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We study theoretically the geometrical and temporal commensurability oscillations induced in the resistivity
of two-dimensional electrons in a perpendicular magnetic field by surface acoustic wavessSAWsd. We show
that there is a positive anisotropic dynamical classical contribution and an isotropic nonequilibrium quantum
contribution to the resistivity. We describe how the commensurability oscillations modulate the resonances in
the SAW-induced resistivity at multiples of the cyclotron frequency. We study the effects of both short-range
and long-range disorder on the resistivity corrections for both the classical and quantum nonequilibrium cases.
We predict that the quantum correction will give rise to zero-resistance states with associated geometrical
commensurability oscillations at large SAW amplitude for sufficiently large inelastic scattering times. These
zero resistance states are qualitatively similar to those observed under microwave illumination, and their nature
depends crucially on whether the disorder is short or long range. Finally, we discuss the implications of our
results for current and future experiments on two-dimensional electron gases.
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I. INTRODUCTION

Recent experiments on high mobility two-dimensional
electron gasess2DEGsd have shown a variety of magnetore-
sistance effects under intense microwavesMWd
illumination.1–10 One phenomenon that has attracted consid-
erable attention is MW-induced magnetoresistance oscilla-
tions. These are spaced according to the ratio of the MW
frequency to the cyclotron frequency, showing atemporal
commensurabilitybetween the MW field and the cyclotron
motion. At high MW power the oscillations develop into zero
resistance statessZRSd.2,3 The phenomenological theory of
ZRS by Andreev, Aleiner, and Millis11 has explained the ef-
fect to be a macroscopic manifestation of negative local re-
sistivity imposed on the 2DEG by energy pumping from the
microwave field. Several microscopic models have been
proposed12–15 to justify the periodic appearance of negative
resistivity as a function of ratio of the MW frequency to the
cyclotron frequency. The consensus is that the effect is
of a quantum nature and related to the nonequilibrium
occupation of Landau levels in a 2DEG pumped by micro-
wave radiation.

A separate phenomenon involvinggeometrical commen-
surability oscillations has been extensively studied in 2D
semiconductor structures subjected to either surface acoustic
wave sSAWd or static modulations.16–20 Commensurability
between the diameter of the cyclotron orbit 2Rc and the
wavelength 2p /q of a coherent sound wave is known to
manifest itself in magneto-oscillations of the dynamical con-
ductivity svq of metals—the geometrical resonance effect.
This was used in studies of three-dimensional metals to de-
termine the shape of the Fermi surface.21 Geometric reso-
nance effects have also been observed in 2DEGs in the at-
tenuation and renormalization of SAW velocity due to
interactions with electrons17,22 and in the drag effect due to

SAWs.22 There has also been some theoretical study of these
SAW-induced effects.23–27

In all of these studies, the parameter regimes used have
been in the low frequencysv→0d limit, such that the SAWs
are essentially static. Experiments have recently begun to
investigate the effect of SAWs on magnetoresistance in a
2DEG.16 We have studied this effect theoretically, investigat-
ing both geometric and temporal resonances.28 For a spa-
tially periodic SAW field, the commensurability effect can
also be viewed as a resonant SAW interaction with collective
excitations of 2D electrons at finite wave numbers,17,27 en-
abling one to excite modes otherwise forbidden by Kohn’s
theorem.29 These experimental developments require new
theory for the response of a 2DEG to electric fields with both
spatial and temporal modulation; this work was started in
Ref. 28 and is continued here.

In this paper we study the nonlinear dynamical effect in
which SAWs induce changes in the magnetoresistivity of a
high quality electron gas in the regime of classically strong
magnetic fields,vct@1 and high temperatureskBT@"vc
svc=eB/m* is the cyclotron frequency, whereB is the mag-
netic field,m* the electron effective mass, andt is the trans-
port relaxation timed. We have recently shown the existence
of SAW-induced magnetoresistance oscillations28 that reflect
both temporal and geometrical resonances in the SAW at-
tenuation. There are two competing contributions to the re-
sistivity corrections: one a classical SAW-induced guiding
center drift of cyclotron orbits, the other a quantum contri-
bution arising from the modulation of the electron density of
states. In Ref. 28, we restricted the analysis to 2DEGs with
short-range disorderswhich leads to isotropic scatteringd, so
as to understand the main qualitative features of the oscilla-
tions. We also restricted our analysis of the quantum correc-
tions tov&vc. In the present work we extend our previous
analysis of the quantum contribution to higher frequencies
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v*vc and address the experimentally relevant situation of
long-range disorder which arises in modulation-doped sys-
tems and leads to small-angle scattering of electrons.

The classical contribution to the resistivity correction
originates from the SAW-induced guiding center drift of the
cyclotron orbits. For a SAW with frequencyv, and wave-
numberq, propagating in thex direction with speeds=v /q
swe assumes is small compared to the Fermi velocityvFd,
there is an anisotropic increase in the resistivityrxx sat high
fields vct@1, this is equivalent to an increase of conductiv-
ity in the transverse directionsyyd, which oscillates as a
function of inverse magnetic field. We show that atv*vc
the resistivity change displays resonances at integer mul-
tiples of the cyclotron frequencyv<Nvc. We find that the
main difference between long- and short-range disorder is
that long-range disorder leads to an effective transport time
t* =2t / sqRcd2 when qRc@v /vc. For small-angle scattering
we obtain analytic formulas for the resistance correction for
the limitsvct

* @1 whensqRcd2!t /ts, andvct
* !1 for both

sqRcd2!t /ts andsqRcd2@t /ts, wherets is the total scatter-
ing time.30

The quantum contribution arises from the modulation of
the electron density of statessDOSd, g̃sed, and consequently,
from the energy dependence of the nonequilibrium popula-
tion of excited electron states caused by Landau level quan-
tization. We follow the idea proposed in Ref. 14 to explain
the formation of ZRSsRefs. 2,3,11d under microwave irra-
diation with v*vc. We show that in the frequency range
t−1&v&vc the quantum contribution suppresses resistivity
both in rxx and ryy and persists up to temperatures
kBT@"vc and filling factorsn@1 where no Shubnikov-de
HaassSdHd oscillations would be seen in the linear-response
conductivity. We propose a class of ZRS, in which geometric
commensurability oscillations overlay the ZRS that would
be found in the microwavesqRc→0d limit for a short-range
potential. For a long-range potential there are ZRS linked
to geometric commensurability oscillations, which are
enhancedsby OsfqRcg2dd over those induced by isotropic
scattering.

The paper is organized as follows. In Sec. II we give
qualitative arguments to determine the form of the classical
magnetoresistance oscillations in the presence of short- and
long-range disorder potentials. In Sec. III we obtain these
results rigorously using the classical kinetic equation, and
discuss screening of the SAW field. In Sec. IV we give our
analysis of the quantum kinetic equation at both low and
high frequencies. Finally, in Sec. V we discuss our results, in
particular their implications for experiments.

II. QUALITATIVE ANALYSIS OF CLASSICAL
MAGNETORESISTANCE

It was shown by Beenakker19 that the magnetoresistance
oscillations in a 2DEG in the presence of a spatially modu-
lated electric field can be understood from a semiclassical
point of view by considering the guiding centersE3Bd drift
of cyclotron orbits that leads to enhanced diffusion. We apply
a similar method below to calculate the guiding center drift
in the presence of an electric field with both temporal and

spatial oscillations, for both isotropic scatteringsshort-range
disorderd and small-angle scatteringslong-range disorderd.
Note that the following qualitative analysis gives quantitative
results applicable only to the high-field regimevct@1.

