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We study theoretically the geometrical and temporal commensurability oscillations induced in the resistivity
of two-dimensional electrons in a perpendicular magnetic field by surface acoustic (&A&s). We show
that there is a positive anisotropic dynamical classical contribution and an isotropic nonequilibrium quantum
contribution to the resistivity. We describe how the commensurability oscillations modulate the resonances in
the SAW-induced resistivity at multiples of the cyclotron frequency. We study the effects of both short-range
and long-range disorder on the resistivity corrections for both the classical and quantum nonequilibrium cases.
We predict that the quantum correction will give rise to zero-resistance states with associated geometrical
commensurability oscillations at large SAW amplitude for sufficiently large inelastic scattering times. These
zero resistance states are qualitatively similar to those observed under microwave illumination, and their nature
depends crucially on whether the disorder is short or long range. Finally, we discuss the implications of our
results for current and future experiments on two-dimensional electron gases.
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[. INTRODUCTION SAWSs?? There has also been some theoretical study of these
SAW-induced effect$3-2"

Recent experiments on high mobility two-dimensional In all of these studies, the parameter regimes used have
electron gase@DEGS have shown a variety of magnetore- been in the low frequenciw — 0) limit, such that the SAWs
sistance effects under intense microwaveMW) are essentially static. Experiments have recently begun to
illumination1°One phenomenon that has attracted considinvestigate the effect of SAWs on magnetoresistance in a
erable attention is MW-induced magnetoresistance oscilla2DEG 16 We have studied this effect theoretically, investigat-
tions. These are spaced according to the ratio of the MWhg both geometric and temporal resonanBor a spa-
frequency to the cyclotron frequency, showingesnporal tially periodic SAW field, the commensurability effect can
commensurabilitypetween the MW field and the cyclotron also be viewed as a resonant SAW interaction with collective
motion. At high MW power the oscillations develop into zero excitations of 2D electrons at finite wave numb€r/ en-
resistance state@RS).22 The phenomenological theory of abling one to excite modes otherwise forbidden by Kohn's
ZRS by Andreev, Aleiner, and Millid has explained the ef- theoren?® These experimental developments require new
fect to be a macroscopic manifestation of negative local retheory for the response of a 2DEG to electric fields with both
sistivity imposed on the 2DEG by energy pumping from thespatial and temporal modulation; this work was started in
microwave field. Several microscopic models have beerRef. 28 and is continued here.
proposedf15to justify the periodic appearance of negative In this paper we study the nonlinear dynamical effect in
resistivity as a function of ratio of the MW frequency to the which SAWSs induce changes in the magnetoresistivity of a
cyclotron frequency. The consensus is that the effect ikigh quality electron gas in the regime of classically strong
of a quantum nature and related to the nonequilibriummagnetic fields,w.7>1 and high temperaturelesT> 7w,
occupation of Landau levels in a 2DEG pumped by micro-(w,=eB/m’ is the cyclotron frequency, wheis the mag-
wave radiation. netic field,m" the electron effective mass, ands the trans-

A separate phenomenon involviggometrical commen- port relaxation timg We have recently shown the existence
surability oscillations has been extensively studied in 2Dof SAW-induced magnetoresistance oscillatiSribat reflect
semiconductor structures subjected to either surface acoustioth temporal and geometrical resonances in the SAW at-
wave (SAW) or static modulation&®-2° Commensurability ~tenuation. There are two competing contributions to the re-
between the diameter of the cyclotron orbiR.2and the sistivity corrections: one a classical SAW-induced guiding
wavelength 2r/q of a coherent sound wave is known to center drift of cyclotron orbits, the other a quantum contri-
manifest itself in magneto-oscillations of the dynamical con-bution arising from the modulation of the electron density of
ductivity o, of metals—the geometrical resonance effect.states. In Ref. 28, we restricted the analysis to 2DEGs with
This was used in studies of three-dimensional metals to deshort-range disordemhich leads to isotropic scatteringo
termine the shape of the Fermi surfééeGeometric reso- as to understand the main qualitative features of the oscilla-
nance effects have also been observed in 2DEGs in the afions. We also restricted our analysis of the quantum correc-
tenuation and renormalization of SAW velocity due totions to w= w.. In the present work we extend our previous
interactions with electrod$?2and in the drag effect due to analysis of the quantum contribution to higher frequencies
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w= o, and address the experimentally relevant situation ofpatial oscillations, for both isotropic scatteritghort-range
long-range disorder which arises in modulation-doped sysdisordej and small-angle scatterindong-range disorder
tems and leads to small-angle scattering of electrons. Note that the following qualitative analysis gives quantitative
The classical contribution to the resistivity correction results applicable only to the high-field regiragr> 1.

originates from the SAW-induced guiding center drift of the  The dynamical classicalesistivity changes®p,, can be
cyclotron orbits. For a SAW with frequenay, and wave- tracked back to the SAW-induced driftt) (along they-axis)
numberq, propagating in the direction with speed=w/q  of the guiding centefX,Y) of an electron cyclotron orbit
(we assumes is small compared to the Fermi velocity),  and the resulting enhancement of the transvéys&ompo-

there is an anisotropic increase in the resistiyity (at high  nent of the electron diffusion coefficiemt,,
fields w.m>1, this is equivalent to an increase of conductiv-

ity in the transverse directiow,,), which oscillates as a pxx _ Dyy

function of inverse magnetic field. We show thatwt o, o - Do

the resistivity change displays resonances at integer mul-

tiples of the cyclotron frequency~Nw,. We find that the  where py=2/y€vir is the Drude resistivity an®,=R2/27
main difference between long- and short-range disorder i the unperturbed diffusion coefficietwhere the cyclotron
that long-range disorder leads to an effective transport timeadiusRc vel wg). The drift is caused by an electric field

7 =27/(qR)? when qR;> w/ w.. For small-angle scattering E_ (cogax-wt)X, wherex(t) is the position of the particle.

we obtain analyt|c formulas for the resistance correction for
the limits e >1 when(qRy)2< /7, andw,r <1 for both "To lowest order |rqu, thg c_ontrlbutlon of the SAW to the
guiding center drift velocity is

(qQRy)?< 7/ 75 and (qR.)?>> 7/ 7, Wherer, is the total scatter-

ing time3° ~
The quantum contribution arises from the modulation of Y(t) ~ %cos{qx(t) - wt], (1)
the electron density of statéB09), ¥(€), and consequently, B
from the energy dependence of the nonequilibrium popula-
tion of excited electron states caused by Landau level quan- X(t) -0, )

tization. We follow the idea proposed in Ref. 14 to explain
the formation of ZRSRefs. 2,3,11 under microwave irra- wherex(t) is the position of the particleeglectingthe ef-
diation with w= w.. We show that in the frequency range fects of the SAW, but including the effects of disorder scat-
7 1< w= w, the quantum contribution suppresses resistivitytering. The change in the electron diffusion coefficient due to
both in p,, and p,, and persists up to temperaturesthe SAW is then

keT>%w. and filling factorsy>1 where no Shubnikov-de

Haas(SdH) oscillations would be seen in the linear-response _ T

conductivity. We propose a class of ZRS, in which geometric Dyy= fo (YO Y(0)dt, 3
commensurability oscillations overlay the ZRS that would

be found in the microwavégR.— 0) limit for a short-range  where we average over all particle trajectorigs) in the
potential. For a long-range potential there are ZRS linkedjisorder potential.

to geometric commensurability oscillations, which are
enhanced(by O([qR.]?) over those induced by isotropic
scattering.

