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Collective modes of asymmetric nuclear matter in quantum hadrodynamics
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We discuss a fully relativistic Landau Fermi liquid theory based on the quantum hadrodynamics effective
field picture of nuclear matter. From the linearized kinetic equations we get the dispersion relations of the
propagating collective modes. We focus our attention on the dynamical effects of the interplay between scalar
and vector channel contributions. An interesting ‘‘mirror’’ structure in the form of the dynamical response in
the isoscalar-isovector degree of freedom is revealed, with a complete parallelism in the role respectively
played by the compressibility and the symmetry energy. All that seems to support the introduction of an
explicit coupling to the scalar-isovector channel of the nucleon-nucleon interaction. In particular we study the
influence of this coupling~to a d-meson-like effective field! on the collective response of asymmetric nuclear
matter~ANM !. Interesting contributions are found on the propagation of isovectorlike modes at normal density
and on an expected smooth transition to isoscalarlike oscillations at high baryon density. Important ‘‘chemical’’
effects on the neutron-proton structure of the mode are shown. For dilute ANM we have the isospin distillation
mechanism of the unstable isoscalarlike oscillations, while at high baryon density we predict an almost pure
neutron wave structure of the propagating sounds.
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I. INTRODUCTION

The quantum hadrodynamics~QHD! effective field model
represents a very successful attempt to describe, in a
consistent relativistic picture, equilibrium and dynamic
properties of nuclear systems at the hadronic level@1–3#.
Very nice results have been obtained for the nuclear struc
of finite nuclei @4–6#, for the nuclear matter~NM! equation
of state and liquid-gas phase transitions@7# and for the dy-
namics of nuclear collisions@8,9#. Relativistic random-
phase-approximation~RRPA! theories have been develope
to study the nuclear collective response@10–15#.

In this paper we present a relativistic linear respon
theory with the aim of a transparent connection between
collective dynamics and the coupling to various channels
the nucleon-nucleon interaction. In particular we will foc
our attention on the dynamical response of asymme
nuclear matter since one of the main points of our discuss
is the relevance of the coupling to a scalar isovector chan
the virtual d@a0(980)# meson, not considered in the usu
dynamical studies. A related point of interest is the dyna
cal treatment of the Fock terms.

The isospin physics is assuming more and more releva
in connection to the new radioactive beam facilities and
nuclear astrophysics. The introduction of the isovector-sc
channel in covariant approaches can play a key role in
effective interaction in asymmetric matter; see Ref.@16#.
This point has not received great attention before for t
main reasons.

~i! Thed channel has not been considereda priori, just on
the basis of the weak contribution to the free nucleo
nucleon interaction@17,18#. But in the spirit of theeffective
field theory as a relativisticdensity functional theory~the
EFT-DFT framework; see@19#!, the relevance of this channe
0556-2813/2003/67~1!/015203~14!/$20.00 67 0152
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could be completely different in nuclear matter, due to m
dium and many-body effects. In particular we can expec
large contribution from exchange terms of the strong
coupled isoscalar channels; see the discussion in Ref.@20# as
well as in @16#.

~ii ! This extension is not well supported by the existi
set of data, as remarked in Refs.@6,21–23#. Clearly these
negative outcomes are mainly derived from the lack of inf
mation on observables more sensitive to the density dep
dence of the symmetry term.

We like to note that very recently~see the conclusions o
Ref. @24#!, the d channel has been reconsidered as an in
esting improvement of covariant approaches, in the fram
work of the EFT-DFT philosophy. One of the main tasks
our work is just to try to select the dynamical observab
more sensitive to it; see also the conclusions of Ref.@16#.

In this respect the results reported here on the collec
response can be useful in order to solve the open problem
the determination of the scalar-isovector coupling. As
ready remarked, contributions to this channel mainly co
from correlation effects. Therefore the correct microsco
approach should be to derive the relative coupling const
in a QHD mean field framework, from Dirac-Brueckne
Hartree-Fock calculations. Several attempts have been
cently performed~see Refs.@23,25,26#!, but the results have
been up to now not fully model independent.

An important outcome of our work is to show that the tw
effective couplings, vector and scalar, in the isovector ch
nel influence in a different way the static~symmetry energy!
and dynamic~collective response! properties of asymmetric
nuclear matter. This will open new possibilities for a ph
nomenological determination of these fundamental qua
ties.

In the paper we will derive transparent analytical resu
©2003 The American Physical Society03-1
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In order to show also some quantitative effects of the
namical contribution of thed channel we have to fix in som
way the corresponding coupling. We have used a cons
value ~see Table I! extracted from the analysis of Ref.@23#,
where it actually appears not strongly density dependent
wide range of baryon densities. Some results are also
sented with the dynamics of Fock correlations explicitly a
counted for@nonlinear Hartree-Fock~NLHF! case; see Sec
II #. Now all the coupling constants will acquire some dens
dependence@20#.

A relativistic extension of the Landau linear respon
theory of Fermi liquids has been considered before just s
ing from the relativistic form of the Landau parameters@27–
29#. We will show that the full dispersion relations obtaine
from the relativistic kinetic equations present some intere
ing corrections that cannot be neglected.

The main physics results are the following.
~i! The important effect of ad-meson coupling on the

isovector collective mode at saturation baryon density. T
is of interest for the relativistic study of the giant dipo
resonance in heavy finite nuclei. It is important to note t
the inclusion of Fock terms acts in the same direction.

~ii ! The presence of noticeable ‘‘chemical effects’’ in th
propagating collective oscillations; i.e., the charge symme
of the ‘‘waves’’ is quite different from the asymmetry of th
initial equilibrium matter. The effect is opposite for the u
stable modes present at low densities, more proton rich,
leads to the isospin distillation effect, and for the sta
propagating sounds at high baryon density which app
mostly like ‘‘pure neutron waves.’’

~iii ! A stimulating ‘‘mirror’’ structure of the isoscalar an
isovector linear response, with the restoring forces given
the potential part respectively of the compressibility and
symmetry energy. The interplay between the scalar and
tor meson effective fields in the dynamics is very similar
the two degrees of freedom, as already observed for s
properties@16#. The conclusion is that a formally consiste
relativistic effective field model should include on the sam
footing isoscalar and isovector meson fields,both scalar and
vector.

Our results around normal density can be used as gen
guidelines in predicting the behavior of volume collecti
modes in finiteb-unstable nuclei. Similar study for asym
metric NM have been performed in Ref.@30# using Skyrme-
like interactions. Apart the difference in the interactio
used, in particular for the symmetry terms, we will see sim
lar results and interesting new relativistic effects.

In Sec. II we derive the kinetic equations in the gene

TABLE I. Parameter sets.

Parameter Set I Set II NLHF NL3

f s (fm2) 11.27 same 9.15 15.73
f v (fm2) 6.48 same 3.22 10.53
f r (fm2) 1.0 2.8 1.9 1.34
f d (fm2) 0.00 2.0 1.4 0.00
A (fm21) 0.022 same 0.098 0.01
B 20.0039 same 20.021 20.003
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case of nonlinear self-interacting terms, including the Fo
corrections. We discuss the inclusion of thed-meson chan-
nel, also on the model parameters. In Sec. III we present
relativistic linear response equations. In Sec. IV we hav
general discussion on the formal structure of the dispers
relations, the role played by the scalar-vector mesons,
the comparison to nonrelativistic cases. Results for isov
tor~like! collective modes are presented in Sec. V, in parti
lar for the asymmetry and baryon density effects. The is
calar~like! response is analyzed in Sec. VI. Conclusions a
outlooks can be found in Sec. VII.