The dynamical classicalresistivity changedcrxx can be
tracked back to the SAW-induced driftYstd salong they-axisd
of the guiding centersX,Yd of an electron cyclotron orbit19

and the resulting enhancement of the transversesyd compo-
nent of the electron diffusion coefficientDyy

dcrxx

r0
=

dDyy

D0
,

wherer0=2/ge2vF
2t is the Drude resistivity andD0=Rc

2/2t
is the unperturbed diffusion coefficientswhere the cyclotron
radius Rc=vF /vcd. The drift is caused by an electric field

Ẽvqcossqx−vtdx̂, wherexstd is the position of the particle.

To lowest order inẼvq, the contribution of the SAW to the
guiding center drift velocity is

Ẏstd .
Ẽvq

B
cosfqxstd − vtg, s1d

Ẋstd = 0, s2d

wherexstd is the position of the particleneglectingthe ef-
fects of the SAW, but including the effects of disorder scat-
tering. The change in the electron diffusion coefficient due to
the SAW is then

dDyy =E
0

`

kẎstdẎs0dldt, s3d

where we average over all particle trajectoriesxstd in the
disorder potential.

A. Short-range disorder: Isotropic scattering

For isotropic scattering, the particle performs free cyclo-
tron orbits xstd=Rc sinsvct+f0d+X0 up until a scattering
event, after which the subsequent motion in the SAW poten-
tial is uncorrelated with its preceding motion, provided
qRc@1. In this case, averaging over the trajectories and scat-
tering events, the change in the diffusion coefficient due to
the SAW is

dDyy =E
0

`

dt e−t/tE
0

2p E
0

2p df0

2p

dc

2p
ẎstdẎs0d, s4d

wherec=qX0, andẎstd is calculated from Eq.s1d using the
free cyclotron motion. Using the Bessel function identity

eiz sin f = o
N=−`

`

JNszdeiNf, s5d

one can obtain the frequency and wave-number dependence
of the magnetoresistance effect
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dcrxx

r0
=

dDyy

D0
=

1

4
sqlẼd2 o

N=−`

`
JN

2sqRcd
1 + sv − Nvcd2t2 , s6d

where

Ẽ = eascrẼvq
SAW/eF, s7d

is the dimensionless SAW amplitude. The electric fieldẼvq
discussed in this section is a traveling wave, rather than the
standing wave situation discussed in Secs. III–V. It is related

to the Evq discussed in Sec. III byẼvq=2Evq, implying

Ẽ=2E. If we include another traveling wave to generate a
standing wave, then the result in Eq.s6d should be multiplied
by a factor of 2, and this reproduces Eq.s36d. In Eqs.s6d and

s7d, Ẽvq
SAW is the SAW longitudinal electric field,

ascr=x /2pe2g the 2D screening radius,eF the Fermi energy,
l =vFt the mean free path,x the background dielectric con-
stant, andg=m/p"2 the electron density of states. Equation
s6d includes the Thomas-Fermi screening of the SAW field

by 2D electronsẼvq=qascrẼvq
SAW, which we discuss in detail

in Sec. III A 1. At largeqRc we can expand the Bessel func-
tions to get

dcrxx

r0
.

1

pqRc
sqlẼd2 o

N=−`

` cos2SqRc +
Np

2
−

p

4
D

1 + sv − Nvcd2t2 . s8d

From Eqs.s6d ands8d we can see that there is a sequence
of resonances at integer multiples of the cyclotron frequency,
v<Nvc. The widths of these resonances are controlled by
vt, with large values ofvt leading to very narrow reso-
nances. The oscillations for even harmonics are in phase with
the Weiss oscillations of the static potential, while those of
odd harmonics arep out of phase. This can be understood by
noting that the main contributions to the drift occur when the
electrons are moving parallel to equipotential lines. For odd
harmonics the phase of the potential at the half-orbit point is
opposite to that for a static potential, and hence the cancel-
lation and reinforcement effects that lead to minima and
maxima in the resistance are interchanged between the static
and dynamic cases. This is illustrated via a comparison of the
two situations in Fig. 1. Alternatively, this can be seen from
examination of Eq.s8d, since the static casesv=0d is domi-
nated by theN=0 term in the sum, whereas allN contribute
in the dynamic case.

In the regimevct@vF /s, the resonances are very narrow
and appear to display a random sequence of heights, rather
than the linear inB dependence evident in Figs. 2 and 3,
reflecting the dependence on the geometric resonance condi-
tions. In the intermediate frequency domain,t−1!v!vc,
a natural regime for GaAs structures with densities
ne*1010 cm−2 at sufficiently high magnetic fields, the clas-
sical oscillations take the form

dcrxx

r0
<

vF
2

4s2Ẽ2J0
2sqRcd. s9d

The competition between electron screening effectss~q2d,
the dynamical suppression of commensurability by the SAW

motion s~v−2d, and the relationv /q=s, means that the form
of these oscillations is independent of the absolute value of
the SAW frequency, provided that conditionst−1&v and
vF@s are satisfied. Note however, that for a fixed SAW am-

plitude, there is stillq dependence of the SAW fieldẼvq
SAW

since the electric field induced in the 2DEG by the piezoelec-
tric coupling is a function ofqd, where d is the distance
between the surface and the 2DEG.31

We illustrate the interplay between dynamical resonances
in the time and space domains by plotting Eq.s6d as a func-
tion of vc/v for the following experimentally relevant pa-
rameters. In GaAs based 2DEGsm* =0.068me swhereme is
the electron massd ands.3000 ms−1. The highest SAW fre-
quencies that have been used in experiments on 2DEGs are
,10 GHz;32 we consider this fequency with the sample den-
sities and mobilities reported in Refs. 1 and 3. In Ref. 1, the

FIG. 1. Comparison of electron motion in a static and a dynamic
periodic potential. When the forces on opposite sides of the orbit
are in the same direction, there is a maximum in the magnetoresis-
tance. The horizontal lines correspond to maximum positivessolid
linesd and maximum negativesdot-dashed linesd values of the field.
In the dynamic case the direction of the field oscillates with fre-
quencyv. Thus, whenv is an odd multiple of the cyclotron fre-
quencyvc, there is an interchange of the resistance maxima and
minima as compared to a static potential.

FIG. 2. Magnetoresistance for a short-range potential using the
parameters of Ref. 1, and assumingv=2p310 GHz svt=7d and
vF /s=63. We choose a dimensionless SAW amplitude of«=0.01.
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mobility m is 33106 cm2/Vs, and the density
ne=231011 cm−2, corresponding tovt=7 and vF /s=63
snote thatvF /s=qRc when v=vcd. The magnetoresistance
for these parameters is plotted in Fig. 2. In Ref. 3,
m=2.53107 cm2/Vs andne=3.531011 cm−2, making it one
of the highest mobility samples yet fabricated. For these
parameter values,vt=60, and vF /s=84, and we find a
magnetoresistance trace as shown in Fig. 3. At lower
frequencies in such a high quality 2DEG, we expect the
width of the resonances to broaden and become similar to
those shown in Fig. 2.

The dynamical mechanism just described dominates in a
classical electron gas. No redistribution of electron kinetic
energysdue to SAW absorptiond will additionally change the
magnetoresistance until the 2DEG is heated to a temperature
kBTe*"vckF /q where geometrical oscillations become
smeared. The essential assumption leading to this statement
is that electron single-particle parameterssvelocity, v, and
t−1d vary slowly with energy at the scales comparable to the
Fermi energy and can thus be approximated by constants.
However, for high-quality 2DEGssas formed in modulation
doped GaAs devicesd the typical disorder potential is not
simply short rangesas assumed for the isotropic scattering
model considered aboved, but is dominated by a long-range
part due to the Coulombic potentials associated with remote
dopants; this long-range disorder leads to small-angle scat-
tering. We now turn to consider this situation.