The paper is organized as follows. In Sec. Il we give For isotropic scattering, the particle performs free cyclo-
qualitative arguments to determine the form of the classicalron orbits x(t) =R. sin(wt+ ¢g) + X, up until a scattering
magnetoresistance oscillations in the presence of short- areent, after which the subsequent motion in the SAW poten-
long-range disorder potentials. In Sec. Ill we obtain thesdial is uncorrelated with its preceding motion, provided
results rigorously using the classical kinetic equation, andjR.> 1. In this case, averaging over the trajectories and scat-
discuss screening of the SAW field. In Sec. IV we give ourtering events, the change in the diffusion coefficient due to
analysis of the quantum kinetic equation at both low andhe SAW is
high frequencies. Finally, in Sec. V we discuss our results, in
particular their implications for experiments. _ wdt _t,sz’T 2™ depo dyp

SD.. =
Yo 0022

A. Short-range disorder: Isotropic scattering

YY), (4

II. QUALITATIVE ANALYSIS OF CLASSICAL

MAGNETORESISTANCE where ¢=qX,, andY(t) is calculated from Eq(1) using the

It was shown by BeenakkErthat the magnetoresistance free cyclotron motion. Using the Bessel function identity

oscillations in a 2DEG in the presence of a spatially modu- -
lated electric field can be understood from a semiclassical gzsno= S 3 (7)dN¢ (5)
point of view by considering the guiding cenié X B) drift Ne—eo N '

of cyclotron orbits that leads to enhanced diffusion. We apply
a similar method below to calculate the guiding center driftone can obtain the frequency and wave-number dependence
in the presence of an electric field with both temporal andof the magnetoresistance effect
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&y Dy 1~ R b

Pxx — Yy — _(qIS)Z E —N(qRC) 55 (6) — = = @ N

po Do 4\ l+(w-Na’?
where . ) Even Harmonic

E=eac, e, n = —— o
* % (=L * Force due to static potential

is the dimensionless SAW amplitude. The electric figlg, (=0 ) “3] b Force due to dynamic potential
discussed in this section is a traveling wave, rather than the_____ P S
standing wave situation discussed in Secs. IlI-V. Itis related . _ _ __ .. -
to the E,q discussed in Sec. Il by, ,=2E,q implying — — imimimimy 0dd Harmonic
£=2¢. If we include another traveling wave to generate a-‘\\-\ ------ = -—3
standing wave, then the result in E§) should be multiplied = ——g—— —Ere i
by a factor of 2, and this reproduces E86). In Egs.(6) and b

(7), NE%W is the SAW longitudinal electric field,
as= x/ 2me?y the 2D screening radiugy the Fermi energy,
I=ve7 the mean free pathy the background dielectric con-
stant, andy=m/ 74 the electron density of states. Equation

. . . .~ tance. The horizontal lines correspond to maximum positbadid
(6) includes the~Thomas;FSi\er| screening of the SAW f'emlines) and maximum negativélot-dashed lingsvalues of the field.
by 2D electronsE,,=qas.E

: wq » Which we discuss in detail |n the dynamic case the direction of the field oscillates with fre-
in Sec. IIl A 1. At largeqR; we can expand the Bessel func- quencyw. Thus, whenw is an odd multiple of the cyclotron fre-

FIG. 1. Comparison of electron motion in a static and a dynamic
periodic potential. When the forces on opposite sides of the orbit
are in the same direction, there is a maximum in the magnetoresis-

tions to get guency w, there is an interchange of the resistance maxima and
Nm o minima as compared to a static potential.
» cosz<ch+———> . - -
pyx 1 ~\2 2 4 motion (xw™), and the relatiorw/q=s, means that the form
oo —(qiE)* 3 (®)

of these oscillations is independent of the absolute value of
the SAW frequency, provided that conditions'<w and

From Eqgs.(6) and(8) we can see that there is a sequencev. > s are satisfied. Note however, that for a fixed SAW am-
of resonances at integer multiples of the cyclotron frequencyp"tude, there is stillq dependence of the SAW ﬁelﬁiAw
w=Nw.. The widths of these resonances are controlled byince the electric field induced in the 2DEG by the piezoelec-
w7, with large values ofwr leading to very narrow reso- yic coupling is a function ofgd, whered is the distance
nances. The oscillations for even harmonics are in phase Withanween the surface and the 2DEG.

the Weiss oscillations of the static potential, while those of \y, illustrate the interplay between dynamical resonances
odd harmonics are out of phase. This can be understood byj, the time and space domains by plotting E8). as a func-
noting that the main contributions to the drift occur when they;o of w.] w for the following experimentally relevant pa-

electrons are moving parallel to equipotential lines. For 0d4gmeters. In GaAs based 2DE@5=0.068m, (wherem, is
harmonics the phase of the potential at the half-orbit point ispe electron magsnds=3000 msL. The highest SAW fre-

opposite to that for a static potential, and hence the cancely encies that have been used in experiments on 2DEGs are
lation and reinforcement effects that lead to minima and_10 GHz32 we consider this fequency with the sample den-

maxima in the resistance are interchanged between the stalijes and mobilities reported in Refs. 1 and 3. In Ref. 1, the
and dynamic cases. This is illustrated via a comparison of the '

Po R New  1+(0=Nag)??

two situations in Fig. 1. Alternatively, this can be seen from 1.45 oT=7, vels = 63
examination of Eq(8), since the static cage»=0) is domi- 14} '
nated by theN=0 term in the sum, whereas &l contribute 135 |

in the dynamic case.

In the regimew.7>ve/S, the resonances are very narrow
and appear to display a random sequence of heights, rather &£ 125
than the linear inB dependence evident in Figs. 2 and 3, & 12t
reflecting the dependence on the geometric resonance condi-
tions. In the intermediate frequency domain!< w < w,

a natural regime for GaAs structures with densities

1.15 |
11 L

ne= 10 cm2 at sufficiently high magnetic fields, the clas- 1.05
sical oscillations take the form 1 :
5 ) 0 05 1
Pxx _ UEzp.2 O
— = —£&4] . 9
oo 4 h(aR) (9

N _ FIG. 2. Magnetoresistance for a short-range potential using the
The competition between electron screening efféetg?),  parameters of Ref. 1, and assuming 27 x 10 GHz (w7=7) and
the dynamical suppression of commensurability by the SAW/e/s=63. We choose a dimensionless SAW amplitude ©0.01.
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1.4 , ' - - T ' ' The effect of a disorder potential @f(t) may be represented
135} ©t=60,v/s=84 —— i by random changes: The scattering events are separated by a
characteristic timerg (sometimes referred to as tiggantum
lifetime), and at each scattering eved#tjumps through a
1.5 ¢ 1 (random angle of magnitudeS¢, which is related to the

13 r

g lengthscale of the disorder potential by S¢~1/(keL)
= 12+ : . .
& wherekg is the Fermi momentum. At any scattering event
115 1 only the direction of motion changes; the positiott) is
19l | constant, so Eq10) implies that for an instantaneous change
¢ in ¢, there is a change in the guiding center position of
1.05 | 1
1 WMM | U\M SR = Ru(~ COSh,SiN ) 5. (11)
0 02 04 06 08 1 12 14 In this section we consider the limit of a long-range po-

o/@ tential, for whichd¢<<1. In this case the scattering @fcan
) ) ) be viewed as leading to a continuous diffusive motion with a
FIG. 3. Magnetoresistance for a short-range potentlgl using th‘aiffusion constan(in angle of order~(5¢)2/75. Similarly,
p?ramet_eésé of gef/ 32‘8?1”3\/6‘51””1'%_2&;;10 Gszt, Wh]"clho'lm' we can view the guiding center coordinates as undergoing
fhl::?r)rlzig ;n ¥/s=o4. We choose=0.00L, afactor o S5 continuous diffusive motion, provided the typical jurfieq.
T (11)] in the guiding center coordinate is small compared to
. . ) other relevant lengthscales, in particular the wavelength of
mobility Fos 3% 10° crrf/Vs, and the density he SAWR.S4<1/q. The diffusion constant for the guiding
ne=2x 10" cm?, corresponding towr=7 and ve/s=63  conter is~R%(8¢)?/ 5. Note that the diffusion constants for
(note thatvg/s=qR; when w=w,). The magnetoresistance , ang R depend only on theransport relaxation time
for these 7parameters is plotted 1n F_lzg 2. . In .Ref. 3~ 7.(5¢)2, so only r enters the theory. In terms of the
p=2.5% .10 e/ Vs g.ndne:3.5>< 10 cm ,.makmg itone  conditions for validity of this theory(d¢p<1, R.6$p<<1/q)
of the highest mobility samples yet fabricated. For theseCan be writtenr/ 7> 1 and (QR.)2< 7/ 7.