II. KINETIC EQUATIONS FROM A QHD EFFECTIVE
THEORY

We start from the QHD effective field picture of the ha
ronic phase of nuclear matter@1–3#. In order to include the
main dynamical degrees of freedom of the system we w
consider the nucleons coupled to the isoscalar scalars and
vectorv mesons and to the isovector scalard and vectorr
mesons.

The Lagrangian density for this model, including nonli
ear isoscalar-scalars terms@31#, is given by

L5c̄@gm~ i ]m2gvV m2grBm
•t!2~M2gsf2gdt•d!#c

1
1

2
~]mf]mf2ms

2f2!2
a

3
f32

b

4
f42

1

4
WmnWmn

1
1

2
mv

2VnV n1
1

2
~]md•]md2md

2d2!2
1

4
Gmn•Gmn

1
1

2
mr

2Bn•Bn, ~1!

where Wmn(x)5]mV n(x)2]nV m(x) and Gmn(x)
5]mBn(x)2]nBm(x).

Here c(x) is the nucleon fermionic field, andf(x) and
V n(x) represent neutral scalar and vector boson fields,
spectively.d(x) andBn(x) are the charged scalar and vect
fields, andt denotes the isospin matrices.

From the Lagrangian, Eq.~1!, with the Euler procedure a
set of coupled equations of motion for the meson a
nucleon fields can be derived. The basic approximation
nuclear matter applications consists of neglecting all
terms containing derivatives of the meson fields, with resp
to the mass contributions. Then the meson fields are sim
connected to the operators of the nucleon scalar and cu
densities by the following equations:

F̂/ f s1AF̂21BF̂35c̄~x!c~x! [r Ŝ , ~2!

V̂m~x!5 f vc̄~x!gmc~x![ f v ĵ m ,

B̂m~x!5 f rc̄~x!gmtc~x!,

d̂~x!5 f dc̄~x!tc~x!, ~3!
3-2
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where F̂5gsf, f s5(gs /ms)2, A5a/gs
3 , B5b/gs

4 , f v

5(gv /mv)2, f r5(gr/2mr)2, and f d5(gd /md)2.
For the nucleon fields we get a Dirac-like equation.

deed after substituting Eqs.~2! and ~3! for the meson field
operators, we obtain an equation which contains o
nucleon field operators. All the equations can be consiste
solved in a relativistic mean field~RMF! approximation,
where most applications have been performed, in partic
in the Hartree scheme@3,5#.

The inclusion of Fock terms is conceptually importa
@32,33# since it automatically leads to contributions to va
ous channels, also in the absence of explicit coupling ter
We will discuss this point later. A thorough study of the Fo
contributions in a QHD approach with nonlinear se
interacting terms has been recently performed@34#, in par-
ticular for asymmetric matter@20#.

The present approximation implies that retardation a
finite range effects in the exchange of mesons betw
nucleons are neglected. Nevertheless, thanks to the s
Compton wavelengths of the mesonss, v, r, and d, the
assumptions expressed by Eqs.~2! and ~3! are quite reason
able. For light mesons such as pions this approximatio
not justified. However, in this case a perturbative expans
in the pion-nucleon coupling constant seems to be reason
@32#. Moreover, it has been shown that the inclusion of pio
does not change qualitatively the description of nuclear m
ter around normal conditions@32#.

We remark that the kinetic approach discussed her
fully consistent with the previous approximation. We a
concerned with a semiclassical description of nuclear
namics, so that the nuclear medium is supposed to b
states for which the nucleon scalar and current densities
smooth functions of the space-time coordinates.

Within a mean field picture of the QHD model we focu
our analysis on a description of the many-body nuclear s
tem in terms of one-body dynamics. This is enough for
scope of the paper. Correlation effects can be effectively
cluded at the level of coupling constants, as noted in
discussion of the results.

We will perform the many-body calculations in quantu
phase space, introducing the Wigner transform of the o
body density matrix for the fermion field@35,36#.

The one-particle Wigner function is defined as

@ F̂~x,p!#ab5
1

~2p!4E d4Re2 ip•R

3 K :c̄bS x1
R

2 DcaS x2
R

2 D : L ,

wherea andb are double indices for spin and isospin. T
angular brackets denote statistical averaging and the co
denote normal ordering. The Wigner function is a matrix
spin and isospin spaces; in the case of asymmetric NM
useful to decompose it into neutron and proton compone
Following the treatment of the Fock terms in the nonline
QHD model introduced in Refs.@34,20#, we obtain for the
Wigner function the following kinetic equation:
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i

2
]mgmF̂ ( i )~x,p!1gmpm i* F̂ ( i )~x,p!2Mi* F̂ ( i )~x,p!

1
i

2
D@ f̃ v j m~x!gm6 f̃ r j 3m~x!gm2 f̃ srS~x!

7 f̃ drS3~x!#F̂ ( i )~x,p!50, i 5n,p, ~4!

whereD5]x•]p , with ]x acting only on the first term of the
products. HererS35rSp2rSn and j 3m(x)5 j m

p (x)2 j m
n (x)

are the isovector scalar density and the isovector baryon
rent, respectively. We have defined the kinetic moment
and effective masses as

pm i* 5pm2 f̃ v j m~x!6 f̃ r j 3m~x!,

Mi* 5M2 f̃ srS~x!6 f̃ drS3~x!, ~5!

with the effective coupling functions given by

f̃ s5
F

rS
2

1

8

dF~x!

drS~x!
2

1

2rS
TrF̂2~x!

d2F~x!

drS
2~x!

1
1

2
f v1

3

2
f r2

3

8
f d ,

f̃ v5
1

8

dF~x!

drS~x!
1

5

4
f v1

3

4
f r1

3

8
f d ,

f̃ d52
1

8

dF~x!

drS~x!
1

1

2
f v2

1

2
f r1

9

8
f d ,

f̃ r5
1

8

dF~x!

drS~x!
1

1

4
f v1

3

4
f r2

1

8
f d , ~6!

where 8 TrF̂2(x)5rS
21 j m j m1rS3

2 1 j 3m j 3m. We remind the
reader that we are dealing with a transport equation so
currents and densities, in general, are varying functions
the space-time, at variance with the case of nuclear matte
equilibrium.

The expression of Eq.~5! for the effective mass embodie
an isospin contribution from Fock terms also without a dire
inclusion of thed meson in the Lagrangian. The usual RM
approximation~Hartree level! is covered by the Hartree-Foc
results; one has has only to change the coupling functi
f̃ i( i 5s,v,r,d), Eqs.~6!, with the coupling constantsf i .

Equilibrium properties: The nuclear equation of state

We will focus our study on the collective modes. In ord
to analyze the results it is essential to relate them to
equation of state~EOS!, which we will briefly discuss in the
following. In particular, for the collective response in asym
metric nuclear matter the behavior of the symmetry ene
Esym is important.