B. Long-range random potential—small angle scattering

To calculate the resistivity correction in the presence of
long-range disorder, we consider an electron undergoing cy-
clotron motion and subject to randomssmall-angled changes
in direction. We express the position of the particle as

r std = Rstd + Rcfsinfstd,cosfstdg, s10d

whereRstd is the position of the guiding center andfstd is
the angular position around the cyclotron orbit. In the ab-
sence of disorder,fstd=f0+vct andRstd is constant in time.

The effect of a disorder potential onfstd may be represented
by random changes: The scattering events are separated by a
characteristic timets ssometimes referred to as thequantum
lifetimed, and at each scattering eventf jumps through a
srandomd angle of magnitudedf, which is related to the
lengthscale of the disorder potentialL by df,1/skFLd
wherekF is the Fermi momentum. At any scattering event
only the direction of motion changes; the positionr std is
constant, so Eq.s10d implies that for an instantaneous change
df in f, there is a change in the guiding center position of

dR = Rcs− cosf,sinfddf. s11d

In this section we consider the limit of a long-range po-
tential, for whichdf!1. In this case the scattering off can
be viewed as leading to a continuous diffusive motion with a
diffusion constantsin angled of order ,sdfd2/ts. Similarly,
we can view the guiding center coordinates as undergoing
continuous diffusive motion, provided the typical jumpfEq.
s11dg in the guiding center coordinate is small compared to
other relevant lengthscales, in particular the wavelength of
the SAWRcdf!1/q. The diffusion constant for the guiding
center is,Rc

2sdfd2/ts. Note that the diffusion constants for
f and R depend only on thetransport relaxation time
t,ts/ sdfd2, so onlyt enters the theory. In terms oft, the
conditions for validity of this theorysdf!1, Rcdf!1/qd
can be writtent /ts@1 andsqRcd2!t /ts.

To model the continuous diffusion off andR, we intro-
duce two sources of Gaussian noise,L1 andL2, with

kList8dListdl = Gidst − t8d, s12d

swhere i =1, 2d and write the effects of scattering on the
phase of the orbit and on thex component of the guiding
center position as

fstd = f0 + vct +E
0

t

L1st8ddt8, s13d

Xstd = X0 + RcE
0

t

L2st8ddt8. s14d

The two sources of noise are related through Eq.s11d

L2std = − RcL1stdcosfstd,

which requires thatG1=2G2 in the situation of interest where
we average over all trajectoriesshence overf0d. From a
direct evaluation of the classical Kubo formula for the diffu-
sion constant for this model in the absence of a SAW poten-
tial, we find that

G1 = 2G2 =
2

t
, s15d

wheret is the conventional definition of the transport relax-
ation time, in terms of which the Drude expression for dif-
fusion constant isDxx=Dyy=

1
2vF

2t / s1+vc
2t2d.

We simplify subsequent calculations by ignoring correla-
tions of L1 andL2 beyond those in Eq.s15d, which we ex-
pect to be accurate forvct

* @1, fwith t* defined in Eq.s20d
belowg in which case the particle is able to explore all values

FIG. 3. Magnetoresistance for a short-range potential using the
parameters of Ref. 3, and assumingv=2p310 GHz, which im-
pliesvt=60 and vF /s=84. We choose«=0.001, a factor of 10 less
than in Fig. 2.
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of fstd on the timescale of the relevant scattering time. We
can then calculate the change in the diffusion coefficient
from the guiding center drift as in Sec. II A for isotropic
scattering, averaging over the electron trajectories

dDyy =E
0

`

dtkkẎstdẎs0dllL1,L2

.
Ẽvq

2

B2 ReHE
0

`

dtE
0

2p df0

2p
KKeiqRcfsin fstd−sin f0g

3 eiqRcEt

L2st8ddt8−ivtLL
L1,L2

J , s16d

where our assumption thatL1 andL2 are uncorrelated allows
us to perform the average over noise

dDyy ~ Ẽvq
2 ReHE

0

`

dt e−ivtE
0

2p df0

2p

3 keiqRcfsin fstd−sin f0glL1
keiqRcetL2st8ddt8lL2J .

s17d

Using

keiqRcfsin fstd−sin f0glL1
= o

N,M=−`

`

JNsqRcdJMsqRcd

3 eisN−Mdf0eiNvcte−sN2G1/2dt,

keiqRcetL2st8ddt8lL2
= e−fsqRcd2/2gG2t,

we find a resistance correction of

dcrxx

r0
=

vF
2v2t

4s2 Ẽ2 o
N=−`

`
JNsqRcd2tNq

1 + sNvc − vd2tNq
2 , s18d

where

tNq =
t

N2 +
sqRcd2

2

. s19d

The form of this correction is that found for isotropic scat-
tering, but withtNq replacingt in the correction to the dif-
fusion coefficient.33,34The result in Eq.s18d can be related to
the result found in Eq.s58d in a similar manner to the case of
short-range scattering.

In the experimentally relevant range of parameters
v /vc!qRc, and noting that in the vicinity of resonance
Nv /vc.N, we define a scattering timet* !t as

1

t* ;
q2Rc

2

2t
, s20d

andtNq.t* in our regime of interest. This quantity enters in
our discussion of the kinetic equation for small-angle scat-
tering in Sec. III B. Note that the use of this result is also
subject to the constraintvct@1 with the additional require-
mentqRc

2! l, which is discussed in more detail in Sec. III.

III. CLASSICAL KINETIC EQUATION

We analyze the classical kinetic equation for a 2DEG at
temperaturekBT&"vckF /q irradiated by SAWs. Our ap-
proach is to solve the kinetic equation for the electron distri-
bution function

fst,x,w,ed = fT + o
vq

e−ivt+iqxo
m

fvq
m sedeimw, s21d

using the method of successive approximations.
Here, fTsed is the homogeneous equilibrium Fermi
function, and the anglew and kinetic energye parametrize
the electron state in momentum space. Each component
fm describes themth angular harmonic of the time-
and space-dependent nonequilibrium distribution.
To describe local values of the electron current and the ac-
cumulated charge density, we use the energy-integrated func-
tions, gvq

m =e0
`defvq

m . The relaxation of the local nonequilib-
rium distribution toward a Fermi function characterized by
the value of local Fermi energyeFst ,xd fdetermined by the
local electron densitynst ,xd~g0st ,xd=e0

`de f0st ,xd, where
f0st ,xd=edw /2p fst ,xdg and the kinetic equation is

L̂f = Ĉf , s22d

where

L̂ = ]t + v cosw]x + Fvc −
eE

p
sinwG]w + evE cosw]e,

s23d

with Ĉ the collision integral,E the electric field, andp the
electron momentum.

A. Isotropic scattering

In the presence of a short-range potential, the scattering is
isotropic and we can use the relaxation time approximation
for the collision integral, which is

Ĉf = −
f − f0

t
−

f0 − fTfe − eFst,xdg
tin

, s24d

where we distinguish between the elastic scattering ratet−1

and energy relaxation ratetin
−1.

