation denaifys fixed,
mesong47]. the change of , is only due to the strength df;. We have
Note that in this case to find the zero-sound velocity oneseen from Table | thaft, can go from 1 frf, if we switch off
has to evaluate determinant of &2 matrix (and not a 4 the & channel, tof ,=2.8 fn?. In terms of the effective sym-

X 4); hence the condition for having a solution can be writ-metry energy this meangf we consider the dynamical re-
ten as sponse apo), AE%, 4 MeV if f 5~2.0 f?. This “soften-

ing” of the restoring force easily accounts for the decrease of
the sound velocity {s/vg, seen in Fig. 2 for symmetric

*2
2 _ * nuclear matter,«=0, when we pass from NLHp and
1+N|: fp(l US) fﬁE’;z(l fﬁA(kF'M ) NLH_(p+5)
We like to note that a similar effect has been pointed out
Ps from a detailed nonrelativistic Skyrme-RPA study of the gi-
_fPWUS ¢(s)=0. 22 gt dipole resonance in heavy nuclé?®b) using effective

interactions with various isovector ternjd9]. A different

) ) _ sensitivity of the average resonance frequencies on the sym-
Here Ng=2KgE¢/7 is the density of states at the Fermi metry energya, and on its slope has been found. In a cova-
surface ands=vs/ve. To get Eq.(22) we have used the riant scheme we can see from E24) that such behavior can
expression forC(k), Co(k), and Coo(k) in terms of the pe achieved only using two isovector fields, at the lowest
Lindhard functiong(s) (see the Appendix The quantity — order. Another interest of this result is that a dynamical ob-
A(Kg,M*) is the same integral discussed in E®—(11).  servable can be more sensitive to the microscopic structure

At this point we can make the approximation of the isovector interaction. For instance, in a careful study
of the neutron distributiontsee Ref[24] already quoted in
k2 the Introduction, it is clearly shown that these observables
vi=pi= *F2 are almost equally correlated to the value, slope, and curva-
Er ture of the symmetry term.

015203-7



V. GRECO, M. COLONNA, M. Di TORO, AND F. MATERA PHYSICAL REVIEW (57, 015203 (2003

B. Isoscalar response tween the compressibility and the “effective compressibil-

As already remarked, we like to note that for symmetriclty” Of the order of ~100 MeV among different parametri-
NM there is a tight analogy between the isoscalar and isove&alions with the sameKyy . Therefore model withK
tor responses in the RMF approach. In the isoscalar degree 6f300A MeV can reproduce the same frequencies of other
freedom the compressibility will play the same role as themodels withK~200A MeV (and a slightly largeMg).
symmetry energy in the dispersion relation equations. Also in
this case we will have an important correction term coming C. Landau parameters
from the interplay of the scalar and vector channels.

i We would like to briefly discuss the relativistic equations
Equation(22) now become$47] would i I€Tly discuss lvistic equati

for collective modes in terms of the Landau parameters. In-
M*2 teresting features will appear from the comparison to the
fw(l_vg)_fo__( 1—f A(Ke ,M*) nonrelativistic analogous case. We will focus first on the is-
EZ ovector response, but as already clearly shown before, the
structure of the results will be absolutely similar in the iso-
scalar channel.
The general nonrelativistic expression for the isovector
modes can be found in R#2]:

1+Ng

¢(s)=0, (29

Ps
‘fwwi)

which can be reduced to the isoscalar equivalent of(E£8): a

a

1+|F§ s?|@(s)=0, (29

1
0(5)=0 1+1/3F2
(26) whereF§ is the “isovector” combination of the LandaK

parameters for neutrons and protdf&=F."—FgP, which

where theKR%; is the potential part of the nuclear matter can be expressed in terms of density variations of the chemi-
compressibility, which in the Hartree scheme has the simpleal potentials:

structure[47] [see also Eq(16) of Ref.[27]]
(27) F$ are the equivalent for the momentum-dependent part of