ﬁ]‘ggrrgéergs\ilstlgﬁsgﬁ :(?é z;r;d ls);{)Svjan ag% w?? ]:':td Ioawer To model the continuous diffusion @ andR, we intro-
frequencies in such a high quality 2DEG, we expect theduce two sources of Gaussian noigg,and £, with

width of the resonances to broaden and become similar to (L) Li(t))=T,6(t—1t"), (12
those shown in Fig. 2. _ . .
The dynamical mechanism just described dominates in Swhere|:1, 2 ar)d wiite the effects of scaftering on o

classical electron gas. No redistribution of electron kineticphase of th_e orbit and on the component of the guiding
energy(due to SAW absorptionwill additionally change the center position as
magnetoresistance until the 2DEG is heated to a temperature t
ksTe=hwke/q where geometrical oscillations become () = o + wct‘*J L,y(t)dt’, (13
smeared. The essential assumption leading to this statement 0
is 1that electron single-particle parametévglocity, v, and )
7 °) vary slowly with energy at the scales comparable to the - Nt
Fermi energy and can thus be approximated by constants. XO =X cho LAt (14
However, for high-quality 2DEGgas formed in modulation )
doped GaAs devicgsthe typical disorder potential is not 1he two sources of noise are related through Ed)
simply short ranggas assumed for the isotropic scattering Lo(t) == R.L4(t)cos(t),
model considered aboyebut is dominated by a long-range
part due to the Coulombic potentials associated with remot@hich requires thal’; =2I", in the situation of interest where
dopants; this long-range disorder leads to small-angle scawe average over all trajectorigbence overgy). From a
tering. We now turn to consider this situation. direct evaluation of the classical Kubo formula for the diffu-
sion constant for this model in the absence of a SAW poten-
_ _ tial, we find that
B. Long-range random potential—small angle scattering )
To calculate the resistivity correction in the presence of r,=2r,=—, (15)
long-range disorder, we consider an electron undergoing cy- T
clotron motion and subject to randofemall-angl¢ changes  wherer is the conventional definition of the transport relax-
in direction. We express the position of the particle as ation time, in terms of Whi(ih the Drude expression for dif-
_ - fusion constant i9,,=D,, =027/ (1+w>7).
rO=R() +Rsin ¢(t),cosé(v)], (10 We simplify subsequyeyntzcalculations by ignoring correla-
whereR(t) is the position of the guiding center arflt) is  tions of £, and £, beyond those in Eq15), which we ex-
the angular position around the cyclotron orbit. In the ab-pect to be accurate fas,r > 1, [with 7 defined in Eq(20)
sence of disordekp(t) = ¢+ wct andR(t) is constant in time.  below] in which case the particle is able to explore all values
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of ¢(t) on the timescale of the relevant scattering time. We Ill. CLASSICAL KINETIC EQUATION
can then calculate the change in the diffusion coefficient
from the guiding center drift as in Sec. Il A for isotropic
scattering, averaging over the electron trajectories

We analyze the classical kinetic equation for a 2DEG at
temperaturekgT<7%w/ke/q irradiated by SAWSs. Our ap-
proach is to solve the kinetic equation for the electron distri-
bution function

o0,,= | atl(vvvo)) ,
W=, Frte f(t,x @, = fr+ 2 e MY {1 (™, (21)

B2 o 2 g _ _ _ «q m
2szqRe f dtf %<<e'qR°[s'"‘b(t>_s'n‘/’°] using the method of successive approximations.
0 o 47 Here, f{(e) is the homogeneous equilibrium Fermi
t function, and the angle and kinetic energy parametrize
X eichf ﬁz(t')dt"i"’t>>£ e (16)  the electron state in momentum space. Each component
1~2

f™ describes themth angular harmonic of the time-
and space-dependent nonequilibrium distribution.
To describe local values of the electron current and the ac-
cumulated charge density, we use the energy-integrated func-
=, © o [P Ao tions, gy, =/odef . The relaxation of the local nonequilib-
ODyy * E,qR die o rium distribution toward a Fermi function characterized by
0 the value of local Fermi energge(t,x) [determined by the

X (gaRdsin ¢(t)-sin ¢o]>£ <eiqRof‘£2(t')dt’>£ } local electron densityn(t,x) o g°(t,x)=fde fO(t,x), where
1 2

where our assumption that, and £, are uncorrelated allows
us to perform the average over noise

0 2

fO(t,x)=fde/ 27 f(t,x)] and the kinetic equation is

(17) Lf=Cf, (22

Using where
B = - eE
(laRdsin ¢(0)-sin ¢0]>£1 = 2 IaR)IuEOR) L = d,+ v cospdy + {wc - ?simp] d,+ evE cospd,,
N,M=—

% @N-M)dogiNagg-(NTy/2) (23

I 5 with C the collision integral E the electric field, ang the
(gaRelLat)at') [, = e laR2IA, electron momentum.

we find a resistance correction of A. Isotropic scattering

Epux V;2:w27'~2 g JN(ch)ZTNq In the presence of a short-range potential, the scattering is
0 T g € 1+ (Nog - )27 (18) isotropic and we can use the relaxation time approximation
h ¢ Na for the collision integral, which is
where
- f—f0 0= file— ex(t,x
pro_ 1210 PO tlemeti] (o
= T T Ti
TNq = m (19) n
N+ =3 where we distinguish between the elastic scattering rzte
; 51
The form of this correction is that found for isotropic scat- and energy relaxation ratg;". o _
tering, but with 7, replacing in the correction to the dif- The dynamical perturbation of the distribution function

fusion coefficient®34The result in Eq(18) can be related to  ¢an be found from time/space Fourier harmonics of @8)
the result found in Eq(58) in a similar manner to the case of at the frequency/wave number of the SAW
short-range scattering. {

1
In the experimentally relevant range of parameters Jp+t— - iﬁ + ichcosp} foq=Y(e), (25)

ol w,<gR,, and noting that in the vicinity of resonance WeT W
Nw/w.=N, we define a scattering timé < r as o L L
g T = Ta .0
1 R V(p) = - (9, fy) + ——f
? = %, (20) WeTin T We @
. . . . . . ek, sing
andy,= 7 in our regime of interest. This quantity enters in - T‘{v cospd, = T%](foo‘“ fr),
(o

our discussion of the kinetic equation for small-angle scat-
tering in Sec. Il B. Note that the use of this result is alsowhere we include the unknown perturbation of the time/
subject to the constraint,7> 1 with the additional require- space averaged functidi, related to the dc current to low-
menth§<I, which is discussed in more detail in Sec. Ill. est order irE,,. We note that asj, only contributes to heat-
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ing of the 2DEG, we can ignore it here for the ac part of the We use Eq.(30) to find the eigenmodes of the system.