The dynamical perturbation of the distribution function
can be found from time/space Fourier harmonics of Eq.s22d
at the frequency/wave number of the SAW

F]w +
1

vct
− i

v

vc
+ iqRccoswG fvq = Cswd, s25d

Cswd = −
gvq

0

vctin
s]efTd +

t−1 − tin
−1

vc
fvq
0

−
eEvq

vc
Fv cosw]e −

sinw

p
]wGsf00 + fTd,

where we include the unknown perturbation of the time/
space averaged functionf00 related to the dc current to low-
est order inEvq. We note that astin only contributes to heat-
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ing of the 2DEG, we can ignore it here for the ac part of the
distribution function, but must retain it for analysis of the dc
part of the distribution function. In our expression forC we
neglect contributions from higher Fourier harmonics off,
such asf2v 2q, f2v 0, and f0 2q, since these only affect dc
transport at quartic order in the SAW field, whereas our in-
terest is only in effects that are quadratic in the SAW field
si.e., linear in the SAW powerd. We also omit terms involving
E00fvq, since they contribute to dc transport only beyond the
linear response regime in the dc field. Equations25d can be
formally solved using the Green’s functionGsw ,w̃d

fvqswd =E
−`

w

Gsw,w̃dCsw̃ddw̃, s26d

Gsw,w̃d = ef1/vct−iv/vcgsw̃−wd+iqRcfsinw̃−sinwg, s27d

which allows for an infinite range of variation ofw while
guaranteeing periodicity of the solutionfvqswd. We also in-
troduce the useful quantity

K =E
0

2p dw

2p
E

−`

w dw̃

vct
Gsw,w̃d = o

N=−`

`
JN

2sqRcd
1 + itsNvc − vd

,

s28d

which has the properties

Ksv,qd = K*s− v,qd = Ksv,− qd,

and is obtained from Eqs.s26d and s27d using Eq.s5d.

1. Screening and Dispersive Resonance Shift

The electric fieldE in Eq. s23d is the combination of a
homogeneous dc fieldE00 and the screened electric field of
the SAW Est ,xd=ovqEvqe

iqx−ivtx̂, found from the un-
screened SAW field viaEvq=Evq

SAW/ksv ,qd, whereksv ,qd is
the dielectric function of the whole 2D structure. The density
modulationnvq=ggvq

0 induced by the SAW sets up an in-
duced fieldEvq

ind=s−i2peq/xuqudggvq
0 that we take into ac-

count at the level of Thomas-Fermi screening, so that
Evq=Evq

SAW+Evq
ind. In the analysis of screening, the dc part of

the electric field can be ignoredsf00=0d, and self-consistency
yields

gvq
0 =

eEvq

iq

1 − s1 − ivtdK
1 − K

, s29d

and

ksv,qd = 1 +
1

ascruqu
1 − s1 − ivtdK

1 − K
. s30d

In the limit thatqRc@1, which is our regime of interest, the
dielectric function becomes

ksv,qd = 1 +
1 − s1 − ivtdK

ascruqu
, s31d

and for most SAWs, ascruqu!1, which implies
k.1/sascruqud. When we account for dispersion, we find that
the system has resonances atv=Nvc+DN whereDN is the
dispersive shift of theNth resonance.

We use Eq.s30d to find the eigenmodes of the system.
Settingk=0 and inserting the expression forK, one finds to
leading order invct

DN =
NvcJN

2sqRcd
ascruqu + 1 −JN

2sqRcd − NAN

, s32d

where

AN = o
p=1

`
JN−p

2 sqRcd − JN+p
2 sqRcd

p
. s33d

In the limit qRc→0 we recover the magnetoplasmon disper-
sion D1<uquRc

2vc/ascr, whereas in the limit ofqRc@1
screening becomes important andDN!Nvc. The crossover
between the two regimes, which may be evaluated by con-
sidering the denominator of Eq.s32d, occurs at a wave-
numberq0Rc,ascr/Rc!1. In our discussion below we take
into account the screening of the SAW field.

2. Magnetoresistance oscillations

To find the steady-state current, we analyze the time/space
average of the kinetic equation in Eq.s22d and take into
account the dynamical perturbationfvq

F]w +
1

vct
G f00 −

t−1 − tin
−1

vc
f00
0 +

ev · E00

vc
]efT

= − o
vq

eE−v−q

vc
Fv cosw]e −

sinw

p
]wG fvq. s34d

In our analysis of classical magnetoresistance oscillations
we assume thattin@t and since we are not interested in the
heating associated with this term we drop it here. However it
is important for our analysis of the first quantum correction
to the classical result that we present in Sec. IV. We substi-
tute the solution Eq.s26d into Eq. s34d, keeping track of the
effect of the perturbation of the time/space averaged function
f00 on fvq. This procedure automatically includes SAW-
induced nonlinear effects. We multiply Eq.s34d by
s2vc/evF

2dve−iw, integrate with respect toe and w, then use
the relation between thex and y components of the dc cur-
rent, jx− i j y=egvFg00

1 and the harmonicg00
1 snote that electri-

cal neutrality requiresg00
0 =0d, which gives

2vc

evF
2 E dw

2p
e−iwE deHF]w +

1

vct
Gvf00

+ o
vq

veE−v−q

vc
Fv cosw]e −

sinw

p
]wG fvqJ

=
jx

vF
2te2g/2

1

2o
vq
U leEvq

eF
U2 K

1 − K
+ S ivct + 1

vF
2te2g/2

Df jx − i j yg

= E00
x − iE00

y , s35d

and this can be used to determine the classical SAW-induced
change of the resistivity tensordcr̂. The relation between the
electric field and current isE= r̂j +dcr̂j , where
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r̂ = r0S 1 vct

− vct 1
D ,

is the Drude resistivity tensor. Thus we find the resistivity
corrections

dcrxx

r0
=

1

2o
vq
UelEvq

eF
U2

ReH K

1 − K
J , s36d

dcryy = 0,

dcryx

r0
=

dcrxy

r0
= −

1

2o
vq
U leEvq

eF
U2

ImH K

1 − K
J = 0,

and with the use ofEvq=Evq
SAW/ksv ,qd.qascrEvq

SAW, Eq.
s28d, vct@1, andqRc@1 we formally justify the result in
Eq. s6d. The magnetoresistance correction is

dcrxx

r0
= 2sqlEd2 o

N=−`

`
JN

2sqRcd
1 + sv − Nvcd2t2 . s37d

3. Strong damping„vct™1…

At low magnetic fields, there is experimental35 and
theoretical30,36 evidence that there is exponential damping of
Weiss oscillations, and it seems natural that similar behavior
should be observed for SAW-induced oscillations. We ex-
plore this question and find the functional form of the damp-
ing for isotropic scattering in this section, and for small-
angle scattering in Sec. III B. In the strong damping limit
svct!1d, we investigate Eq.s28d whenqRc@1 and find the
values ofw and w̃ that lead to a stationary phase. We then
integrate over fluctuations about each point of stationary
phase. These saddle points arew=p /2 andw=3p /2, andw̃
takes values which are any positive or negative odd integer
multiplying p /2 such thatw̃øw. When we sum the results of
integrating about each saddle point, we getsto lowest order
in e−p/vctd

K =
1

vct
F 1

uqRcu
+

2

qRc
e−sp/vctd+sipv/vcdsins2qRcdG . s38d

In the limit that the magnetic field goes to zero, withql@1,
this leads to a resistance change

Udcrxx

r0
U

B=0
= 2qlE2, s39d

and if we consider the resistance changedrxx, we find it is

dcrxx =
h2

pe2

q

pF
E2, s40d

which is independent of disorder. Summation over ±v and
taking the imaginary part ofK as in Eq.s36d leads to the
same result thatdcrxy=0.

We interpret this as a SAW-induced backscattering contri-
bution to the resistance, which will dominate in the limit that
the SAW wavelength is much less than the mean free path.
We ignore the contribution to the resistance from channeled

orbits, which can also lead to a positive contribution to the
magnetoresistance in the small magnetic field limit.37,38 The
condition for the existence of these orbits is that the force
from the screened SAW field is larger than the Lorentz force,
i.e., E. svc/vdss/vFd,30,37 and we assume thatE is suffi-
ciently small for their contribution to be ignoredsthis is gen-
erally the case over most of the magnetic field range that we
show in our figuresd.