( o ) |
fo—fs
E?
. . . the mean field. In the relativistic approach, for symmetric
By means of such an analogy, the previous discussion cal clear matter. we get

be extended to isoscalar oscillations with the roleEgf,
now “played” by the compressibility. In this case, however,

k2 M*
pot _ N
Kim gwa,;z(l fUEEZPs)PB

ke E2
Ng—8qq s Ng= sz 4 g=np. (29

2

Knm(pg) = —-+9
Er

. ng’E %
pe=Knin+ KRN - WP

*2
one always takes into account both the scalar and vector F3=F,—F 5M ! )
channels in any RMF models. However, the coupling con- ’ Ex? 1+f5A(ke,M*)
stantf, can assume very different values depending on the
required value for effective massbg, . This is easy to un- v,2:
derstand since in the RMF limit the saturation binding en- Fi= L S E— (30
ergy has the simple form 1+ §|:p vE

E/A(0)=Ef +f,ps(0) — My,

whereF;=Ngf;(i=p, ) with Ne.=2N, ,. Note that the~{
whereM, is the bare nucleon mass. So we see that in ordecontribution comes only from the vector coupling. By using
to have the same saturation valuespg{0), E/A(0) when the expressiorEQ;’,tn, Eqg. (9), we can write Eq(28) in the
we decreaséy , we have to increasé,. We derive then same form as Eq922) and (23). The result is a similar
the natural conclusion that if two EOS have different effec-expression but with the lack of the term iry inside the
tive masses, even if the compressibility is equal, the dynamibrackets in Eq(23). As said, this is not the leading term;
cal behavior is expected to be different. This is a very genhowever, around saturation density it amounts to about 10%
eral feature present also in nonrelativistic approaches. of the total correction.

From studies of monopole resonances in finite nuclei with Moreover, turning to the analogy with isoscalar channel
the RMF model it seems that a higher value of compressibilthe coupling of theo field is now much larger and this
ity is required respect to nonrelativistic calculations. Manypurely relativistic contribution could be up to 20%. We un-
authors state that this certainly demands for a clarificatiorderline this point because generally the linear response in the
[13,14]. Even if the monopole resonance is not directly con-RMF model is discussed calculating the Landau parameters
nected to the isoscalar collective mode in nuclear matter, ouand then using these estimations directly in the nonrelativis-
discussion nicely suggests to look at the interplay betweetic expression for collective mod¢27,29.
the effective mass and compressibility. For example, we can In conclusion from the analysis in terms of the Landau
estimate by means of E¢26) that we can have a shift be- parameters, we can describe the effect of the scalar-vector
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coupling competition previously discussed in the following (“Landau damping’). This quantity then will also directly

way. The symmetry energy fixes tif§, in fact give a measure of the “robustness” of the collective mode
we are considering.
k2 Dotted lines refer to calculations including € ) me-
Esym=6?(1+ Fo), (31)  sons; long-dashed lines correspond to the case with only the
F

p meson. Calculations are performed @=p, and pg
=2po. We stress that the results of the two calculations dif-
but in the dynamical response tif§ also enters, linked to  fgr already at zero asymmetry=0. At normal density g,
the momentum dependence of the mean field, mostly givegyrveg, in spite of the fact that the symmetry energy coeffi-
by the vector meson coupling. The results are completelyjont a,=Eqynlpo) is exactly the same in the two cases,

analogous in the isoscalar channel, with the compressibilit%igniﬁcam differences are observed in the response of the