The energy density and pressure for symmetric and as
metric nuclear matter and then,p effective masses can b
self-consistently calculated just in terms of the four bos
3-3
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coupling constantsf i[(gi
2/mi

2), i 5s,v,r,d, and the two
parameters of thes self-interacting terms,A[a/gs

3 and B
[b/gs

4 ; see Refs.@34,20#.
The isoscalar meson parameters are fixed from symm

nuclear matter properties atT50: saturation densityr0
50.16 fm23, binding energyE/A5216 MeV, nucleon ef-
fective massM* 50.7MN (MN5939 MeV) @37#, and in-
compressibilityKV5240 MeV atr0. The fitted f s , f v ,A,B
parameters are reported in Table I. They have quite stan
values for these minimal nonlinear RMF models. Set I a
set II correspond to the best parameters within a nonlin
Hartree calculation, respectively, with ther(set I,NLH2r)
and with ther1d „set II,NLH2(r1d)… couplings in the
isovector channel~see the discussion in Ref.@16#!. NLHF
stands for the nonlinear Hartree-Fock scheme described
fore.

In the table we report also the NL3 parametrizatio
widely used in nuclear structure calculations@39#. We remind
the reader that the NL3-saturation properties for symme
matter are chosen asr050.148 fm23, M* 50.6MN , and
KV5271.8 MeV. The symmetry parameter isa4
537.4 MeV.

The symmetry energy in ANM is defined from the expa
sion of the energy per nucleonE(rB ,a) in terms of the
asymmetry parametera defined as

a[2
rB3

rB
5

rBn2rBp

rB
5

N2Z

A
.

We have

E~rB ,a![
e~rB ,a!

rB
5E~rB!1Esym~rB!a21O~a4!1•••

~7!

and so, in general,

Esym[
1

2

]2E~rB ,a!

]a2 U
a50

5
1

2
rB

]2e

]rB3
2 U

rB350

. ~8!

In the Hartree case an explicit expression for the symm
try energy can be easily derived@40,16#:

Esym~rB!5
1

6

kF
2

EF*
1

1

2
f rrB2

1

2
f d

M* 2rB

EF*
2@11 f dA~kF ,M* !#

[Esym
kin 1Esym

pot , ~9!

wherekF is the nucleon Fermi momentum corresponding
rB , EF* [A(kF

21M* 2) and M* is the effective nucleon
mass in symmetricNM, M* 5MN2gsf.

The integral

A~kF ,M* ![
4

~2p!3E d3k
k2

~k21M* 2!3/2
53S rS

M*
2

rB

EF*
D .

~10!
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We remark thatA(kF ,M* ) is certainly very small at low
densities, and actually it can be still neglected up to a bar
densityrB.3r0 ~see Ref.@16#!.

Then in the density range of interest here we can use
the leading order, a much simpler form of the symme
energy, with transparentd-meson effects:

Esym~rB!5
1

6

kF
2

EF*
1

1

2 F f r2 f dS M*

EF*
D 2GrB . ~11!

We see that, when thed is included, the observeda4 value
actually assigns the combination@ f r2 f d(M /EF)2# of the
(r,d) coupling constants. Iff dÞ0, we have to increase ther
coupling~see Fig. 1 of Ref.@40#!. In our calculations we use
the valuea4532 MeV.

In Table I, set I corresponds tof d50. In set II, f d is
chosen as 2.0 fm2, roughly derived from the analysis of Re
@23#. As already noted in the Introduction this choice is n
essential for our discussion: the aim of our work is just
show the new dynamical effects of thed-meson coupling and
to select the corresponding most sensitive observables.

In order to have the samea4 we must increase the
r-coupling constant of a factor of 3, up tof r52.8 fm2. Now
the symmetry energy at saturation density is actually b
from the balance of scalar~attractive! and vector~repulsive!
contributions, with the scalar channel becoming weaker w
increasing baryon density@16#. This is indeed the isovecto
counterpart of the saturation mechanism occurring in
isoscalar channel for the symmetric nuclear matter. Fr
such a scheme we get further support for the introduction
the d coupling in the symmetry energy evaluation.

When thed ‘‘channel’’ is included the behavior of the
symmetry energy is stiffer at high baryon density for t
relativistic mechanism discussed before. When the F
terms are evaluated the new ‘‘effective’’ couplings, Eqs.~6!,
naturally acquire a density dependence. This is shown in
1 for the isovector terms. The decrease of the ‘‘effective’r
coupling at high density accounts for a slight softening of
symmetry energy. Details of the calculation can be found
Refs.@20,16#.

FIG. 1. Baryon density variation of the isovector effective co
pling when the Fock terms are included.
3-4
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III. LINEAR RESPONSE EQUATIONS

In this section we study collective oscillations that prop
gate in cold nuclear matter due to the mean field dynam
In some sense we follow a relativistic extension of t
method introduced by Landau to study liquid3He @41–43#
and recently applied to investigate stable and unstable m
in nuclear matter@30,44,45#. The starting point is the kinetic
transport equation~4!. We look for solutions correspondin
to small oscillations ofF̂(x,p) around the equilibrium value
Therefore we put

F̂~x,p!5Ĥ~p!1Ĝ~x,p!, ~12!

where Ĥ(p) is the Wigner function at equilibrium~see the
Appendix! andĜ(x,p) represent its fluctuations.

For the equilibrium state the Wigner function contai
only the isoscalar term and the third component of the
ovector term. We limit ourselves to studying excited states
these channels. Therefore we consider isovector density
tuations withmT50 only; i.e., we do not study processe
where a neutron converts into a proton or vice versa. I
linear response scheme oscillations in the aforementio
channels are decoupled from the remaining ones (mT
561).

In the linear approximation, i.e., neglecting terms of s
ond order inĜ(x,p), the equations for the Wigner function
become

i

2
]mgmĜ(1)~x,p!1~Pm2 f̃ r bm!gmĜ(1)~x,p!

2M1* Ĝ(1)~x,p!5S 12
i

2
D D @F̂~x!1F̂3~x!#Ĥ (1)~p!,

~13!

for protons, and

i

2
]mgmĜ(2)~x,p!1~Pm1 f̃ r bm!gmĜ(2)~x,p!

2M2* Ĝ(2)~x,p!5S 12
i

2
D D @F̂~x!2F̂3~x!#Ĥ (2)~p!,

~14!

for neutrons, whereM1* 5M2 f̃ srS2 f̃ d rS3 and M2* 5M

2 f̃ srS1 f̃ d rS3. The quantitiesF̂(x) and F̂3(x) are the iso-
scalar and isovector components of the self-consistent fi

F̂~x!528 f̃ sG~x!18 f̃ vgmGm~x!28
] f̃ s

]rS
rSG~x!

28
] f̃ s

] j m
rSGm~x!28

] f̃ s

]rS3
rSG3~x!28

] f̃ s

] j 3m
rSG3

m~x!

18
] f̃ v

]rS
gm j mG~x!, ~15!
01520
-
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F̂3~x!528 f̃ dG3~x!18 f̃ rgmG3
m~x!28

] f̃ d

]rS
rS3 G~x!

18
] f̃ r

]rS
gm j 3

mG~x!. ~16!

The Hartree approximation is recovered by vanishing
the derivatives inside the quantitiesF̂(x) andF̂3(x), except
] f̃ S/]rS , since still f̃ s5F(rS)/rS .