distribution function, but must retain it for analysis of the dc Settingx=0 and inserting the expression fidr one finds to

part of the distribution function. In our expression f#rwe  leading order inw.r

neglect contributions from higher Fourier harmonics fof

such asfy, »q,f2,0, and fo o, since these only affect dc A= NwJ¥(qR) (32

transport at quartic order in the SAW field, whereas our in- N~ aslql+ 1 -J3(qR) - NA’

terest is only in effects that are quadratic in the SAW field

(i.e., linear in the SAW powerWe also omit terms involving where

Eoof g SiNce they contribute to dc transport only beyond the

linear response regime in the dc field. Equati@B) can be A= i Jﬁ,_p(ch) —JﬁHp(ch)
N - .

formally solved using the Green’s functid®(¢, 9) . o (33
p:
¢
fog(®) :f G(e, )V (p)de, (26)  In the limit gR.— O we recover the magnetoplasmon disper-
- sion A;~|q|Rw./as,, Whereas in the limit ofgR,>1

‘ o screening becomes important ang<Nw.. The crossover
G, p) = elHucrivlucl(e-e)HaRdsip-sing], (27)  between the two regimes, which may be evaluated by con-
sidering the denominator of Eq32), occurs at a wave-
numbergoR.~ as./ R:<<1. In our discussion below we take
into account the screening of the SAW field.

which allows for an infinite range of variation @ while
guaranteeing periodicity of the solutidi,(¢). We also in-
troduce the useful quantity

2m “ 2 2. Magnetoresistance oscillations
d JN(OR: g
f QDJ G( E N(aRY)

Newe L+iT(Nwe— @) ' To find the steady-state current, we analyze the time/space
average of the kinetic equation in ER2) and take into

(28) account the dynamical perturbatidg,
which has the properties
Kp p—K* =K {a +i}f T_l_T‘_”lfO+eV'E°°af
(waq) - ( qu) - ((l), q)1 (I)C'T 00~ (l)c 00 (1)(; e'T
and is obtained from Eq$26) and (27) using Eq.(5). eE. sin
—_— w_g —_
1. Screening and Dispersive Resonance Shift - % we {V COS¢d, p ‘94 qu' (34

The electric fieldE in Eq. (23) is the combination of a

homogeneous dc fielEy, and the screened electric field of In our analysis of classical magnetoresistance oscillations
the SAW E(t,x=3, é)o equ ity found from the un- W€ assume that,,> 7 and since we are not interested in the

screened SAW field V|E _ESAW/K(w q), wherex(w,q) is neetlng associated with thl$ term we.drop it here. However it
. : . .. is important for our analysis of the first quantum correction
the dielectric functlon of the whole 2D structure. The density he classical It th : bsti
modulationn,, yg induced by the SAW sets up an in- to the classical result t et we present in S_ec. IV. We substi-
duced f|eIdE"$d (= I% ed/xlq) yel., that we take into ac- tute the solution Eq(26) into Eq.(34), keeping track of the
TEA XA Yug effect of the perturbation of the time/space averaged function
count at the Ievel of Thomas- Ferml screening, so tha

: g0 ON fuq This d ically incl -
_ ESAW,, pind . ' 0 procedure automatically includes SAW:
tth IE 4 +fE o In thbe analysis ofgcreecriunglfthe dctpart of induced nonlinear effects. We multiply Eq(34) by

€ electric field can be ignoreo,=0), and self-consistency (2w, /evF)ve '¢ integrate with respect te and ¢, then use

yields the relation between the andy components of the dc cur-
o _€Eql-(1-iw7nK rent, jy—ijy,= evagOo and the harmonlg00 (note that electri-
Yoq = iq 1-K ' (29) cal neutrality requwegoo—O) which gives
and 2 d 1
i;f de —Iqofde {%+—}va0
1 1-(1-iwnK evg J 2w ®.T
K(w,q) =1+ 2efd] 1-K . (30)
- e
o o _ . Eu[vCOScpa——& }f
In the limit thatgR.> 1, which is our regime of interest, the wq  @c
dielectric function becomes .
_ _ Ix _2 leE,q K ( w7+ 1)[] i ]
r(w,q) =1 +%, (32) VEre?yl22 wqg | €& | 1-K vEretyl2) Y
) = Ego~ iEdo, (395

and for most SAWS, aglq<1l, which implies

rk=1/(as.|q|). When we account for dispersion, we find that and this can be used to determine the classical SAW-induced
the system has resonancesestNw . +Ay WhereAy is the  change of the resistivity tenséfp. The relation between the
dispersive shift of théNth resonance. electric field and current i&=pj + &pj, where
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QUANTUM AND CLASSICAL SURFACE-ACOUSTIC:..
R 1 T orbits, which can also lead to a positive contribution to the
P=po| _ ot 1 ) magnetoresistance in the small magnetic field Ifhi The
¢ condition for the existence of these orbits is that the force
is the Drude resistivity tensor. Thus we find the resistivityfrom the screened SAW field is larger than the Lorentz force,

corrections i.e., £>(w./ w)(s/ve),293" and we assume thaf is suffi-
5 1 e |2 K ciently small for their contribution to be ignoréthis is gen-
9 Pxx _ = € R , (36)  erally the case over most of the magnetic field range that we
Po 29| € 1-K show in our figures
&pyy=0, B. Small angle scattering
5 5 2 A long-range disorder potential leads to a nonisotropic
_”}z:ﬂy:_}E leE,q Im K =0, scattering probability, and this implies that there are two
Po Po 2| e 1-K scattering times that we need to take into account. One is the

total scattering timer,,3® and the other is the momentum
scattering timer and in GaAs heterostructures> 7. In the
limit that (qQR.)?< 7/ 7, the disorder potential leads to diffu-
sion in angle, and can be studied by replacing the collision
integral in the kinetic equation by a term involving two

and with the use owaq:Eiéwlx(w,q)zqascrEiéw, Eq.
(28), w.m>1, andgR.>1 we formally justify the result in
Eq. (6). The magnetoresistance correction is

*® 2
% =2(ql€)? 2 L&)z (37) derivatives®® The dynamical perturbation of the distribution
Po e 1+ (@ = Nawg)?7 function, Eq.(25) is thus modified to read
. RO 1 ~
3. Strong damping(cw.7<1) {aq, —i— +igR.cos¢ - —(ﬁ] foq=W(p), (41
We (wc7)

At low magnetic fields, there is experimerffaland
theoretical®®8 evidence that there is exponential damping ofwhere
Weiss oscillations, and it seems natural that similar behavior oE sin
should be observed for SAW-induced oscillations. We ex- (o = ¢
plore this question and find the functional form of the damp- Vo= e [U COS@oe p a¢}(f00+ . (42
ing for isotropic scattering in this section, and for small- o ]
angle scattering in Sec. Il B. In the strong damping limit !N EQ. (41), small-angle scattering is introduced in the form
(w,7<1), we investigate Eq28) whengR.> 1 and find the of diffusion along t2he Fermi ;urface and is taken into account
values ofe and % that lead to a stationary phase. We thenPY the term(1/7)d f. Now, if we let qu:hwq(‘P)e_'qR_Csm i
integrate over fluctuations about each point of stationannd substitute this into E¢41), then solve in the limits that
phase. These saddle points arew/2 and¢=37/2, and QR?/(UCT<1 andwléuc<ch (the second co'nd|t'|on aIonvs us
takes values which are any positive or negative odd integel® ignore the tern_h), we can solve the kinetic equation as
multiplying 7/2 such thaf < ¢. When we sum the results of Pefore to get
integrating about each saddle point, we @etlowest order

i — 7 weT ¢~ ~\T o~
in e77) fuq(e) = f dGC(e.9)¥ (), (43)
1/ 1 2 . -
- + _e—(ﬂ/wcr)+(lﬂ'w/wc)sin 2 . (38
‘Uc7|: AR 9R AR |- 39 here
In the limit that the magnetic field goes to zero, with> 1, ~ _ o 1 ).
this leads to a resistance change G(e,¢) = exp) igR(sinp - sing) + ( - I;)((P -9
C C
pyx
TPl Zogle?, (39) 1 (sin2e-si
po |so Pt (sin 2¢ —sin Zp) (44)
and if we consider the resistance charde,, we find it is and 7 was defined in Eq(20). Our results for isotropic
_ h_zﬂ 2 scattering are modified by replaci@by G. The long-range
écpxx_ &, (40) . . L~
7€ Pe potential problem is then reduced to a calculatiorkKofor

which is independent of disorder. Summation over and
taking the imaginary part oK as in Eq.(36) leads to the
same result thaép,,=0.