B. Small angle scattering

A long-range disorder potential leads to a nonisotropic
scattering probability, and this implies that there are two
scattering times that we need to take into account. One is the
total scattering timets,

30 and the other is the momentum
scattering timet and in GaAs heterostructurest@ts. In the
limit that sqRcd2!t /ts, the disorder potential leads to diffu-
sion in angle, and can be studied by replacing the collision
integral in the kinetic equation by a term involving twow
derivatives.30 The dynamical perturbation of the distribution
function, Eq.s25d is thus modified to read

F]w − i
v

vc
+ iqRccosw −

1

svctd
]w

2G fvq = C̃swd, s41d

where

C̃swd = −
eE

vc
Fv cosw]e −

sinw

p
]wGsf00 + fTd. s42d

In Eq. s41d, small-angle scattering is introduced in the form
of diffusion along the Fermi surface and is taken into account
by the terms1/td]w

2 f. Now, if we let fvq=hvqswde−iqRcsin w,
and substitute this into Eq.s41d, then solve in the limits that
qRc/vct!1 andv /vc!qRc sthe second condition allows us
to ignore the term]w

2hd, we can solve the kinetic equation as
before to get

fvqswd =E
−`

w

dw̃G̃sw,w̃dC̃sw̃d, s43d

where

G̃sw,w̃d = expHiqRcssin w̃ − sinwd + S 1

vct
* − i

v

vc
Dsw̃ − wd

−
1

2vct
* ssin 2w − sin 2w̃dJ , s44d

and t* was defined in Eq.s20d. Our results for isotropic

scattering are modified by replacingG by G̃. The long-range

potential problem is then reduced to a calculation ofK̃ for
the modified Green’s function, which we define in analogy
with Eq. s28d as

K̃ =E
0

2p dw

2p
E

−`

w dw̃

vct
* G̃sw,w̃d. s45d

We can write the following exact expression forK̃:
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K̃ = o
s,m,p=−`

`
Js+2m−2psqRcdJssqRcd

1 + ifss+ 2mdvc − vgt*

3 esip/2dsm+pdImS 1

2vct
* DIpS 1

2vct
* D , s46d

whereImsxd is the modified Bessel function of the first kind.

We studyK̃ in the weak dampingsvct
* @1d and the strong

dampingsvct
* !1d limits.

1. Weak damping„vct
* š1…

In the weak damping limit, we can make use of the
asymptotic expansion of the modified Bessel functions for

small argument, and need only retain them=p=0 terms.K̃
has the same form asK, except thatt is replaced byt* , i.e.,

K̃ = o
N=−`

`
JN

2sqRcd
1 + isNvc − vdt* , s47d

where 1/t* =fsqRcd2/2tg was introduced in Eq.s20d.

2. Strong damping„vct
* ™1…

In the strong damping limit whenqRc@1 and
sqRcd2!t /ts, we investigate Eq.s45d and use a similar
saddle-point procedure to the one we used for strong damp-
ing in the case of isotropic scattering. After adding the con-
tributions from integrating about each saddle point, we get
sto lowest order ine−p/vct*

d

K̃ =
1

vct
* F 1

uqRcu
+

2

qRc
e−p/vct*+ipv/vcsins2qRcdG . s48d

Note that this is the same form as the expression forK for
isotropic scattering in the limitvct!1, except thatt re-
placest* . If we want to investigate the limit in which the
magnetic field goes to zero, then the kinetic equationfEq.
s41dg as written previously is inapplicable when
sqRcd2@t /ts.

30 In our calculation above, there is a damping

factor ofD=e−p/vct*
, which arises naturally as a result of our

saddle-point analysis. In Ref. 30 an alternative approach was
used to calculate the damping factor in the low magnetic
field limit. In that approach the damping factor above is the
high field limit of

D1 = expH−
p

vcts
F1 −

1

Î1 +
ts

t sqRcd2GJ , s49d

wherets is the total relaxation rate. If, as in Sec. II B, we
assume that phase and guiding center corrections are uncor-
related, we can calculate a second damping factor associated
with phase corrections in addition to the guiding center con-
tribution in Eq.s49d, using the same method. This gives

D2 = expH−
p

vcts

s v
vc

d2

1 + s v
vc

d2ts

t

J , s50d

and at moderate fields, we may approximateD=D1D2,
so that

K̃ =
1

vct
* F 1

uqRcu
+

2

qRc
Deipv/vcsins2qRcdG . s51d

If we assume that the two effects are correlatedsas we
should in thesqRcd2@t /ts limit d, then we get the expression

D = expH−
1

vcts
E

0

p

df
sql sinf − vtd2

sql sinf − vtd2 + svctdsvctsd
J ,

s52d

which implies that in thevct→0 limit, with ql@vt@1 and
t /ts@1

D . expH−
p

vcts
F1 −

vt

sqld2vctÎts

t
GJ , s53d

which gives limvc→0D=e−p/vctsÞ limvc→0D1D2=e−2p/vcts.

3. Screening

In the above discussion, the solutions obtained forfvq in
Sec. III A and for fvq when there is small-angle scattering
differ in that the kinetic equation for isotropic scattering con-
tained the termgvq

0 /vct, which is absent here. When we
solve for gvq

0 , and hence the dielectric function Eq.s30d in
the presence of small-angle scattering, we get

gvq
0 =

eEvq

iq
f1 − s1 − ivt*dK̃g, s54d

which implies a dielectric function

ksv,qd = 1 +
1 − s1 − ivt*dK̃

ascruqu
, s55d

which is very similar to Eq.s31d with K̃ replacingK. When
qRc@1, screening of SAWs is identical for both short- and
long-range potentials. Analysis ofDN and AN as in Sec.
III A 1 leads to the sameq0 at which screening becomes
important.

4. Magnetoresistance oscillations

In this section we derive the magnetoresistance oscilla-
tions analogously to Sec. III A 2. The system of equations
that we wish to solve is

]wf0 +
eEvq

vc
Fv cosw]e −

sinw

p
]wG fvq

= −
ev ·E0

vc
]efT +

1

vct
]w

2 f0, s56d

in combination with Eqs.s41d and s42d. The solution of Eq.
s41d for fvq is shown in Eq.s43d. We take the equation forf0
and integrate with respect to energy andw after multiplying
by ve−iw, as before, and obtain
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dE00
x − idE00

y =
2vc

em2vF
3SeEvq

vc
D2

sg0
1 + g0

−1d

3 E
0

2p dw

2p
E

−`

w

dw̃G̃sw,w̃d,

which is the same as we found for isotropic scattering, ex-

cept thatG̃ replacesG. The resistivity correction is thus

dcrxx

r0
=

1

2o
vq
UelEvq

eF
U2t*

t
RehK̃j. s57d

As in the case of short-range scattering there are no correc-
tions to any other components of the resistivity tensor. Un-
like the case of isotropic scattering there isnot a factor of

1−K̃ in the denominator of Eq.s57d—this is because the
resistivity correction is linear ingvq

0 , which is modified for
small-angle scatteringfsee Eq.s54dg.