In order to obtain the equations for the collective oscil
tions we multiply Eqs.~13! and ~14! by gl . After perform-
ing the traces, we equate to zero both the real and imagin
parts of the result@10,11#. Furthermore, by Fourier trans
forming and integrating over the four-momentum, we get
set of equations for the scalar and vector fluctuations of e
species (i 51,2 for proton, neutron, respectively!:

(
j 51

2 H Fd i , j1S rSi

M i*
24 C( i )~k! DDi j

S14 Cm( i )~k!Bm
V

i j GG( j )~k!

1F4 Cm
( i )~k!Di j

V1S rSi

M i*
24 C( i )~k!D Bm

S
i j GG( j )

m ~k!J 50,

~17!

(
j 51

2 H F d i , jgm
l 1S rSi

M i*
gm

l 14
Cm

( i )l~k!

Mi*
D Di j

V

24 C( i )l~k!Bm
S

i j GG( j )
m ~k!2F4 C( i )l~k!Di j

S

2S rSi

M i*
gm

l 14
Cm

( i )l~k!

Mi*
D Bm

V
i j GG( j )~k!J 50,

~18!

with

Di j
S5 f̃ s1~21! i 1 j f̃ d1

] f̃ s

]rS
rS2~21! j

] f̃ s

]r3
rS

2~21! i
] f̃ d

]rS
r3 ,

Di j
V5 f̃ v1~21! i 1 j f̃ r1

] f̃ v

]rS
rS2~21! i

] f̃ r

]rS
r3 ,

Bm
V

i j 5
] f̃ v

]rS
j m2~21! i

] f̃ r

]rS
j 3m ,

Bm
S

i j 5
] f̃ s

] j m rS2~21! j
] f̃ d

] j 3
m rS .

The explicit expressions of the coefficientsC( i )(k), Cl
( i )(k),

and Clm
( i ) (k), together with some of their properties, can

found in the Appendix.
3-5
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We notice, however, that the formalism developed in
Hartree-Fock approximation allows us to achieve the se
equations valid also for an approach to QHD based o
dependence on the scalar density of all couplings@46#. In
particular in our case the coupling functions to the sca
isoscalar channel depend on all the isoscalar and isove
densities and currents~for details, see@34#!; then, it is even
more general.

The set of equations developed in the Hartree-Fock
proximation recover the ones corresponding to the usual H
tree approximation~RMF!. As already mentioned, it is easil
obtained by considering the couplingf̃ i to each channe
equal to the coupling constant of the corresponding mes
The result is an appreciably plainer structure of the equat
due to the constant value of all couplings, exceptf̃ s @47#.
Equations~17! and ~18! can be reduced to

(
j 51

2 H Fd i , j1S rSi

M i*
24 C( i )~k! DDi j

S GG( j )~k!

1@4 Cm
( i )~k!Di j

V#G( j )
m ~k!J 50, ~19!

(
j 51

2 H F d i , jgm
l 1S rSi

M i*
gm

l 14
Cm

( i )l~k!

Mi*
D Di j

VGG( j )
m ~k!

2@4 C( i )l~k!Di j
S#G( j )~k!J 50, ~20!

with Di j
S5dF/drS1(21)i 1 j f d , Di j

V5 f v1(21)i 1 j f r .
The physics effects appear more transparent and we

follow the Hartree scheme in the next sections, keeping w
in mind that the Fock contributions can be easily includ
We expect to have some extra contributions in the vari
interaction channels without qualitative modifications of t
physical response.

The normal collective modes are plane waves, charac
ized by the wave vector@km5(k0,0,0,uku)#; they are deter-
mined by solving the set of homogeneous equations~19! and
~20!. The solutions correspond only to longitudinal wav
and do not depend onk0 and uku separately, but only on the
ratio

vs5
k0

uku
.

The sound velocities are given by values ofvs for which the
relevant determinant of the set@Eqs.~17! and~18!# vanishes,
i.e., the dispersion relations. In correspondence the neut
proton structure of the eingenvectors~normal modes! can be
derived. It should be remarked that in asymmetric nucl
matter isoscalar and isovector components are mixed in
normal modes. Here this can be argued by the fact tha
each of the equations~19! and~20! both proton-neutron den
sities and currents appear.

However, we remind the reader that one can still iden
isovectorlike excitations as the modes where neutrons
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protons move out of phase, while isoscalarlike modes
characterized by neutrons and protons moving in ph
@30,48#.

IV. ROLE OF SCALAR-VECTOR FIELDS IN THE
DYNAMICAL RESPONSE

Before showing numerical results for the dynamical
sponse of asymmetric nuclear matter, in various baryon d
sity regions and using the different effective interactions,
would like to analyze in detail the structure of the relativis
linear response theory in order to clearly pin down the role
each meson coupling.

A. Isovector response

One may expect that oncea4 is fixed, the velocity of
sound is also fixed@27#. On the other hand, our result
clearly indicate a different dynamical response with or wi
out thed-meson channel, for interactions which giveexactly
the same a4 parameter~see Figs. 2 and 3! in the following.
In order to get a clear understanding of this effect we w
consider the case of symmetric nuclear matter in the Har
scheme, where the dispersion relations are assuming a t
parent analytical form.

For symmetric NM the densities, the effective mass
and the coefficientsC( i )(k), Cl

( i )(k), andClm
( i ) (k) are equal

for protons and neutrons. Now it is also possible to decou
the collective modes intopure isoscalar and isovector osci
lations @30#. After a straightforward rearrangement of Eq
~19! and ~20!, we have, for the isovector modes,

FIG. 2. Isovectorlike modes:~a! Ratio of zero-sound velocities
to the neutron Fermi velocityVFn as a function of the asymmetr
parametera for two values of baryon density. Long-dashed lin
NLH2r. Dotted line: NLH2(d1r). ~b! Corresponding ratios of
proton and neutron amplitudes. All lines are labeled with the bar
densityr050.16 fm23. The solid circles in panel~b! represent the
trivial behavior of2(rp /rn) vs a.
3-6
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dr31F rS

M*
28

C00~k!

M*
~12vs

2!G f r dr328 f d C0~k!drS350,

drS31F rS

M*
28 C~k!G f d drS318 f r C0~k!~12vs

2!dr350.

~21!

We stress that the structure is the same for the isoscala
citations; of course, one has to change the isovector fluc
tions with the isoscalar ones (drB , drS) and the coupling
constants of isovector mesons with those of the isosc
mesons@47#.

Note that in this case to find the zero-sound velocity o
has to evaluate determinant of a 232 matrix ~and not a 4
34); hence the condition for having a solution can be w
ten as

11NFF f r~12vs
2!2 f d

M* 2

EF*
2 S 12 f dA~kF ,M* !

2 f r

rS

M*
vs

2D Gw~s!50. ~22!

Here NF52KFEF* /p2 is the density of states at the Ferm
surface ands[vs /vF . To get Eq.~22! we have used the
expression forC(k), C0(k), and C00(k) in terms of the
Lindhard functionw(s) ~see the Appendix!. The quantity
A(KF ,M* ) is the same integral discussed in Eqs.~9!–~11!.