We interpret this as a SAW-induced backscattering contri- K= f
bution to the resistance, which will dominate in the limit that

the modified Green’s function, which we define in analogy
with Eq. (28) as

27
do (¢ dp ~ _
o =G(e, ).
o 2m)_. wcT

(45)

the SAW wavelength is much less than the mean free path. _
We ignore the contribution to the resistance from channeledVe can write the following exact expression #r
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ke 3 Leoma(@RNGR) K= i{—l ' iDe‘W""csin(Zch)] (51)
smp— L¥il(s+ 2M e~ w]7 wer [|aR|  aR
_ 1 1 If we assume that the two effects are correlatas we
X e(m/2)(m+p>|m<2 *>|p<2 ; ) (46)  should in the(qR,)?> 7/ 74 limit), then we get the expression
WeT wWeT

wherel (x) is the modified Bessel function of the first kind. D = expl - 1 f”d(ﬁ (ql sin ¢ — wn)?
We studyR in the weak dampingw.7 > 1) and the strong - wetslo  (Qlsing - wn)?+ (wen)(were) |
damping(w.7 <1) limits. (52)

1. Weak damping(wc7 >1) which implies that in thas,r— 0 limit, with ql> > 1 and
In the weak damping limit, we can make use of ther/7>1
asymptotic expansion of the modified Bessel functions for

small argument, and need only retain tihep=0 terms.K T T Ts
has the same form a6, except thatr is replaced by, i.e., D = exp) - 0ure 1- @2 N || (53)

o 2
K= D AR

—_— (47 which gives lim, (D=e s lim, DD, =€ 27T,
Newe L+i(Nog— )7 c c

where 1/ =[(qR,)?/27] was introduced in E¢(20). 3. Screening
_ X In the above discussion, the solutions obtainedffgrin
2. Strong damping(ew,7 <1) Sec. Il A and forf,, when there is small-angle scattering

In the strong damping limit whengR.>1 and differin that the kinetic equation for isotropic scattering con-
(qR)%2< 7/ 7, we investigate Eq(45) and use a similar tained the termggq/wcr, which is absent here. When we
saddle-point procedure to the one we used for strong damg2Ive forgg,, and hence the dielectric function EQO) in
ing in the case of isotropic scattering. After adding the conthe presence of small-angle scattering, we get
tributions from integratiqg about each saddle point, we get

(to lowest order ine"™c™ ) 0 = erg[l S -1, 54
11 2 '
R =—] —+ _e—W/wCT*+i7Tu)/mcsin 2 ) 48
wer L|aR] aR (2aRo) |- (48) which implies a dielectric function

Note that this is the same form as the expressiorKfdor o~

isotropic scattering in the limiw,7<<1, except thatr re- K(,q) =1+ 1-1-iw7)K (55)
places7 . If we want to investigate the limit in which the ’ as{ql ’

magnetic field goes to zero, then the kinetic equatigg.

(4D] as written previously is inapplicable ~when \yhich is very similar to Eq(31) with K replacingK. When
(aR)?> 7/ 75 In our calculation above, there is a damping gr s 1, screening of SAWs is identical for both short- and
factor of D=e ", which arises naturally as a result of our long-range potentials. Analysis afy and Ay as in Sec.
saddle-point analysis. In Ref. 30 an alternative approach wagl A 1 leads to the samey, at which screening becomes
used to calculate the damping factor in the low magnetidmportant.

field limit. In that approach the damping factor above is the

high field limit of 4. Magnetoresistance oscillations
D -exp{— T [1_ 1 ]} (49) In this section we derive the magnetoresistance oscilla-
1= ' i i
W, V1472 2 tions analogously to Sec. Ill A2. The system of equations
e -(aR) that we wish to solve is

where 75 is the total relaxation rate. If, as in Sec. Il B, we

assume that phase and guiding center corrections are uncor- eE, sing
related, we can calculate a second damping factor associated defo+ v COS@d, — 9 |fuq

. . . o 7. We p
with phase corrections in addition to the guiding center con-

ibution i ' is qi ev-E 1
tribution in Eq.(49), using the same method. This gives __ Oasz+ tﬁfo, (56)

w2 We WcT
- ()
D,=expy — — (50

in combination with Eqs(41) and(42). The solution of Eq.
(41) for f,q is shown in Eq(43). We take the equation fdp,

and at moderate fields, we may approximddeD;D,, and integrate with respect to energy apéfter multiplying
so that by ve™?, as before, and obtain

1
WcTs] + ( w)215

We T
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2w eEw 2 1.9 T T T T T
X —iéEy — c ( g) 1+ -1
00 00 emzvﬁ o (%+9) 18
2m L . ; 4
d(PJ‘<P o~ _ 1.7 o <1 T > 1
X — | deG(e,9),
fo 2w ) _. #Gle.9) 16
which is the same as we found for isotropic scattering, ex-& 15|
cept thatG replacesG. The resistivity correction is thus 14t
& 1w |€lEy |7 _ ~ -
ﬂ:_z Z —oq LRe{K}. (57)
po 2uql & | T 121
As in the case of short-range scattering there are no correc 1.1 r T =7, Vels = 63
tions to any other components of the resistivity tensor. Un- ) , , ‘ , , ,
like the case of isotropic scattering therenist a factor of 0 2 4 6 8 10 12
1-K in the denominator of Eq(57)—this is because the o/

resistivity correction is linear imC,, which is modified for . . .
y Y, FIG. 4. Magnetoresistance correction for small-angle scattering,

Sm?ﬂhasngter fecslgﬁfsrl?c?:?ﬁelzccl];zi)gél contribution to the ma with wr=7, ve/s=63, and£=0.02. The curve is determined by
9 licing the expressions for the resistance in the strong and weak

netOYQSIStanEe can be sumrr12arlzed as fOII(.)W.S'. For we mping limits(w,7 <1 andw,7r > 1, respectively, which are in-
dampingw.7 >1 and 1< (qR)“<17/7s the resistivity cor- i oioq'in the figure

rection is
2 9 x 5 channeled orbits, as discussed in Sec. Il A 2.
Spxx _ 20T a2 AR (59) In Figs. 4—6 we show the behavior of the magnetoresis-
Po s Newe 1+ (0= Nwg)?72” tance as determined by splicing the results of E§8) and

(59) for the weak and strong damping cases, respectively. In
Fig 4 we use the same sample parameters as in Fig. 2, while
&5 [ . . i both Figs. 5 and 6 are farg/s=84, with 07=60 in Fig. 5
Pxx _ 2 —— . g .
—— =2qI&7| 1+ 2™ COE<—>SIH(2C1R:) , (69  andwr=600 in Fig. 6; for the sample parameters in Ref. 3
Po L @e . these correspond ©=27x 10 GHz and 2 x 100 GHz, re-
while for w7 <1 and(qR)?> 7/ 7 spectively. Note that, owing to our requiremegR. < w7,
. our results should not be trusted in the region
Ehx - oq1e2 1+2€—w/wcrscos<ﬂ)sin(2q|:gc) . (60) @/ @=\Ve/(swr) (Which is of order 1 for the parameters
Po L ) J used, i.e., at low magnetic fields. However, our expectation
is that magnetoresistance oscillations should be strongly
damped in this regime, as described in Ef). We also note
that for w./w>1, the resistance correction in the case of
small-angle scattering is enhanced over that expected for iso-