given by system. From Fig. @) we can expect a reduction of the
frequency for the bulk isovector dipole mode in stable nuclei
when the scalar isovector channél Ifke) is present. More-
over, we note that, in the NLHp case, the excitation of
isovector modes persists up to higher asymmetries at satura-
. ) L tion density.
V.V'Fh _the isoscalar _combmaﬂongng”Jr Fo°. The rela- These gre nontrivial features, related to the different way
tivistic forms qf the |sosgalar Land'au.parameters are_exactl}écmar and vector fields enter in the dynamical response of
the same as in E¢30), just substituting the5,p coupling e nyuclear system. Such behaviors are therefore present in
constants with ther,» ones[47]. both collective responses: isoscalar and isovector. We have
devoted the whole previous sectié@ec. I\V) to a complete
V. ISOVECTOR COLLECTIVE MODES IN ASYMMETRIC discussion of this effect.
NUCLEAR MATTER Differences are observed evenmi=2p,, where, how-
. . . . ever, also the symmetry energy is different. A larggy, is
In this section we discuss results for the isovector Conec'obtained in the case including tiemeson, and this leads to
tive oscillations which are driven. by. the symmetry energy, compensation of the effect observed af normal nuclear den-
terms of the nuclear EO.S' The aim is mainly .to 'InVestlgateSity_ In particular, at higher asymmetries the collective
the effect of the scalar-isovector channel. This is normally,, iiotion becomes more robust for NEHp+ ). Differ-
not include_d in studying the isovec’gor mode_s .and in gleneraches are observed also in the “chemical” structure of the
the. properties of symmetric matter in a relatlw_stlc approachmode’ represented by the ratip, / 5p,, plotted in Fig. 2b).
while it should be naturally present on the basis of the analy:l.he ratio of the out-of-phase p oscillations does not follow

ﬁgsr iS?r?Wp n trZe$prIaV|:)usvsrec$\|IQang N Ref.[ilnG]trl:oi Ie—|qurltr the ratio of then,p densities for a fixed asymmetry, given by
um propertie oreover, we stress aga at martree- s solid circles in the figure. We systematically see a larger

FOCk stchenr:e emé)odles It?\ arlytr(]:as_e tlhe.presfetnrg of a SCal%ﬁwplitude of the neutron oscillations. The effect is more pro-
Isovector channekven without the inclusion o MESON " hounced when thes (scalar-isovectgr channel is present

field [20]. .
We will first show results obtained in the Hartree scheme(dOttecj lines:

(NLH) including either both the isovectprand 8 mesons or

only the p meson. Even if the Hartree approximation has a

simpler structure, it contains all the physical effects we want We have also performed the calculation in the more gen-

to point out. Finally from the complete Hartree-Fock eral case of the Hartree-Fock approximatidiHF), whose

(NLHF) calculations we will confirm the dynamical contri- formalism has been presented before, Efjg) and(18). We

bution of the scalar isovector channel. have fitted the same properties of symmetric NM at the satu-
For NLH calculations we use the parametrizations ofration density as for the Hartree ca®_H). In particular at

Table I, set | p) and set Il p+ §). In the Hartree-Fock case pg the value of the isovector coupling is fixed in order get the

the coupling constants is adjusted to the valud4p,) Same symmetry energyhe a, parameterof the NLH—(p

=2.0 fn? of the NLHF model, Egs(6). +06) case. o _
In Fig. 3 we can see that quite similar results are obtained

in Hartree-Fock calculations, with respect to the Hartree re-
sults includingp and § mesons, especially at the normal
Let us start by considering isovectorlike excitations. Indensity. This can be understood by considering that in
Fig. 2(@) we show the sound velocities in the Hartree ap-Hartree-Fock calculation the effective density-dependent
proximation, as a function of the asymmetry parametéor ~ couplings associated with the isovector channels are tuned in
different baryon densities. We actually plot the sound veloci-such a way to roughly reproduce, at normal density, the val-
ties in units of the neutron Fermi velocities. This is physi-ues of the coupling constants, and f; of the Hartree
cally convenient: when the ratio approaches 1.00 we cascheme: then not only ia, the same, but also its internal
expect that this “zero” sound will not propagate due to thestructure. Since such a tuning can be done only at a given
strong coupling to the “chaotic” single-particle motions density value, some differences are observeggt 2pg,

3k2 .
Knm=—(1+F}), (32
Er

B. Hartree-Fock results

A. Hartree results
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1.020 prrrr T g Figs. 4 and B but the effect is clearly present in all the
105" a) a=0 _7 models.

g E 00° ° 3 For symmetric matter we have a real crossing of the two
g oo~ 7, o E phase velocities, isoscalar and isovector, as shown in Fig.
> 005 9 = 4(a). Above pg'°°° the isoscalar mode is the most robust.