At this point we can make the approximation

vs
2.vF

25
kF

2

EF*
2

FIG. 3. The same as Fig. 2 but for NLHF~solid lines! and
NLH2(d1r) ~dotted lines!.
01520
x-
a-

ar

e

-

to evaluate the expression inside the square brackets. L
ing at Figs. 2, 3, and 6 this is a good approximation with
3%. Equation~22! assumes a quite clear form

11
6 EF*

kF
2 FEsym

pot 2
f r

2

kF
2

EF*
2 S 12 f d

M*

EF*
2
rSD rBGw~s!50 ,

~23!

where the potential part of the symmetry energy explici
appears in the dispersion relations, butjoined to an impor-
tant correction termwhich shows a differentf r , f d structure
with respect to that ofEsym

pot , Eqs.~9! and~11!. We can easily
have interactions with the same a4 value at normal density
but with very different isovector response. E.g., when we
include thed channel we know that we have to increase t
f r coupling in order to have the samea4 @see the discussion
of Eqs.~9! and ~11!#, but now the ‘‘restoring force’’@coeffi-
cient of the Lindhard function in Eq.~23!# will be strongly
reduced.

Equation ~23! suggests to define an effective symme
energy like

Esym* 5Esym
pot 2

f r

2

kF
2

EF*
2 S 12 f d rS

M*

EF*
2D rB , ~24!

which acts as a restoring force for the isovector mode.
can see that once the symmetry energy is fixed its effec
the dynamical response depends on the strength of eac
ovector field. In particular we can easily verify that thef d
factor inside the brackets in Eq.~24! is a second-order cor
rection and the ‘‘leading contribution’’ to the reductio
DEsym* 5Esym

pot 2Esym* is essentially given by the coupling o
the r-meson field. On the other hand, we know@20# that
once the symmetry energy at saturation densitya4 is fixed,
the change off r is only due to the strength off d . We have
seen from Table I thatf r can go from 1 fm2, if we switch off
thed channel, tof r52.8 fm2. In terms of the effective sym-
metry energy this means~if we consider the dynamical re
sponse atr0), DEsym* ;4 MeV if f d;2.0 fm2. This ‘‘soften-
ing’’ of the restoring force easily accounts for the decrease
the sound velocity (vs /vFn seen in Fig. 2! for symmetric
nuclear matter,a50, when we pass from NLH2r and
NLH2(r1d).

We like to note that a similar effect has been pointed
from a detailed nonrelativistic Skyrme-RPA study of the g
ant dipole resonance in heavy nuclei (208Pb) using effective
interactions with various isovector terms@49#. A different
sensitivity of the average resonance frequencies on the s
metry energya4 and on its slope has been found. In a cov
riant scheme we can see from Eq.~24! that such behavior can
be achieved only using two isovector fields, at the low
order. Another interest of this result is that a dynamical o
servable can be more sensitive to the microscopic struc
of the isovector interaction. For instance, in a careful stu
of the neutron distributions~see Ref.@24# already quoted in
the Introduction!, it is clearly shown that these observabl
are almost equally correlated to the value, slope, and cu
ture of the symmetry term.
3-7
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B. Isoscalar response

As already remarked, we like to note that for symmet
NM there is a tight analogy between the isoscalar and isov
tor responses in the RMF approach. In the isoscalar degre
freedom the compressibility will play the same role as
symmetry energy in the dispersion relation equations. Als
this case we will have an important correction term com
from the interplay of the scalar and vector channels.

Equation~22! now becomes@47#

11NFF f v~12vs
2!2 f s

M* 2

EF*
2 S 12 f sA~kF ,M* !

2 f v

rS

M*
vs

2D Gw~s!50, ~25!

which can be reduced to the isoscalar equivalent of Eq.~23!:

11
EF*

3 kF
2 FKNM

pot29 f v

kF
2

EF*
2 S 12 f s

M*

EF*
2

rSD rBGw~s!50,

~26!

where theKNM
pot is the potential part of the nuclear matt

compressibility, which in the Hartree scheme has the sim
structure@47# @see also Eq.~16! of Ref. @27##

KNM~rB!5
3 kF

2

EF*
19F f v2 f sS M*

EF*
D 2GrB[KNM

kin 1KNM
pot .

~27!

By means of such an analogy, the previous discussion
be extended to isoscalar oscillations with the role ofEsym
now ‘‘played’’ by the compressibility. In this case, howeve
one always takes into account both the scalar and ve
channels in any RMF models. However, the coupling c
stant f v can assume very different values depending on
required value for effective massesM0* . This is easy to un-
derstand since in the RMF limit the saturation binding e
ergy has the simple form

E/A~0!5EF* 1 f vrB~0!2MN ,

whereMN is the bare nucleon mass. So we see that in or
to have the same saturation values ofrB(0), E/A(0) when
we decreaseM0* , we have to increasef v . We derive then
the natural conclusion that if two EOS have different effe
tive masses, even if the compressibility is equal, the dyna
cal behavior is expected to be different. This is a very g
eral feature present also in nonrelativistic approaches.

From studies of monopole resonances in finite nuclei w
the RMF model it seems that a higher value of compress
ity is required respect to nonrelativistic calculations. Ma
authors state that this certainly demands for a clarifica
@13,14#. Even if the monopole resonance is not directly co
nected to the isoscalar collective mode in nuclear matter,
discussion nicely suggests to look at the interplay betw
the effective mass and compressibility. For example, we
estimate by means of Eq.~26! that we can have a shift be
01520
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tween the compressibility and the ‘‘effective compressib
ity’’ of the order of ;100 MeV among different parametri
zations with the sameKNM . Therefore model withK
;300A MeV can reproduce the same frequencies of ot
models withK;200A MeV ~and a slightly largerM0* ).

C. Landau parameters

We would like to briefly discuss the relativistic equatio
for collective modes in terms of the Landau parameters.
teresting features will appear from the comparison to
nonrelativistic analogous case. We will focus first on the
ovector response, but as already clearly shown before,
structure of the results will be absolutely similar in the is
scalar channel.

The general nonrelativistic expression for the isovec
modes can be found in Ref.@42#:

11FF0
a1

F1
a

111/3F1
a

s2Gw~s!50, ~28!

whereF0
a is the ‘‘isovector’’ combination of the LandauF0

parameters for neutrons and protonsF0
a5Fa

nn2F0
np , which

can be expressed in terms of density variations of the che
cal potentials:

F0
qq8[

]mq

]rq8
Nq2dqq8 , Nq[

kFqEFq*

p2
, q5n,p. ~29!

F1
a are the equivalent for the momentum-dependent par

the mean field. In the relativistic approach, for symmet
nuclear matter, we get

F0
a5Fr2Fd

M* 2

EF*
2

1

11 f d A~kF ,M* !
,

F1
a52Fr

vF
2

11
1

3
Fr vF

2

, ~30!

whereFi5NFf i( i 5r,d) with NF52Nn,p . Note that theF1
a

contribution comes only from the vector coupling. By usin
the expressionEsym

pot , Eq. ~9!, we can write Eq.~28! in the
same form as Eqs.~22! and ~23!. The result is a similar
expression but with the lack of the term inf d inside the
brackets in Eq.~23!. As said, this is not the leading term
however, around saturation density it amounts to about 1
of the total correction.