For strong dampings,r <1 and 1<(qR.)?>< 7/ 7,

C

Summation over » and iq for the imaginary part oK
ensures tha#°p,, and &p,, vanish as for short-range scatter-
ing [see EQ.(36)]. The three resistivity regimes identified
above correspond, respectively, to hidgkg. (58)], interme-
diate [Eq. (59)], and low [Eq. (60)] magnetic fields. The 1.4 . , . .
crossover between high and intermediate magnetic fields it
at w,r ~1, which is equivalent tow,r~ ()3, and the
crossover between intermediate and low magnetic fields is 13
when (qR)%~ 7/ 7, which is equivalent tow.7~ qly7s/ .
The number of damped oscillations at low magnetic field has 125
recently been calculated elsewhét@s for short-range scat- &
tering, these results are for the regime where channeled or&
bits can be ignored, which requires that the Lorentz force 1.15
should be stronger than the screened SAW field, Ee.,
<(w¢/ w)(slvg). 11
Both Egs.(58) and (59) reduce to the results found by 105 |
Mirlin and W6lfle® in the limit that w— 0, provided one
replacesw/s by q in Eq. (58). To extrapolate this result to 1
lower magnetic fields, the best we can do is a si[‘nilar proce-
dure to Mirlin and Wélfle, which is to replace ™™ by the
damping factoD discussed in Sec. Il B, leading to E§0). FIG. 5. Magnetoresistance correction for small-angle scattering,
In the limit thatB— O this reduces to the same behavior as inwith wr=60, w/s=84, ande=0.003. The curve is determined by
the case of isotropic scattering, and the magnetoresistaneglicing the expressions for the resistance in the weak and strong
correction is given by Eq40). We neglect the possibility of damping limits, which are indicated in the figure.

1.35 @7 =60, Ve/s = 84 1

r T > 1 ®.T <1 1

1.2
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16 ; ; ; The photoconductivityo,, determines the longitudinal
T =600, vi/s =84 current flowing in response to a dc electric field in the pres-
15y =— . ence of SAWs
0T << 1 ®gT >> 1
14r | 1 f 1 i 'EOO:Uph|EOO|2v (61)
é; 131 ’ \ 1 and can be related to the photoresistivity by,= pi_yo-ph,
- f where p,,=eB/n,. To calculate the photoconductivity, one
1.2t / /\ 1 integrates over the distribution function
1.1 ¢ 1
\/ \ /& opn=2 f de ogo(e)[ - a.f(e)], (62)
1 | | nva
0 2 4 6 8 10 and in the leading approximation,
O/ ~
_ D 72(6) 63
FIG. 6. Magnetoresistance correction for small-angle scattering, o00(€) = 0o y2 ' (63
with w7=600, \&/s=84, ande=0.002. The curve is a splice of the
formulae for the strong and weak damping limits, and the range ofvhere
validity for each region is indicated. 2
o _ €W
) ) ) ) O-OO_ 2 y (64)
tropic scattering with the same value of the transport time 20T

(i.e., the same 2DEG mobility is the Drude conductivity. In obtaining a solution to the prob-

lem, we are only interested in effects due to the nontrivial
energy dependence of the electron distribution functien

To perform this calculation we need the classical dynami-
cal conductivity, from which we consider the energy depen-

The absorption of SAWs by electrons in two dimensionsdence of the density of statesand the momentum relax-
changes their steady-state distribution over energy. Chara@fion time 7. We calculate the classical dynamical
teristics that are independent of energy cause no additiongPnductivity below in Sec. IV A, and then use it to derive the
changes to magnetoresistance beyond those previousfi#antum energy balance equation and magnetoresistance
described. However, whea,r>1, Landau level quantiza- Correction in Sec. IV B.
tion is present, leading to an oscillatory energy-dependence
of the electron DOS, for overlapping Landau levels of
e)=[1-T cog2me/hwc)]y, wherel'=2e ™“a< 1, andr,
is the quantum lifetime of the Landau levé¥JA calculation The magnetic field dependence of the resistivity change
of the density of states for a |Ong-range disorder poté‘ﬁ“a' refleCtS. the form of the SAW attenuation by the 2D eleCtr.OnS
shows thatr, can be field dependeiThis gives rise to a determined by the real part of the longitudinal dynamical
guantum contribution to the geometrical commensurabilityconductivity o,q
oscillations which can persist up to high temperatures. The K
oscillations in the DOS impose oscillations on the electron Re{o,q} = yszrezRe{—} (65)
elastic scattering rate™X(e)=7"13(¢)/y, which in turn gives 1-K
a contribution to the observable conductivity. At low tem- \we obtaine,,, from considering attenuation in the form
peratures kgT<hw, the DOS oscillations lead to
Shubnikov-de Haa$SdH) oscillations in conductivity. At (EugJ0q = TuglEugl’s
high temperaturekgT> f1w, thermal broadening smears out
the SdH oscillations, but the quantum contribution can re
main as a nonlinear effect after energy averaging.

We follow a similar approach to Dmitrieet all31*to
study the quantum kinetic _equation to obtgin the f_irst quan- Re(0,q) = yszr*ezRe{R}. (66)
tum correction to the classical magnetoresistance induced by
SAWSs. This change in the distribution is oscillatory in energy
and leads to a contribution to the dc conductivity that oscil-
lates as a function ob/w.. The effect depends on the effi-
ciency of energy relaxation and hence is proportionattp The quantum energy balance equation in Ref. 14 is stated
this effect dominates the quantum corrections discussed iwithout detailed derivation. Here we provide a simple deri-
Refs. 12 whenr,/ 7,>1. If this is the case, the energy re- vation as an alternative to the approach used in Ref. 14. If we
laxation time is long compared to the Landau level lifetime,consider the energy balance in a 2DEG due to absorption and
allowing a strongly nonequilibrium electron distribution as aemission of SAWSs, then the rate at which energy is added is
function of energy to arise. Q1) =] wg(t) “Ewg(t), andj q4(t) =0 ,qEwq(t), which when we

IV. QUANTUM KINETIC CONTRIBUTION TO SAW-
INDUCED MAGNETORESISTANCE

A. Classical dynamical conductivity

and we use the expression in E§5) in the following sub-
'section. In analogy with our previous work, we find that the
equation foro,q for small-angle scattering is

B. Quantum energy balance equation
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average over time giVeézé%q|qu|2- We can express the 7‘1.(e+hw), which is equivalent to thg approach in Ref. 13.
rate of absorption or emission processes involving energyhis second approach works providg—w/ g <1/wcr

levelsi andj as (i.e., we can ignore the 1 in the denominator of the sum over
N harmonics ino ). At frequencies closer to resonance than

T = 2—77|M-»|25(e- ) (67) this, we can no longer ignore the 1 in the denominator and

g IR ’ the classical expression lacks accuracy. However, for large

w7 this is a relatively small region of magnetic fields, and is
not relevant at the magnetic fields at which ZRS mimima are
observed.