AR T E For asymmetric matter we observe a transition in the
] AN LALA RAALY AR R structure of the propagating normal mode, from isovector-
1.015 b) a=0.1 like to isoscalarlike, Figs. ) and 4c). Similar effects have
+ - . o . .
é 1010+ a4 000 © 00 o] betla:r(;rsgen in a nonrelativistic pictUr&0]. e
o F 3 given asymmetry the value ofpg ">~ is different
1.005 = — for the three models considered, as can be argued by the
1.020 f::::i::::I::::i::::i::::lf behavior ofép,/p, at 2pg in Figs. Zb)ngd 3b). E.g., for
015 - o) a=0.5 @=0.1, NLHF has the lower valuepf°*°*=2.4p,), while

g 1L015F E NLH—p has the higher onep§°*°=3.0py). This is again
B 1010 L+ + + 404 —J related to the reduction of the isovector restoring force when
> 1,005 ;_* © o3 the scalar-isovector channef (ike) is present; see Sec. IV.

E | I I E From .F|g. 5 we see _that the _proton c_ompongnt of _the
1-00%_(;' 25 30 3540 ';.5 propagating sound is quite small in a relatively wide region
08/Po around the “transition” baryon density, a feature becoming

more relevant with increasing asymmetry; see the open circle
FIG. 4. Sound phase velocities of the propagating collectiveline. This is quite interesting since it could open the possi-
mode vs the baryon density (NL:Hp case. Crosses: isovectorlike. bility of an experimental observation of theeutron wave
Open circles: isoscalarlikda) Symmetric matter(b) Asymmetric effect.
matter,a=0.1. (c) Asymmetric matterp=0.5.

VI. ISOSCALAR COLLECTIVE MODES IN ASYMMETRIC
NUCLEAR MATTER
due to the density dependence of the effective coupling con-
stants of the NLHF scheme; see Fig. 1. In particular 61
slightly smaller value of the sound velocity is expected at’K
higher baryon densities.

So far we have focused our discussion on the isovector-
e response of the asymmetric nuclear matter. However, it
is well known that isoscalarlike modes can exist also in
asymmetric nuclear matter se80,48, and references
C. Disappearance of the isovector modes therein.

For asymmetric matter we have found that, in all the cal-
culation schemes, with increasing baryon density the isovec-
tor modes disappear: we call such densitigs**®. E.g., From the previous analysis we have seen the isoscalarlike
from Figs. Zb) and 3b) we see that the ratiép,/ 5p, tends excitations to become dominant at high baryon density,
very quickly to zero with increasing baryon density, aimostabove thepg °®® introduced before.
for all asymmetries. Around this transition density we expect Some results are shown in Fig. 6. It should be noticed that
to have an almospure neutron wavepropagation of the the frequency of the isoscalarlike modes is essentially related
sound. Here we show the results of the Ntid case(see to the compressibility of the system at the considered density.
In Fig. 6(a) we display the sound velocity obtained in Har-
tree and Hartree-Fock calculationsmi=3.50,, as a func-

A. Exotic high baryon density modes

065' L R tion of the asymmetry. The differences observed among
0.4 —J calculations performed within the Hartree or Hartree-Fock
F x ] scheme are due to a different behavior of the associated
R 02 x E equation of state at high density.
< 00fF—-----—-—-- Fo-o--0 - At =0 the two Hartree models have exactly the same
& F o 0o ° % . isoscalar mean fields, but for asymmetric nuclear matter the
-0.2 —] different behavior of the symmetry energy leads to a differ-
_045_ . E ent compressibility. The case NL-H p+ &) which has the
“E 3 stiffer Egym (resulting in a greater incompressibility fer
ogbev o v b ey ] >0) with respect to NLH-(p) shows also a greater increase
20 25 ps)(;: 35 40 of vs/vg, With density. Instead, NLHF, even if it has the
B/ FQ