Moreover, turning to the analogy with isoscalar chann
the coupling of thes field is now much larger and this
purely relativistic contribution could be up to 20%. We u
derline this point because generally the linear response in
RMF model is discussed calculating the Landau parame
and then using these estimations directly in the nonrelati
tic expression for collective modes@27,29#.

In conclusion from the analysis in terms of the Land
parameters, we can describe the effect of the scalar-ve
3-8



ng

ve
te
ili

ct

ec
gy
at
ll

er
ch
aly

e
a

m

an
k

i-

o
e

In
p

c
si
ca
he
s

de

the

if-

fi-
s,
the

e
lei

f
tura-

ay
e of
nt in
ave

o
en-

the

y
ger
ro-
t

en-

tu-

he

ed
re-
al

in
ent
d in
al-

l
ven

COLLECTIVE MODES OF ASYMMETRIC NUCLEAR . . . PHYSICAL REVIEW C67, 015203 ~2003!
coupling competition previously discussed in the followi
way. The symmetry energy fixes theF0

a , in fact

Esym5
kF

2

6 EF*
~11F0

a!, ~31!

but in the dynamical response theF1
a also enters, linked to

the momentum dependence of the mean field, mostly gi
by the vector meson coupling. The results are comple
analogous in the isoscalar channel, with the compressib
given by

KNM5
3 kF

2

EF*
~11F0

s!, ~32!

with the ‘‘isoscalar’’ combinationF0
s5F0

nn1F0
np . The rela-

tivistic forms of the isoscalar Landau parameters are exa
the same as in Eq.~30!, just substituting thed,r coupling
constants with thes,v ones@47#.

V. ISOVECTOR COLLECTIVE MODES IN ASYMMETRIC
NUCLEAR MATTER

In this section we discuss results for the isovector coll
tive oscillations which are driven by the symmetry ener
terms of the nuclear EOS. The aim is mainly to investig
the effect of the scalar-isovector channel. This is norma
not included in studying the isovector modes and in gen
the properties of symmetric matter in a relativistic approa
while it should be naturally present on the basis of the an
sis shown in the previous section~and in Ref.@16# for equi-
librium properties!. Moreover, we stress again that Hartre
Fock scheme embodies in any case the presence of a sc
isovector channel,even without the inclusion of thed-meson
field @20#.

We will first show results obtained in the Hartree sche
~NLH! including either both the isovectorr andd mesons or
only the r meson. Even if the Hartree approximation has
simpler structure, it contains all the physical effects we w
to point out. Finally from the complete Hartree-Foc
~NLHF! calculations we will confirm the dynamical contr
bution of the scalar isovector channel.

For NLH calculations we use the parametrizations
Table I, set I (r) and set II (r1d). In the Hartree-Fock cas
the coupling constantf d is adjusted to the valuef̃ d(r0)
52.0 fm2 of the NLHF model, Eqs.~6!.

A. Hartree results

Let us start by considering isovectorlike excitations.
Fig. 2~a! we show the sound velocities in the Hartree a
proximation, as a function of the asymmetry parametera for
different baryon densities. We actually plot the sound velo
ties in units of the neutron Fermi velocities. This is phy
cally convenient: when the ratio approaches 1.00 we
expect that this ‘‘zero’’ sound will not propagate due to t
strong coupling to the ‘‘chaotic’’ single-particle motion
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~‘‘Landau damping’’!. This quantity then will also directly
give a measure of the ‘‘robustness’’ of the collective mo
we are considering.

Dotted lines refer to calculations including (r1d) me-
sons; long-dashed lines correspond to the case with only
r meson. Calculations are performed atrB5r0 and rB

52r0. We stress that the results of the two calculations d
fer already at zero asymmetry,a50. At normal density (r0

curves!, in spite of the fact that the symmetry energy coef
cient a45Esym(r0) is exactly the same in the two case
significant differences are observed in the response of
system. From Fig. 2~a! we can expect a reduction of th
frequency for the bulk isovector dipole mode in stable nuc
when the scalar isovector channel (d like! is present. More-
over, we note that, in the NLH2r case, the excitation o
isovector modes persists up to higher asymmetries at sa
tion density.

These are nontrivial features, related to the different w
scalar and vector fields enter in the dynamical respons
the nuclear system. Such behaviors are therefore prese
both collective responses: isoscalar and isovector. We h
devoted the whole previous section~Sec. IV! to a complete
discussion of this effect.

Differences are observed even atrB52r0, where, how-
ever, also the symmetry energy is different. A largerEsym is
obtained in the case including thed meson, and this leads t
a compensation of the effect observed at normal nuclear d
sity. In particular, at higher asymmetriesa the collective
excitation becomes more robust for NLH2(r1d). Differ-
ences are observed also in the ‘‘chemical’’ structure of
mode, represented by the ratiodrp /drn , plotted in Fig. 2~b!.
The ratio of the out-of-phasen,p oscillations does not follow
the ratio of then,p densities for a fixed asymmetry, given b
the solid circles in the figure. We systematically see a lar
amplitude of the neutron oscillations. The effect is more p
nounced when thed ~scalar-isovector! channel is presen
~dotted lines!.

B. Hartree-Fock results

We have also performed the calculation in the more g
eral case of the Hartree-Fock approximation~NLHF!, whose
formalism has been presented before, Eqs.~17! and~18!. We
have fitted the same properties of symmetric NM at the sa
ration density as for the Hartree case~NLH!. In particular at
r0 the value of the isovector coupling is fixed in order get t
same symmetry energy~the a4 parameter! of the NLH2(r
1d) case.

In Fig. 3 we can see that quite similar results are obtain
in Hartree-Fock calculations, with respect to the Hartree
sults includingr and d mesons, especially at the norm
density. This can be understood by considering that
Hartree-Fock calculation the effective density-depend
couplings associated with the isovector channels are tune
such a way to roughly reproduce, at normal density, the v
ues of the coupling constantsf r and f d of the Hartree
scheme: then not only isa4 the same, but also its interna
structure. Since such a tuning can be done only at a gi
density value, some differences are observed atrB52r0,
3-9
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due to the density dependence of the effective coupling c
stants of the NLHF scheme; see Fig. 1. In particula
slightly smaller value of the sound velocity is expected
higher baryon densities.

C. Disappearance of the isovector modes

For asymmetric matter we have found that, in all the c
culation schemes, with increasing baryon density the isov
tor modes disappear: we call such densitiesrB

cross. E.g.,
from Figs. 2~b! and 3~b! we see that the ratiodrp /drn tends
very quickly to zero with increasing baryon density, almo
for all asymmetries. Around this transition density we exp
to have an almostpure neutron wavepropagation of the
sound. Here we show the results of the NLH1r case~see

FIG. 4. Sound phase velocities of the propagating collec
mode vs the baryon density (NLH1r case!. Crosses: isovectorlike
Open circles: isoscalarlike.~a! Symmetric matter.~b! Asymmetric
matter,a50.1. ~c! Asymmetric matter,a50.5.

FIG. 5. Ratio of protons and neutron amplitudes in the pro
gating mode, for different asymmetries, as a function of the bar
density around therB

cross. Crosses:a50.1, Fig. 4~b!. Open circles:
a50.5, Fig. 4~c!.
01520
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Figs. 4 and 5!, but the effect is clearly present in all th
models.