We use the expression fer,, from Eq.(65) (short-range

using Fermi's golden rule, when;; is the matrix element
between stateisandj. We assume tha#l;; =M and calculate
the total power absorption for the classical cageonstany,

which we equate tQ=30,¢|E % Hence disorder potentialor Eq. (66) (long-range disorder poten-
— o tial), which contains the geometric and frequency commen-
Q= ?|M|2hw‘y(ﬁwy), (68  surability oscillations, and5, we know as the Drude resis-

tivity [Eq. (64)]. Introduce the following quantities:
where one factor ofiw is the energy added per photon ab-

2
sorbed,y is the final density of states, arfi@y is the number = mw, (73
of electrons below the Fermi level that are available to make h2w?y
a transition. This gives a formula foi|?
o 47720'D |E00|2
MP= S (69 0=y 7
2m(hwy)? oY

We now consider the change in the number of electrondVe are then left with the following equation to solve:

with energy e— e+de allowing the density of states to be P omle+h
energy dependent(e) ZZ {1 -T CO§<7T(;—_0))>]“(€¢ fhw) —f(e)]

We
d
—[f(ey(e)de] h2w? 2 29
dt d 22 g0 T cos( 776) —f(e)
2 47°Y(e) ~ de haws) | de
an ~ ~
= 7|M|2{2+‘, f(exiw) e+ hw)dey(e)[1 —f(e)] = f(e) - f1(e). (75)
_ _ Now, let f(e)=fy(e)+I'fi(e)cod2me/fhw], where
~florderethw)[1-flet ﬁw)]} fo(€) = f1(e), 50 f(€) = fr(e)+Fo€). When we do this, and
then sum ovew and neglect all derivatives df; that arise
_f(e) - fT(6)~( d (70 from Taylor expandind(e+%w) (since this is assumed to be
Tin YieJae. a smooth function on the energy scalelgfl), and retain

) o ) only the lowest-order terms iR, we get a linear equation in
When we require that the distribution be stationary, the leftt "\yhich is trivial to solve and leads tmoting thaté? f is
hand side of the equation vanishes and when we divide byc, ignoredl an identical result to Ref. 14 €

Y(e) we get

2m0.p cinf 2m0
Uwq|qu|2 [f(f) - fT(E)] - @:E& H (27T€> @e ,PSIH( @e ) * 4Q (76)

W;?(ei ho)f(et ﬁw)—f(e)]=T osc= 55 e sin ho 1+Psin2(%) To

(71)  We then use the expression for the photoconductivity Eq.

If we want to include the effects of a dc field as well, then We(62) and get the isotropic change in the dc conductivity

can see the form of the dc term from te— 0 limit of the " 2mo Sin(zﬂ) +40
right-hand side of Eq(70), and we get as a final result the Iph _ ¢ +F_ 1 - @ _ (77)
energy balance equation from Ref. 14, ag’o 2 1 +Psin2(%”:) +Q
Uwg|Ewg|2 ~ _ Note that in the approach outlined above we made no
2h2w?? % Nezho)lf(ethiw) =1(e)] detailed assumptions about the momentum relaxation apart
) o from 7,,> 7, such that the momentum relaxation is efficient
. |Eod Uooi{ Ye) if(e)] _[f(e) ~f1(e)] in making the distribution isotropic. Thus the only difference
We) de|l ¥ de Tin ' in the expression for a short- or long-ranged potential is in

(72) the form of,q, which enters in the expression féYin Eq.

(73). We now present numerical calculations of the resistivity
We could also have obtained the same equation by treatinghange derived above in the presence of SAWSs for both iso-
o,q as energy-dependent and then pulling out factors of théropic and small-angle scattering. All these calculations are
energy dependent density of states frofle) and  for the caseQ=0.
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" oT=7,ve/5=63 —
®tT = 60, VE/s = 84 v |

gRJ/wt << 1 for ot =7, vg/s = 63

pxx/pO

gR /ot << 1 for @1 = 60, vg/s = 84

At 0T=7,Ve/s =63 —— 1 3

ot =60, Vg/s =84 e 0 2 4 6 3 10 12
15 L L L L L L L L L (DC/OJ
0 02 04 06 08 1 12 14 16 18 2
0/® FIG. 8. Quantum contribution to magnetoresistancedor 7,

ve/s=63 and for w7=60, V/s=84. In both caseswry=6,

FIG. 7. Quantum contribution to the magnetoresistance for,—( 003, andwr,=302. The arrows indicate the range of validity
o7=7, vg/s=63 and w7r=60, V/s=84, both with w7y=6, of the results.

£=0.0015, andor,,=302.

. 2. Small angle scattering
C. Numerical results

. . L L . In Fig. 8 we show data for the quantum magnetoresistance
In this section we show the resistivity as it is modified ,rection when there is small-angle scattering for the same

by the quantum correction alone. We discuss the situatioRym e parameters and frequencies as in Figs. 4 and 5. Simi-
where both classical and quantum corrections are importagk; i the short-range case, we can relBt¢o our previous
in Sec. VA. notation

1. Isotropic scattering

2
€ N ~

We illustrate numerical results for the magnetoresistance P= Z(ﬁ) (o7 )(wrp)e’Re(K}, (79
oscillations due to the combination of SAWs and density of
states modulations in Fig. 7. We use ER8) for K and do  Where the change from E(r8) reflects that we use a differ-
not ignore the 1 in the denominator of the summand. Foento, in the two cases.
large w, this should give accurate results except for a very If o/ o<1 then there are ZRS of the type that are usually
small range of magnetic fields around each of the resonanc@bserved with microwaves; however there is another class of
where o/w, equals an integer. Note that we divide the magnetoresistance oscillations at larger valueswgfow,
expression in Eq(77) by 1+I'%/2, to compare the resistivity Which is of the sort we predicted in Ref. 28, and is much less
with and without SAWSs, assuming that there are density oftrongly damped than in the isotropic scattering case. We
states modulations in both cases. To connect to our previouote that foro7=60, ve/s=84, the threshold value for ZRS

notation, we note that at w./w>1is £=0.003. In Fig. 8 we clearly demarcate the
) K values of w./w where our analytic formulae are valid
79:2(3) (0D (wr)e’Re] —— . (78) (GRS wer<1).
hw 1-K

In Fig. 7 we show the change in the magnetoresistance V. DISCUSSION

for wry=6 and w7,=302 (using the value ofr,=7.64 A. Combination of classical and quantum effects
X 101%s estimated in Ref. 14 for the parameters that we
calculated the classical magnetoresistance corrections dig—e
played in Figs. 2 and 3. As for the case of a microwave field
there are peaks in the resistance whehw, is close to an
integer, but withdp,,=0 whenw/ w. is exactly equal to an
integer. The peak$and dips are modulated by geometric
commensurability oscillations, and this leads to a class OE
ZRS of the type predicted fab< w. in Ref. 28. Foror=7,
ve/s=63, the ZRS occur fore=0.0015 and forwr=60,
ve/s=84, ZRS occur for=0.001.