Thus our results for the classical contribution to the mag-
netoresistance can be summarized as follows. For weak
dampingvct

* @1 and 1! sqRcd2!t /ts the resistivity cor-
rection is

dcrxx

r0
=

2vF
2v2tt*

s2 E2 o
N=−`

`
JN

2sqRcd
1 + sv − Nvcd2t*2 . s58d

For strong dampingvct
* !1 and 1! sqRcd2!t /ts

dcrxx

r0
= 2qlE2F1 + 2e−p/vct*

cosSpv

vc
Dsins2qRcdG , s59d

while for vct
* !1 andsqRcd2@t /ts

dcrxx

r0
= 2qlE2F1 + 2e−p/vctscosSpv

vc
Dsins2qRcdG . s60d

Summation over ±v and ±q for the imaginary part ofK̃
ensures thatdcrxy anddcryy vanish as for short-range scatter-
ing fsee Eq.s36dg. The three resistivity regimes identified
above correspond, respectively, to highfEq. s58dg, interme-
diate fEq. s59dg, and low fEq. s60dg magnetic fields. The
crossover between high and intermediate magnetic fields is
at vct

* ,1, which is equivalent tovct,sqld2/3, and the
crossover between intermediate and low magnetic fields is
when sqRcd2,t /ts, which is equivalent tovct,qlÎts/t.
The number of damped oscillations at low magnetic field has
recently been calculated elsewhere.39 As for short-range scat-
tering, these results are for the regime where channeled or-
bits can be ignored, which requires that the Lorentz force
should be stronger than the screened SAW field, i.e.,E
, svc/vdss/vFd.

Both Eqs.s58d and s59d reduce to the results found by
Mirlin and Wölfle30 in the limit that v→0, provided one
replacesv /s by q in Eq. s58d. To extrapolate this result to
lower magnetic fields, the best we can do is a similar proce-
dure to Mirlin and Wölfle, which is to replacee−p/vct*

by the
damping factorD discussed in Sec. III B, leading to Eq.s60d.
In the limit thatB→0 this reduces to the same behavior as in
the case of isotropic scattering, and the magnetoresistance
correction is given by Eq.s40d. We neglect the possibility of

channeled orbits, as discussed in Sec. III A 2.
In Figs. 4–6 we show the behavior of the magnetoresis-

tance as determined by splicing the results of Eqs.s58d and
s59d for the weak and strong damping cases, respectively. In
Fig 4 we use the same sample parameters as in Fig. 2, while
both Figs. 5 and 6 are forvF /s=84, with vt=60 in Fig. 5
and vt=600 in Fig. 6; for the sample parameters in Ref. 3
these correspond tov=2p310 GHz and 2p3100 GHz, re-
spectively. Note that, owing to our requirementqRc!vct,
our results should not be trusted in the region
vc/v&ÎvF / ssvtd swhich is of order 1 for the parameters
usedd, i.e., at low magnetic fields. However, our expectation
is that magnetoresistance oscillations should be strongly
damped in this regime, as described in Eq.s60d. We also note
that for vc/v@1, the resistance correction in the case of
small-angle scattering is enhanced over that expected for iso-

FIG. 4. Magnetoresistance correction for small-angle scattering,
with vt=7, vF /s=63, andE=0.02. The curve is determined by
splicing the expressions for the resistance in the strong and weak
damping limitssvct

* ,1 andvct
* .1, respectivelyd, which are in-

dicated in the figure.

FIG. 5. Magnetoresistance correction for small-angle scattering,
with vt=60, vF /s=84, and«=0.003. The curve is determined by
splicing the expressions for the resistance in the weak and strong
damping limits, which are indicated in the figure.
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tropic scattering with the same value of the transport time
si.e., the same 2DEG mobilityd.

IV. QUANTUM KINETIC CONTRIBUTION TO SAW-
INDUCED MAGNETORESISTANCE

The absorption of SAWs by electrons in two dimensions
changes their steady-state distribution over energy. Charac-
teristics that are independent of energy cause no additional
changes to magnetoresistance beyond those previously
described. However, whenvct@1, Landau level quantiza-
tion is present, leading to an oscillatory energy-dependence
of the electron DOS, for overlapping Landau levels of
g̃sed=f1−G coss2pe /"vcdgg, whereG=2e−p/vctq!1, andtq

is the quantum lifetime of the Landau levels.40 fA calculation
of the density of states for a long-range disorder potential41

shows thattq can be field dependent.g This gives rise to a
quantum contribution to the geometrical commensurability
oscillations which can persist up to high temperatures. The
oscillations in the DOS impose oscillations on the electron
elastic scattering ratet−1sed=t−1g̃sed /g, which in turn gives
a contribution to the observable conductivity. At low tem-
peratures kBT&"vc, the DOS oscillations lead to
Shubnikov-de HaassSdHd oscillations in conductivity. At
high temperatureskBT@"vc, thermal broadening smears out
the SdH oscillations, but the quantum contribution can re-
main as a nonlinear effect after energy averaging.

We follow a similar approach to Dmitrievet al.13,14 to
study the quantum kinetic equation to obtain the first quan-
tum correction to the classical magnetoresistance induced by
SAWs. This change in the distribution is oscillatory in energy
and leads to a contribution to the dc conductivity that oscil-
lates as a function ofv /vc. The effect depends on the effi-
ciency of energy relaxation and hence is proportional totin;
this effect dominates the quantum corrections discussed in
Refs. 12 whentin /tq@1. If this is the case, the energy re-
laxation time is long compared to the Landau level lifetime,
allowing a strongly nonequilibrium electron distribution as a
function of energy to arise.

The photoconductivitysph determines the longitudinal
current flowing in response to a dc electric field in the pres-
ence of SAWs

j ·E00 = sphuE00u2, s61d

and can be related to the photoresistivity byrph.rxy
2 sph,

where rxy=eB/ne. To calculate the photoconductivity, one
integrates over the distribution function

sph = 2E de s00sedf− ]efsedg , s62d

and in the leading approximation,

s00sed = s00
D g̃2sed

g2 , s63d

where

s00
D =

e2gvF
2

2vc
2t

, s64d

is the Drude conductivity. In obtaining a solution to the prob-
lem, we are only interested in effects due to the nontrivial
energy dependence of the electron distribution functionfsed.

To perform this calculation we need the classical dynami-
cal conductivity, from which we consider the energy depen-
dence of the density of statesg and the momentum relax-
ation time t. We calculate the classical dynamical
conductivity below in Sec. IV A, and then use it to derive the
quantum energy balance equation and magnetoresistance
correction in Sec. IV B.

A. Classical dynamical conductivity

The magnetic field dependence of the resistivity change
reflects the form of the SAW attenuation by the 2D electrons
determined by the real part of the longitudinal dynamical
conductivitysvq

Rehsvqj = gs2te2ReH K

1 − K
J . s65d

We obtainsvq from considering attenuation in the form

kEvq · j vql = svquEvqu2,

and we use the expression in Eq.s65d in the following sub-
section. In analogy with our previous work, we find that the
equation forsvq for small-angle scattering is

Rehsvqj = gs2t*e2RehK̃j. s66d

B. Quantum energy balance equation

The quantum energy balance equation in Ref. 14 is stated
without detailed derivation. Here we provide a simple deri-
vation as an alternative to the approach used in Ref. 14. If we
consider the energy balance in a 2DEG due to absorption and
emission of SAWs, then the rate at which energy is added is
Qstd= j vqstd ·Evqstd, and j vqstd=svqEvqstd, which when we

FIG. 6. Magnetoresistance correction for small-angle scattering,
with vt=600, vF /s=84, and«=0.002. The curve is a splice of the
formulae for the strong and weak damping limits, and the range of
validity for each region is indicated.
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average over time givesQ̄= 1
2svquEvqu2. We can express the

rate of absorption or emission processes involving energy
levels i and j as

Gi j =
2p

"
uMij u2dsei − e j ± "vd, s67d

using Fermi’s golden rule, whereMij is the matrix element
between statesi and j . We assume thatMij =M and calculate
the total power absorption for the classical casesg constantd,
which we equate toQ̄= 1