For symmetric matter we have a real crossing of the t
phase velocities, isoscalar and isovector, as shown in
4~a!. AboverB

cross the isoscalar mode is the most robust.
For asymmetric matter we observe a transition in

structure of the propagating normal mode, from isovect
like to isoscalarlike, Figs. 4~b! and 4~c!. Similar effects have
been seen in a nonrelativistic picture@30#.

For a given asymmetrya the value ofrB
cross is different

for the three models considered, as can be argued by
behavior ofdrp /drn at 2r0 in Figs. 2~b! and 3~b!. E.g., for
a50.1, NLHF has the lower value (rB

cross.2.4r0), while
NLH2r has the higher one (rB

cross.3.0r0). This is again
related to the reduction of the isovector restoring force wh
the scalar-isovector channel (d like! is present; see Sec. IV

From Fig. 5 we see that the proton component of
propagating sound is quite small in a relatively wide regi
around the ‘‘transition’’ baryon density, a feature becomi
more relevant with increasing asymmetry; see the open ci
line. This is quite interesting since it could open the pos
bility of an experimental observation of theneutron wave
effect.

VI. ISOSCALAR COLLECTIVE MODES IN ASYMMETRIC
NUCLEAR MATTER

So far we have focused our discussion on the isovec
like response of the asymmetric nuclear matter. Howeve
is well known that isoscalarlike modes can exist also
asymmetric nuclear matter see@30,48#, and references
therein.

A. Exotic high baryon density modes

From the previous analysis we have seen the isoscala
excitations to become dominant at high baryon dens
above therB

cross introduced before.
Some results are shown in Fig. 6. It should be noticed t

the frequency of the isoscalarlike modes is essentially rela
to the compressibility of the system at the considered den
In Fig. 6~a! we display the sound velocity obtained in Ha
tree and Hartree-Fock calculations atrB53.5r0, as a func-
tion of the asymmetrya. The differences observed amon
calculations performed within the Hartree or Hartree-Fo
scheme are due to a different behavior of the associa
equation of state at high density.

At a50 the two Hartree models have exactly the sa
isoscalar mean fields, but for asymmetric nuclear matter
different behavior of the symmetry energy leads to a diff
ent compressibility. The case NLH2(r1d) which has the
stiffer Esym ~resulting in a greater incompressibility fora
.0) with respect to NLH2(r) shows also a greater increas
of vs /vFn with density. Instead, NLHF, even if it has th
same compressibilityKNM at saturation density, shows a di
ferentvs . This should be due to the density dependence
the coupling function arising from exchange terms, whi
leads to different values ofKNM out of r0 ~even for a
50).

e

-
n
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Some differences are observed also in the chemical c
position of the mode@Fig. 6~b!#. The black spots show th
behavior ofrp /rn vs a. Note thepure neutron wavestruc-
ture of the propagating sound, since the oscillations of p
tons appear strongly damped (drp /drn!rp /rn); unfortu-
nately this is an effect not experimentally accessible~at
present! ~see also the discussion at the end of the previ
section!.

Before closing this discussion we have to remark that
isoscalarlike modes at high baryon density are vanishin
the nuclear EOS becomes softer. This is indeed the resul
two recent models, Refs.@29,50#, where the nuclear com
pressibility is decreasing at high baryon density for a red
tion of the isoscalar vector channel contribution. In@29# this
is due to self-interacting high order terms for thev meson,
while in @50# it is due to a reducedf v coupling with increas-
ing baryon density.

Finally we note that all causality violation problems~su-
perluminal sound velocities! observed in the nonrelativisti
results at high baryon density~see@27# and Fig. 3c in Ref.
@30#! are completely absent in the relativistic approach~see
the high density trends in Fig. 4!.

B. Isospin distillation in dilute matter

We have also investigated the response of the system
the region of spinodal instability associated with the liqu
gas phase transition, which occurs at low densities. I
known that in this region an isoscalar unstable mode can
found, with imaginary sound velocity, which gives rise to
exponential growth of the fluctuations. The latter can rep
sent a dynamical mechanism for the multifragmentation p
cess observed in heavy-ion collisions. We have found
kind of solution in the present approach. In Fig. 7 we sh
the ratiodrp /drn as function of the initial asymmetry fo

FIG. 6. The same of Fig. 2 for isoscalarlike modes, atrB

53.5r0. Solid line: NLHF. Long-dashed line: NLH2r. Dotted
line: NLH2(r1d). The solid circles in panel~b! represent the
behavior ofrp /rn vs a.
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such a collective mode. For all the interactions this ratio
different from the correspondingrp /rn of the initial asym-
metry a. This is exactly the chemical effect associated w
the new instabilities in dilute asymmetric matter@7,48#.

In particular it is found that, when isoscalarlike mod
become unstable, the ratiodrp /drn becomeslarger that the
ratio rp /rn ~at variance with the stable modes at high de
sities; see Fig. 6!. Hence proton oscillations are relative
larger than neutron oscillations, leading to a more symme
liquid phase and to a more neutron-rich gas phase, during
disassembly of the system. This is the so-called isospin
tillation effect in fragmentation, and signatures of this effe
could be searched by looking at the ratioN/Z of fragments
produced in dissipative heavy-ion collisions@51,52#.

We note here that in dilute asymmetric NM we can d
tinguish two regions of instability: mechanical~cluster for-
mation! and chemical~component separation!. There is,
however, no discontinuity in the structure of the unsta
modes which are developing. For all realistic effecti
nuclear interactions~relativistic and nonrelativistic! the na-
ture of the unstable normal modes at low densities is alw
isoscalarlike, i.e., with neutrons and protons oscillating
phase, although with a distillation effect discussed bef
~see Ref.@48# for a fully detailed study of this importan
property of asymmetric nuclear matter!.

In Fig. 7 we observe that Hartree results~with and with-
out thed meson! are very similar and, indeed, at low densi
the symmetry energy behavior is nearly the same in the
cases. On the other hand, differences are observed with
spect to the Hartree-Fock case. In fact, the NLHF symme
energy presents a softer behavior~aroundrB50.4r0), which
leads to a smaller distillation effect. We remark that t
equality between the NLH symmetrics with and withoutd is

FIG. 7. Isoscalarlike unstable modes atrB50.4r0: Imaginary
sound velocity~a!, in c units, and ratio of proton and neutron am
plitudes ~b! as a function of the asymmetrya. Solid line: NLHF.
Dotted line: NLH2(r1d). Long-dashed line: NLH2r. The solid
circles in panel~b! represent the behavior ofdrp /drn vs a.
3-11
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in agreement with the analysis in terms of the generali
Landau parameters associated with normal modes devel
in Ref. @16#. We can conclude that there are essentially
effects of the scalar isovector channel on isospin distillat
in the spinodal decomposition.

VII. CONCLUSIONS AND OUTLOOK

We have developed a linear response theory starting f
relativistic kinetic equations deduced within a quantu
hadrodynamics effective field picture of the hadronic ph
of nuclear matter. In the asymmetric case we consider as
main dynamical degrees of freedom the nucleon fie
coupled to theisoscalar, scalars andv, and to theisovec-
tor, scalard and vectorr, mesons.