same compressibiliti(y at saturation density, shows a dif-

FIG. 5. Ratio of protons and neutron amplitudes in the propaferentvs. This should be due to the density dependence of
gating mode, for different asymmetries, as a function of the baryorihe coupling function arising from exchange terms, which
density around thp$°SS. Crossesa=0.1, Fig. 4b). Open circles: leads to different values oKy, out of p, (even for «
a=0.5, Fig. 40). =0).
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FIG. 6. The same of Fig. 2 for isoscalarlike modes, pat
=3.50¢. Solid line: NLHF. Long-dashed line: NLHp. Dotted
line: NLH—(p+ ). The solid circles in pane{b) represent the
behavior ofp,/p, vs «a.

FIG. 7. Isoscalarlike unstable modes@f=0.4p,: Imaginary
sound velocity(a), in ¢ units, and ratio of proton and neutron am-
plitudes(b) as a function of the asymmetry. Solid line: NLHF.
Dotted line: NLH-(p+ 8). Long-dashed line: NLH p. The solid

) ) . circles in panelb) represent the behavior @p,/dp, Vs a.
Some differences are observed also in the chemical com-

position of the modgFig. 80b)). The black spots show the such a collective mode. For all the interactions this ratio is

behavior ofp,/p, VS @ Note thepure neutron Wavestiuc- e o0 sron the corresponding, /p,, of the initial asym-
ture of the propagating sound, since the oscillations of pro- P

tons appear strongly damped(,/p,<py/p.): unfortu- metry «. This is exactly the chemical effect associated with
ppear aly Peddy/ Spn<<pp/pn); . the new instabilities in dilute asymmetric matf@48).
nately this is an effect not experimentally accessitde . e . .
. . . In particular it is found that, when isoscalarlike modes

present (see also the discussion at the end of the previoug .
section. ecome unstable,.the ratﬁ_pplépn becomedarger thgt the

Before closing this discussion we have to remark that théitileos") P s/ gg E:a}t V%“are]ziewmr]oig?\ Sgsg:;t?;ﬁgezr:t rgllgrt]ivitlen_
isoscalarlike modes at high baryon density are vanishing ig ' 9. P y

the nuclear EOS becomes softer. This is indeed the results ¢t 3¢ than neutron oscillations, Iead!ng to a more symmetrlc
Iquid phase and to a more neutron-rich gas phase, during the

two recent models, Ref$29,50, where the nuclear com- o . L9
pressibility is decreasing at high baryon density for a reduc—dlsassembly of the system. This is the so-called isospin dis-

tion of the isoscalar vector channel contribution[29] this ggﬁg%gf;ee(;r?hgggbm?g;i?r?n’a?r:ﬁ:'r%%%tzurgfs f?; t::z;gfect
is due to self-interacting high order terms for themeson, y 9 9

S L ; L " produced in dissipative heavy-ion collisioftsl1,52.
xg”ga:?yg)sn()] dlééssi?;e to a reduced, coupling with increas We note here that in dilute asymmetric NM we can dis-

Finally we note that all causality violation problertsu- %n;;tﬁ;;h ;Vr:g r;?é?}:}i;ggﬁqtagth n;icg?gt'&aglﬁfrg?g
perluminal sound velocitigsobserved in the nonrelativistic P P '

results at high baryon densitgee[27] and Fig. 3¢ in Ref. however, no discontinuity in the structure of the unstable

) I - modes which are developing. For all realistic effective
'Eﬁg])hizrﬁ ;ggﬁ;ﬂ?%;g?ﬁgg; Zhe relativistic appro nuclear interactiongrelativistic and nonrelativisticthe na-