2svquEvqu2, Hence

Q̄ =
2p

"
uMu2"vgs"vgd, s68d

where one factor of"v is the energy added per photon ab-
sorbed,g is the final density of states, and"vg is the number
of electrons below the Fermi level that are available to make
a transition. This gives a formula foruMu2

uMu2 =
"Q̄

2ps"vgd2 . s69d

We now consider the change in the number of electrons
with energye→e+de allowing the density of states to be
energy dependent,g̃sed

d

dt
ffsedg̃seddeg

=
2p

"
uMu2Ho

±
fse ± "vdg̃se ± "vddeg̃sedf1 − fsedg

− fsedg̃seddeg̃se ± "vdf1 − fse ± "vdgJ
−

fsed − fTsed
tin

g̃sedde. s70d

When we require that the distribution be stationary, the left-
hand side of the equation vanishes and when we divide by
g̃sed we get

svquEvqu2

2"2v2g2 o
±

g̃se ± "vdffse ± "vd − fsedg =
ffsed − fTsedg

tin
.

s71d

If we want to include the effects of a dc field as well, then we
can see the form of the dc term from thev→0 limit of the
right-hand side of Eq.s70d, and we get as a final result the
energy balance equation from Ref. 14,

svquEvqu2

2"2v2g2 o
±

g̃se ± "vdffse ± "vd − fsedg

+
uE00u2s00

g̃sed
]

]e
F g̃sed2

g2

]

]e
fsedG =

ffsed − fTsedg
tin

.

s72d

We could also have obtained the same equation by treating
svq as energy-dependent and then pulling out factors of the
energy dependent density of states fromg̃sed and

t−1se+"vd, which is equivalent to the approach in Ref. 13.
This second approach works provideduN−v /vcuø1/vct
si.e., we can ignore the 1 in the denominator of the sum over
N harmonics insvqd. At frequencies closer to resonance than
this, we can no longer ignore the 1 in the denominator and
the classical expression lacks accuracy. However, for large
vct this is a relatively small region of magnetic fields, and is
not relevant at the magnetic fields at which ZRS mimima are
observed.

We use the expression forsvq from Eq. s65d sshort-range
disorder potentiald or Eq. s66d slong-range disorder poten-
tiald, which contains the geometric and frequency commen-
surability oscillations, ands00

D we know as the Drude resis-
tivity fEq. s64dg. Introduce the following quantities:

P = tin
2svquEvqu2

"2v2g
, s73d

Q = tin
4p2s00

D uE00u2

"2vc
2g

. s74d

We are then left with the following equation to solve:

P
4 o

±
F1 − G cosS2pse ± "vd

"vc
DGffse ± "vd − fsedg

+
"2vc

2g

4p2g̃sed
Q ]

]e
HF1 − G cosS2pe

"vc
DG2 ]

]e
fsedJ

= fsed − fTsed. s75d

Now, let fsed= f0sed+Gf1sedcosf2pe /"vcg, where
f0sed. fTsed, so fsed. fTsed+ foscsed. When we do this, and
then sum overv and neglect all derivatives off1 that arise
from Taylor expandingfse±"vd ssince this is assumed to be
a smooth function on the energy scale ofkBTd, and retain
only the lowest-order terms inG, we get a linear equation in
fosc which is trivial to solve and leads tosnoting that]e

2 fT is
also ignoredd an identical result to Ref. 14

fosc=
"vc

2p

G

2

] fT

]e
sinS2pe

"vc
D 2pv

vc
P sins 2pv

vc
d + 4Q

1 +P sin2spv
vc

d + Q . s76d

We then use the expression for the photoconductivity Eq.
s62d and get the isotropic change in the dc conductivity

sph

s00
D = 1 +

G2

2 F1 −

2pv
vc

P sins 2pv
vc

d + 4Q
1 +P sin2spv

vc
d + Q G . s77d

Note that in the approach outlined above we made no
detailed assumptions about the momentum relaxation apart
from tin@t, such that the momentum relaxation is efficient
in making the distribution isotropic. Thus the only difference
in the expression for a short- or long-ranged potential is in
the form ofsvq, which enters in the expression forP in Eq.
s73d. We now present numerical calculations of the resistivity
change derived above in the presence of SAWs for both iso-
tropic and small-angle scattering. All these calculations are
for the caseQ=0.
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C. Numerical results

In this section we show the resistivity as it is modified
by the quantum correction alone. We discuss the situation
where both classical and quantum corrections are important
in Sec. V A.

1. Isotropic scattering

We illustrate numerical results for the magnetoresistance
oscillations due to the combination of SAWs and density of
states modulations in Fig. 7. We use Eq.s28d for K and do
not ignore the 1 in the denominator of the summand. For
largevt, this should give accurate results except for a very
small range of magnetic fields around each of the resonances
where v /vc equals an integer. Note that we divide the
expression in Eq.s77d by 1+G2/2, to compare the resistivity
with and without SAWs, assuming that there are density of
states modulations in both cases. To connect to our previous
notation, we note that

P = 2S eF

"v
D2

svtdsvtind«2ReH K

1 − K
J . s78d

In Fig. 7 we show the change in the magnetoresistance
for vtq=6 and vtin=302 susing the value oftin=7.64
310−10 s estimated in Ref. 14 for the parameters that we
calculated the classical magnetoresistance corrections dis-
played in Figs. 2 and 3. As for the case of a microwave field,
there are peaks in the resistance whenv /vc is close to an
integer, but withdrxx=0 whenv /vc is exactly equal to an
integer. The peakssand dipsd are modulated by geometric
commensurability oscillations, and this leads to a class of
ZRS of the type predicted forv!vc in Ref. 28. Forvt=7,
vF /s=63, the ZRS occur for«*0.0015 and forvt=60,
vF /s=84, ZRS occur for«*0.001.

At large vc/v@1 snot shownd the resistance change is
negative as we predicted analytically previously.28 However,
the magnitude of the resistance change is very much smaller
than whenv /vc*1, so a very large value of« would be
required to attain ZRS atvc/v@1.

2. Small angle scattering

In Fig. 8 we show data for the quantum magnetoresistance
correction when there is small-angle scattering for the same
sample parameters and frequencies as in Figs. 4 and 5. Simi-
lar to the short-range case, we can relateP to our previous
notation

P = 2S eF

"v
D2

svt*dsvtind«2RehK̃j, s79d

where the change from Eq.s78d reflects that we use a differ-
ent svq in the two cases.

If vc/v&1 then there are ZRS of the type that are usually
observed with microwaves; however there is another class of
magnetoresistance oscillations at larger values ofvc/v,
which is of the sort we predicted in Ref. 28, and is much less
strongly damped than in the isotropic scattering case. We
note that forvt=60, vF /s=84, the threshold value for ZRS
at vc/v.1 is «.0.003. In Fig. 8 we clearly demarcate the
values of vc/v where our analytic formulae are valid
sqRc/vct!1d.

V. DISCUSSION

A. Combination of classical and quantum effects

At low frequenciessv!vcd we can use the approach in
Sec. IV B to obtain an analytical expression for the quantum
resistivity correction, starting with the low frequency limit of
the balance equation for vanishing dc field. This calculation
was already considered in Ref. 28, and we quote the result
here for completeness. We find a nonvanishing addition to
both diagonal components of the conductivitysand, there-
fore, also of the resistivityd even whenkBT@"vc. This gen-
erates isotropic magneto-oscillations for short-range disorder

dqraa

r0
=

dqsaa

s0
= −

2tin

t
U4pGeF

"vc
U2

«2J0
2sqRcd, s80d

swhere s0=1/r0d in addition to the anisotropic classical
commensurability effect. Together, they yield the result

FIG. 7. Quantum contribution to the magnetoresistance for
vt=7, vF /s=63 and vt=60, vF /s=84, both with vtq=6,
«=0.0015, andvtin=302.