At large w./w>1 (not shown the resistance change is o Moy 27,
negative as we predicted analytically previoiSlyHowever, - =T =
the magnitude of the resistance change is very much smaller Po 70 T
than whenw/w.=1, so a very large value of would be  (where o¢g=1/py) in addition to the anisotropic classical
required to attain ZRS ab./w> 1. commensurability effect. Together, they yield the result

At low frequencies(w < w;) we can use the approach in

c. IV B to obtain an analytical expression for the quantum
resistivity correction, starting with the low frequency limit of
the balance equation for vanishing dc field. This calculation
was already considered in Ref. 28, and we quote the result
ere for completeness. We find a nonvanishing addition to
oth diagonal components of the conductivignd, there-
fore, also of the resistivilyeven wherkgT> fiw.. This gen-
erates isotropic magneto-oscillations for short-range disorder

2
e2J3(qRy),  (80)

4’7TF€|:

c
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vﬁ bility oscillations in the regimav./w=1 are very strongly

O, Ti
z_xy:ZJg(ch)sz[sz —ﬂ(ZWFV)Z] damped in both the classical and quantum cases, unless
7o T (QR.)?/ w,7=1 in this region. This condition is not met in
5 5 current high quality 2DEGs in which small-angle scattering
Pyy _ O9xx _ _ 52 27in 2 dominates. However, it is currently possible to achieve
Po oy 2J(aR)e T (@mT)", (81) (qR)?/ wr=1 for w./ w>1, and these geometric commen-
. i . - surability oscillations should be observable either in the
valid when7" < o < w, wherev=2e¢¢/fio is the filling fac- 4 antum or classical regimes whep/ > 1. Similar to iso-
tor. For a long-range potential, the oscillations are very simiyqpic scattering, quantum effects dominate for large inelastic

SPyx
Po

lar for 7' < w<w,, with 7 replacingr to give scattering timegscompared to the elastic scattering tinaad
s s V2 _ classical effects are more important for short inelastic scat-
OPxx __ OFyy _ ZJg(qFQC)SZ[—Fl* - T_'S(ZWFV)Z] tering times. It appears that the ZRS at low frequencies we
Po 0o S predicted in Ref. 28 for isotropic scattering, are hard to

achieve if the scattering is isotropic, but should be much

Sp o ) T more readily achievable in samples where small-angle scat-
_pjy ~ T;(X =- ZJO(ch)ng(qury)Z_ (82)  tering dominates, which is the experimentally relevant situa-

tion.

The actual magnetoresistance trace observed in an experi- One theoretical prediction for ZRS is that they require
ment will have both anisotropic classical and isotropic quaninhomogeneous current flow in a 2DE&which appears to
tum contributions. The parameter that controls the overalhave recently been observed for microwaveA. large
behavior for both isotropic scattering and small-angle scatenough SAW-induced changéo,,| > oy resulting in nega-

tering is tive local conductivity would also require the formation of
electric field/Hall current domains. Since the anisotropy in
n= 2alvslvp)\ 7l 7. (83 Eq. (81) suggests that such conditions can be achieved most

easily in the conductivity component along the SAW wave
regimes. Ifp<1, the observed change in the resistivity is in vector, we expect that domains would form with current
9 O, 9 y flowing perpendicular to the direction of SAW propagation,

tsheervg:jreccrt:gr?ggfir??r\:\é Fr)er(s)r')s ?i?/ﬁ;loig. ir|1$7':1e1' dti?ee(?tigzepgirap;en and their stability would depend on the sample geometry. For
dicular to the SAW wave vector, and #> 1, then the resis- a SAW with the wave vector directed across the axis of a

tance correction is isotropic and negative. For the parameter{|a|| bar, current domains can be stabilized by ending in
- " hmi n . For a wave pr i nding alon
values used in Figs. 7 and 8, the paramejés large com- ¢ contacts. For a wave propagatiiwy standing along

ared to one. such that the quantum contribution dominat the Hall bar, current domains would have to orient across the
P S . q ®Bar direction and terminate at the sample eddestabilizing
the classical corrections.

T o . them), leading to a finite resistance. Finally, the anisotropy
Th? quantum_contrlbutlon o the resshwty_tha_t we dis- would not support a zero-conductance regime in a Corbino
cuss in Sec. IV is not the only possible contribution to the

S ; . metry.
resistivity that can arise from quantum effects neglected in geo etry

classical calculation. A static periodic potential affects the In addition to the parameter ranges that are optimal for
AT Lo Pe! X .~ —observing SAW-induced ZRS, there are several other experi-
equilibrium density of states, which can lead to correction

10 0. as well as to.. 2942 These corrections were ianored in Smental issues we would like to mention. First, there is the
Pyy : P ) . 9 observation by Kukushkiet al® that microwave irradiation
our calculations, but at least in the static case appear to be

most the order of magnitude of the classical contribution. high quality 2DEGs can lead to SAW generation. Thus

Hence the quantum effect we discuss here should dominage . might want to consider the effects of microwaves and
q . . AW simultaneously—such a scheme might also allow for
that quantum correction fom>1, provided 7,>r and

probing a 2DEG at frequencies other thgs for a given
v> gl 2ms. SAW wave number. However, this calculation is beyond the
scope of the present wofR.

If increases in SAW frequency and 2DEG mobility allow
There are four situations we have discussed in this papere™ (qQRy)? for w/w.=1, the geometric oscillatory structure
the combinations of either short- or long-range disorder angimilar to that observed for isotropic scattering, i.e., peaks

guantum and classical corrections to the magnetoresistanvéen w/ w. is an integer, should be visible in both classical
due to SAWs. We first focus on the case of isotropic scatterand quantum contributions to magnetoresistance. This is cur-
ing. The most pronounced geometric and temporal oscillarently not yet observable for samples in which small-angle
tions in the magnetoresistance are in the regighw=<1  scattering dominategsas appears to be the case for the
regardless of whether the oscillations are quantum or classtamples used in Refs. 2 and 3 where ZRS were obsgrved
cal in origin. The classical effects dominate for shortbecausew.r >1 whenw/w.=1. Either samples in which
inelastic scattering times and lead to anisotropic, positivésotropic scattering dominates are required to see these ef-
magnetoresistance corrections, while quantum effects domfects, or higher quality samples in whiolgR)?/ w.m>1

nate for large inelastic scattering times, and can lead to ZR®hen w/w.>1 are required. In terms of trying to improve
which are modulated by geometric commensurability oscilthe possibility of observing interesting SAW-induced magne-
lations. For small-angle scattering, geometric commensuraeresistance effects in the frequency range . in samples

We can usey to identify three different magnetoresistance

B. Experimental Implications
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where small-angle scattering dominates, the following conscattering. While this prediction concerns the low-frequency
siderations may be helpful. Sinag/s« né’z and wrxwu  domain w=<w;, such ZRS would be formed via the same
(and it is found thatuon’ in the highest quality mechanisri-**as the microwave-induced ZRS @& .. In
GaAs/AlGaAs 2DEGY), the best hope for observing effects the regimew = w,, we find that there are geometric oscilla-
with wr>vg/s appears to be by achieving higher SAW tions superposed on ZRS if there is isotropic scattering. If
frequencies. there is small-angle scattering, such oscillations are unlikely
to be seen in 2DEGs at the present time. Hence the optimal
C. Conclusions parameter region to search for SAW-induced ZRS in 2DEGs

) with long-range disorder which show geometric modulation
In conclusion, we have demonstrated a class of magn&s for < w, and (qR.)?/ w.r<1.

toresistance oscillations caused in a 2DEG by SAWs. We
have shown that ab< w, the effect consists of contributions
with competing signsi) a classical geometric commensura-
bility effect analogous to that found in static systems with  The authors thank I. Aleiner, D. Khmelnitskii, and A. Mir-
positive sign; andii) a quantum correction, with negative lin for discussions. This work was funded by EPSRC Grant
sign for either isotropic or small-angle scattering. The latteMNos. GR/R99027 and GR/R17140, and the Lancaster Portfo-
result suggests that SAW propagation through a high mobillio Partnership. It progressed during the Workshop “Quan-
ity electron gas may generate a sequence of zero-resistanttén Transport and Correlations in Mesoscopic Systems and
states(ZR9S linked to the maxima ofJ%(ch) for strong  Quantum Hall Effect” at the Max-Planck-Institut PKS in
enough SAW fields. We find that in the regian< w;, SAW- Dresden, the Workshop on “Quantum Systems out of Equi-
induced ZRS states are much more likely to be observed itibrium” at the Abdus Salam ICTP in Trieste, and V.F.’s re-
samples for which small-angle scattering dominates isotropisearch visit to ICTP.
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