Using the Landau procedure we derive the dispersion
lations which give the sound phase velocity and the inter
structure of the normal collective modes, stable and unsta
We have focused our attention on the effect of the isove
mesons on the collective response of asymmetric~neutron-
rich! matter. In order to better understand the dynamical r
of the different mesons, the results are obtained in the H
tree approximation, which has a simpler and more trans
ent form. The contribution of Fock terms is also discusse

We have singled out some qualitative new effects of
d-meson-like channel on the dynamical response of AN
Essentially, our investigation indicates that even if the sy
metry energy is fixed, the dynamical response is affected
its internal structure, i.e., the presence or not of an isovec
scalar field. This is implemented by the explicit introducti
of an effectived meson and/or by the Fock term contrib
tions. Both mechanisms are absent in the present relativ
RPA calculations for finite nuclei. In the spirit of the EFT
DFT approach@19# it would be interesting to see the effect
an isovector scalar field extension, at the lowest order, on
existing covariant RPA results. The richer sensitivity of t
collective response on the density dependence of the sym
try term can be of large importance for our knowledge of
isovector part of the in medium interaction.

We like to remark that the same interplay between sc
(s-meson! and vector (v-meson! contributions can be see
in the dynamical isoscalar modes. In general we clearly sh
a close analogy in the structure of the linear response e
tions: ~i! same form of the dispersion relations@cf. Eqs.~22!
and~25!#, ~ii ! parallel role ofEsym

pot andKNM
pot in the determi-

nation of the restoring force@Eqs. ~23! and ~27!#, and ~iii !
parallel structure of the corrections due to the scalar-ve
meson competition@Eqs.~23! and ~27!#.

This appears to be a beautiful ‘‘mirror’’ structure of th
relativistic approach that seems to nicely support the in
duction of ad-meson-like coupling in the isovector channe
at least from a formal point of view. We like to remind th
reader that the same ‘‘mirror’’ structure of the relativist
picture has been recently stressed in Ref.@16# for equilibrium
properties—saturation binding and symmetry energy—thea1
anda4 parameters of the Weiszaecker mass formula.

The relativistic dispersion relations have been compa
with the nonrelativistic ones of the Landau Fermi liqu
theory expressed in terms of Landau parameters evaluat
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a relativistic scheme@29#. The corrections appear to be n
negligible, particularly for the isoscalar response.

From the numerical results on the collective response
ANM some general features are qualitatively present in
the effective interactions in the isovector channel.

~i! In asymmetric matter we have a mixing of pure iso
calar and pure isovector oscillations which leads to achemi-
cal effect on the structure of the propagating collecti
mode: the ratio of the neutron/proton density oscillatio
drn /drp is different from the initialrn /rp of the matter at
equilibrium. However, we can still classify the nature of t
excited collective motions asisoscalarlike ~when neutron
and protons are oscillating in phase! andisovectorlike~out of
phase!. Note that similar effects can be obtained also us
nonrelativistic effective forces@30,48#.

~ii ! For a given asymmetry the isovectorlike mode is t
most robust at low baryon density, always showing a lar
neutron component in the oscillations. With increasi
baryon density we observe a smooth transition, at arB

cross

.(2 –3)r0, to an isoscalarlike branch, still with a domina
drn . In the region of the transition we predict a propagati
of almostpure neutron waves. For relatively large asymme
tries @a[(N2Z)/(N1Z)50.5,N53Z# this behavior is
present in a wide interval of densities aroundrB

cross. All that
seems to suggest the possibility of an experimental obse
tion of related effects in intermediate-energy heavy-ion c
lisions with exotic beams. If the compressibility of nucle
matter is decreasing at high baryon density, also these ex
isoscalarlike modes will disappear. This could be a nice s
nature of the softening of the nuclear EOS at high densit

~iii ! The isoscalarlike motions become unstable at s
saturation densities still with a strong chemical effect, now
the opposite direction with respect to the one discussed
fore, present in the stable high density modes. Now the
stable oscillation is more proton rich, eventually leading
the formation of more symmetric clusters versus a v
neutron-rich gas phase. This is theneutron distillationeffect
@7,30,45,48,51,52#, a new important feature of the liquid-ga
phase transition in asymmetric nuclear systems.

ACKNOWLEDGMENTS

We warmly thank Hermann H. Wolter and Stephan Typ
for several pleasant and stimulating discussions.

APPENDIX

The Wigner matrixĤ(p) for matter at equilibrium satu-
rated in spin has the following form:

Ĥ~p!5H~p!1gmHm~p!.

From the kinetic equation one obtains the relation for nucl
matter at equilibrium between the scalar and vector parts

Hm~p!5
pm*

M*
Hm~p!,
3-12
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where the zero component of the vector part is proportio
to the Fermi Dirac distribution function:

H0
( i )~p!5

1

4

1

~2p!3
Q~EFi* 2Eki* !d~p0*

( i )2Eki* !,

wherei 5n,p andEki* 5(k21Mi*
2)1/2.

The coefficientsC( i )(k), Cl
( i )(k), andClm

( i ) (k) introduced
in Sec. II are given by the integrals

C( i )~k!5Mi* E d4p
H ( i )8l~p!kl

pr*
ikr

, ~A1a!

Cl
( i )~k!5E d4p

H ( i )8m~p!kmpl*
i

pr*
ikr

, ~A1b!

Clm
( i ) ~k!5E d4p

H ( i )8n~p!knpl*
i pm*

i

pr*
ikr

, ~A1c!

whereH ( i )8l(p)5] (p)
l H ( i )(p). The indexi specifies the kind

of nucleon:i 51 for protons andi 52 for neutrons. The fre-
quencyk0 includes an imaginary parti e with e positive in-
finitesimal.

By using the definitions~A1! it can be easily checked tha

klCl
( i )~k!50, klClm

( i ) ~k!52km

rSi

4
,

(
m

Cm
( i )m~k!5Mi* C( i )~k!2

1

2
rSi . ~A2!

In order to be more specific we choose thez axis in the
direction of the wave vectork. As a consequence, the fo
lowing coefficients identically vanish:
d

01520
al C1
( i )~k!, C2

( i )~k!, C10
( i )~k!, C20

( i )~k!, Clm
( i )~k!

for lÞm ( l and m are space indices!. In addition, for sym-
metry reasons,

C11
( i )~k!5C22

( i )~k!.

The integrals in Eqs.~A1! can be evaluated analytically
They give

C( i )~k!52
1

2

1

Mi*
rSi1

3

4

rBi

EFi*
2

1

4
Ni

Mi*
2

EFi
*

w~si !,

~A3a!

C0
( i )51

1

4
Niw~si !, ~A3b!

C00
( i )52

1

4
rSi1

1

4
NiMi* w~si !, ~A3c!

C11
( i )~k!5

1

4
rSi2

3

8

Mi*

EFi*
rBi1

3

8

Mi*

EFi*
~si

221!w~si !,

~A3d!

wherevFi
is the Fermi velocity,si5k0/(vFi

uku), Ni are the
density of states at Fermi surface, and

w~si !512
si

2
lnUsi11

si21U1 i

2
psi u~12si !

is the Lindhard function. The remaining coefficientsC3
( i )(k),

C03
( i )(k), andC33

( i )(k) can be evaluated by means of the re
tions ~A2!.
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