FIG. 8. Quantum contribution to magnetoresistance forvt=7,
vF /s=63 and for vt=60, vF /s=84. In both casesvtq=6,
«=0.003, andvtin=302. The arrows indicate the range of validity
of the results.
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drxx

r0
<

dsyy

s0
= 2J0

2sqRcd«2FvF
2

s2 −
tin

t
s2pGnd2G ,

dryy

r0
<

dsxx

s0
= − 2J0

2sqRcd«2tin

t
s2pGnd2, s81d

valid whent−1&v!vc, wheren=2eF /"vc is the filling fac-
tor. For a long-range potential, the oscillations are very simi-
lar for t*−1 &v!vc, with t* replacingt to give

drxx

r0
<

dsyy

s0
= 2J0

2sqRcd«2FvF
2

s2

t

t* −
tin

t* s2pGnd2G ,

dryy

r0
<

dsxx

s0
= − 2J0

2sqRcd«2tin

t* s2pGnd2. s82d

The actual magnetoresistance trace observed in an experi-
ment will have both anisotropic classical and isotropic quan-
tum contributions. The parameter that controls the overall
behavior for both isotropic scattering and small-angle scat-
tering is

h ; s2pGns/vFdÎtin/t. s83d

We can useh to identify three different magnetoresistance
regimes. Ifh,1, the observed change in the resistivity is in
the direction of SAW propagation. Ifh.1, then the ob-
served change in the resistivity is in the direction perpen-
dicular to the SAW wave vector, and ifh@1, then the resis-
tance correction is isotropic and negative. For the parameter
values used in Figs. 7 and 8, the parameterh is large com-
pared to one, such that the quantum contribution dominates
the classical corrections.

The quantum contribution to the resistivity that we dis-
cuss in Sec. IV is not the only possible contribution to the
resistivity that can arise from quantum effects neglected in a
classical calculation. A static periodic potential affects the
equilibrium density of states, which can lead to corrections
to ryy as well as torxx.

20,42These corrections were ignored in
our calculations, but at least in the static case appear to be at
most the order of magnitude of the classical contribution.
Hence the quantum effect we discuss here should dominate
that quantum correction forh.1, provided tin@t and
n.vF /2ps.

B. Experimental Implications

There are four situations we have discussed in this paper:
the combinations of either short- or long-range disorder and
quantum and classical corrections to the magnetoresistance
due to SAWs. We first focus on the case of isotropic scatter-
ing. The most pronounced geometric and temporal oscilla-
tions in the magnetoresistance are in the regionvc/v&1
regardless of whether the oscillations are quantum or classi-
cal in origin. The classical effects dominate for short
inelastic scattering times and lead to anisotropic, positive
magnetoresistance corrections, while quantum effects domi-
nate for large inelastic scattering times, and can lead to ZRS
which are modulated by geometric commensurability oscil-
lations. For small-angle scattering, geometric commensura-

bility oscillations in the regimevc/v&1 are very strongly
damped in both the classical and quantum cases, unless
sqRcd2/vct&1 in this region. This condition is not met in
current high quality 2DEGs in which small-angle scattering
dominates. However, it is currently possible to achieve
sqRcd2/vct&1 for vc/v.1, and these geometric commen-
surability oscillations should be observable either in the
quantum or classical regimes whenvc/v.1. Similar to iso-
tropic scattering, quantum effects dominate for large inelastic
scattering timesscompared to the elastic scattering timed and
classical effects are more important for short inelastic scat-
tering times. It appears that the ZRS at low frequencies we
predicted in Ref. 28 for isotropic scattering, are hard to
achieve if the scattering is isotropic, but should be much
more readily achievable in samples where small-angle scat-
tering dominates, which is the experimentally relevant situa-
tion.

One theoretical prediction for ZRS is that they require
inhomogeneous current flow in a 2DEG,11 which appears to
have recently been observed for microwaves.5 A large
enough SAW-induced changeudsxxu.s0 resulting in nega-
tive local conductivity would also require the formation of
electric field/Hall current domains. Since the anisotropy in
Eq. s81d suggests that such conditions can be achieved most
easily in the conductivity component along the SAW wave
vector, we expect that domains would form with current
flowing perpendicular to the direction of SAW propagation,
and their stability would depend on the sample geometry. For
a SAW with the wave vector directed across the axis of a
Hall bar, current domains can be stabilized by ending in
ohmic contacts. For a wave propagatingsor standingd along
the Hall bar, current domains would have to orient across the
bar direction and terminate at the sample edgessdestabilizing
themd, leading to a finite resistance. Finally, the anisotropy
would not support a zero-conductance regime in a Corbino
geometry.

In addition to the parameter ranges that are optimal for
observing SAW-induced ZRS, there are several other experi-
mental issues we would like to mention. First, there is the
observation by Kukushkinet al.8 that microwave irradiation
of high quality 2DEGs can lead to SAW generation. Thus
one might want to consider the effects of microwaves and
SAW simultaneously–such a scheme might also allow for
probing a 2DEG at frequencies other thanqs for a given
SAW wave number. However, this calculation is beyond the
scope of the present work.43

If increases in SAW frequency and 2DEG mobility allow
vt@ sqRcd2 for v /vcù1, the geometric oscillatory structure
similar to that observed for isotropic scattering, i.e., peaks
whenv /vc is an integer, should be visible in both classical
and quantum contributions to magnetoresistance. This is cur-
rently not yet observable for samples in which small-angle
scattering dominatessas appears to be the case for the
samples used in Refs. 2 and 3 where ZRS were observedd
becausevct

* @1 when v /vc*1. Either samples in which
isotropic scattering dominates are required to see these ef-
fects, or higher quality samples in whichsqRcd2/vct@1
when v /vc.1 are required. In terms of trying to improve
the possibility of observing interesting SAW-induced magne-
toresistance effects in the frequency rangev*vc in samples
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where small-angle scattering dominates, the following con-
siderations may be helpful. SincevF /s~ne

1/2 and vt~vm
sand it is found that m~ne

0.7 in the highest quality
GaAs/AlGaAs 2DEGs44d, the best hope for observing effects
with vt@vF /s appears to be by achieving higher SAW
frequencies.

C. Conclusions

In conclusion, we have demonstrated a class of magne-
toresistance oscillations caused in a 2DEG by SAWs. We
have shown that atv!vc the effect consists of contributions
with competing signs:sid a classical geometric commensura-
bility effect analogous to that found in static systems with
positive sign; andsii d a quantum correction, with negative
sign for either isotropic or small-angle scattering. The latter
result suggests that SAW propagation through a high mobil-
ity electron gas may generate a sequence of zero-resistance
statessZRSd linked to the maxima ofJ0

2sqRcd for strong
enough SAW fields. We find that in the regionv!vc, SAW-
induced ZRS states are much more likely to be observed in
samples for which small-angle scattering dominates isotropic

scattering. While this prediction concerns the low-frequency
domain v&vc, such ZRS would be formed via the same
mechanism11,14 as the microwave-induced ZRS atv*vc. In
the regimev*vc, we find that there are geometric oscilla-
tions superposed on ZRS if there is isotropic scattering. If
there is small-angle scattering, such oscillations are unlikely
to be seen in 2DEGs at the present time. Hence the optimal
parameter region to search for SAW-induced ZRS in 2DEGs
with long-range disorder which show geometric modulation
is for v,vc and sqRcd2/vct,1.
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