ture of the unstable normal modes at low densities is always
isoscalarlike i.e., with neutrons and protons oscillating in
phase, although with a distillation effect discussed before
We have also investigated the response of the system ifsee Ref.[48] for a fully detailed study of this important
the region of spinodal instability associated with the liquid-property of asymmetric nuclear mafter
gas phase transition, which occurs at low densities. It is In Fig. 7 we observe that Hartree resuligith and with-
known that in this region an isoscalar unstable mode can beut the s meson are very similar and, indeed, at low density
found, with imaginary sound velocity, which gives rise to anthe symmetry energy behavior is nearly the same in the two
exponential growth of the fluctuations. The latter can reprecases. On the other hand, differences are observed with re-
sent a dynamical mechanism for the multifragmentation prospect to the Hartree-Fock case. In fact, the NLHF symmetry
cess observed in heavy-ion collisions. We have found thignergy presents a softer behaviaroundpg=0.4p), which
kind of solution in the present approach. In Fig. 7 we showleads to a smaller distillation effect. We remark that the
the ratio dp,/dp,, as function of the initial asymmetry for equality between the NLH symmetrics with and withalis

B. Isospin distillation in dilute matter
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in agreement with the analysis in terms of the generalizea relativistic schem¢29]. The corrections appear to be not
Landau parameters associated with normal modes developeeégligible, particularly for the isoscalar response.

in Ref.[16]. We can conclude that there are essentially no From the numerical results on the collective response of
effects of the scalar isovector channel on isospin distillatio®ANM some general features are qualitatively present in all

in the spinodal decomposition. the effective interactions in the isovector channel.
(i) In asymmetric matter we have a mixing of pure isos-
VIl. CONCLUSIONS AND OUTLOOK calar and pure isovector oscillations which leads thami-

cal effect on the structure of the propagating collective

We have developed a linear response theory starting froomode: the ratio of the neutron/proton density oscillations
relativistic kinetic equations deduced within a quantumdp,/ép, is different from the initialp,/p, of the matter at
hadrodynamics effective field picture of the hadronic phaseequilibrium. However, we can still classify the nature of the
of nuclear matter. In the asymmetric case we consider as thexcited collective motions asoscalarlike (when neutron
main dynamical degrees of freedom the nucleon field€and protons are oscillating in phasedisovectorlike(out of
coupled to theésoscalat scalaro and w, and to theisovec- phase. Note that similar effects can be obtained also using
tor, scalaré and vectorp, mesons. nonrelativistic effective forceg30,48.

Using the Landau procedure we derive the dispersion re- (i) For a given asymmetry the isovectorlike mode is the
lations which give the sound phase velocity and the internamost robust at low baryon density, always showing a larger
structure of the normal collective modes, stable and unstabl&gutron component in the oscillations. With increasing
We have focused our attention on the effect of the isovectobaryon density we observe a smooth transition, ad°>°
mesons on the collective response of asymmeétrautron- =(2-3)p,, to an isoscalarlike branch, still with a dominant
rich) matter. In order to better understand the dynamical roledp, . In the region of the transition we predict a propagation
of the different mesons, the results are obtained in the Hamf almostpure neutron waved-or relatively large asymme-
tree approximation, which has a simpler and more transpatfies [a=(N—2Z)/(N+Z)=0.5N=3Z] this behavior is
ent form. The contribution of Fock terms is also discussed.present in a wide interval of densities aroysffi°*°. All that

We have singled out some qualitative new effects of theseems to suggest the possibility of an experimental observa-
J-meson-like channel on the dynamical response of ANMtion of related effects in intermediate-energy heavy-ion col-
Essentially, our investigation indicates that even if the symiisions with exotic beams. If the compressibility of nuclear
metry energy is fixed, the dynamical response is affected bynatter is decreasing at high baryon density, also these exotic
its internal structure, i.e., the presence or not of an isovectoiisoscalarlike modes will disappear. This could be a nice sig-
scalar field. This is implemented by the explicit introduction nature of the softening of the nuclear EOS at high densities.
of an effectived meson and/or by the Fock term contribu-  (iii) The isoscalarlike motions become unstable at sub-
tions. Both mechanisms are absent in the present relativistisaturation densities still with a strong chemical effect, now in
RPA calculations for finite nuclei. In the spirit of the EFT- the opposite direction with respect to the one discussed be-
DFT approacti19] it would be interesting to see the effect of fore, present in the stable high density modes. Now the un-
an isovector scalar field extension, at the lowest order, on thstable oscillation is more proton rich, eventually leading to
existing covariant RPA results. The richer sensitivity of thethe formation of more symmetric clusters versus a very
collective response on the density dependence of the symmaeutron-rich gas phase. This is theutron distillationeffect
try term can be of large importance for our knowledge of the[7,30,45,48,51,5R a new important feature of the liquid-gas
isovector part of the in medium interaction. phase transition in asymmetric nuclear systems.

We like to remark that the same interplay between scalar

o-meson and vector p-meson contributions can be seen
i(n the dynamical isoscgiar modes. In general we clearly show ACKNOWLEDGMENTS

a close analogy in the structure of the linear response equa- We warmly thank Hermann H. Wolter and Stephan Typel
tions: (i) same form of the dispersion relatiofd. Eqs.(22)  for several pleasant and stimulating discussions.

and(25)], (ii) parallel role ofERO andKRS; in the determi-
nation of the restoring forcgEqgs. (23) and (27)], and (iii )
parallel structure of the corrections due to the scalar-vector
meson competitiofiEgs. (23) anq (27“)]'. Y The Wigner matrixH(p) for matter at equilibrium satu-

Th|§ appears to be a beautiful mirror” structure of .the rated in spin has the following form:
relativistic approach that seems to nicely support the intro-
duction of ad-meson-like coupling in the isovector channel, R
at least from a formal point of view. We like to remind the H(p)=H(p)+ vy, H*(p).
reader that the same “mirror” structure of the relativistic
picture has been recently stressed in RE] for equilibrium  From the kinetic equation one obtains the relation for nuclear
properties—saturation binding and symmetry energy—athe matter at equilibrium between the scalar and vector parts,
anda, parameters of the Weiszaecker mass formula.

The relativistic dispersion relations have been compared *
with the nonrelativistic ones of the Landau Fermi liquid Hﬂ(p)zp—”H“(p),
theory expressed in terms of Landau parameters evaluated in M*
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where the zero component of the vector part is proportional ck), cP(k), C(lig(k), C(zig( ), (k)
to the Fermi Dirac distribution function:

for I#m (I andm are space indicesIn addition, for sym-
O(EE — )5(p*(')— 5, metry reasons,

(') )_
(=7 2 | |
cfk)=chk).
wherei=n,p and E§i=(k2+ Mi*z)l/zl
The coefficientC(k), C{(k), andC{)(k) introduced ~ The integrals in Egs(A1) can be evaluated analytically.

in Sec. Il are given by the integrals They give
) k : 11 3 1 M*
(k)= M* 4Lp)" M) (Ky— _ = Pei -+
CO(k)=M; fd e (Ala) ci(k) 2M*p3,+4E* 2N et ——o(s),
(A3a)
C(l) Jd4 H(,)(p)kﬂp)\ (Alb) 1
*I p ! )
o K Ci=+ 7 Nig(s), (A3D)
' HI_V kv K0 %i
ci) (k)= f d%M, (Alo) . 1 1
Py K’ Cl=—Zpsit ZNiM{" (s, (A30)
whereH(,)(p)zﬁ(”p)H(i)(p). The indexi specifies the kind
of nucleon:i=1 for protons and =2 for neutrons. The fre- | 1 3 M} 3 M7
quencyk® includes an imaginary pare with e positive in- cl(k)= 4PsiT g Ex PB —(sf—De(s),
finitesimal. Fi EF, (A3d)

By using the definition$A1l) it can be easily checked that

Ps| whereve is the Fermi velocitysi=k°/(vFi|k|), N; are the

K'cl(k)=0, KC{)(k)=~ density of states at Fermi surface, and
. . 1 . Si Si + 1 |
3 e io=MrCOk) - Zpsi (A2) e(s)=1-5lIng =7 *3ms 6(1=s)

In order to be more specific we choose thaxis in the is the Lindhard function. The remaining coefficie§’ (k),
direction of the wave vectok. As a consequence, the fol- C{J(k), andC{}(k) can be evaluated by means of the rela-

lowing coefficients identically vanish: tions (A2).
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