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Role of inertia in two-dimensional deformation and breakdown of a droplet
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We investigate by lattice Boltzmann methods the effect of inertia on the deformation and breakdown of
stability of a two-dimensional fluid droplet surrounded by fluid of equal viscosity~in a confined geometry!
whose shear rate is increased very slowly. We give evidence that in two dimensions inertia isnecessaryfor the
loss of stability, so that at zero Reynolds number there is always a stable stationary droplet shape. We identify
two different routes to breakdown, via two-lobed and three-lobed structures and give evidence for a sharp
transition between these routes as parameters are varied.
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The role of inertia in the deformation and loss of stabil
of a droplet in a shear flow remains an open problem in fl
mechanics. In three dimensions~3D!, a droplet in a steady
shear field will cease to have a stable shape at a cri
capillary number Ca.0.5 even without inertia@1#. Crudely
speaking, this happens when it is deformed enough to
dergo the Rayleigh instability, which is the peristaltic ins
bility of a long tube of one static fluid in another, driven b
interfacial tension. In three dimensions this loss of stabi
of the steady-state droplet shape~which we call breakdown!
leads in finite time to the hydrodynamic fission of the drop
~often called breakup!. Ca measures the relative importan
of viscous to interfacial forces; the effect of inertia, who
importance is quantified by the Reynolds number Re, is
sentially perturbative. Thus, although situations arise whe
droplet that would be stable at zero Re is unstable at a fi
Re, this really amounts to an inertia-induced shift of the cr
cal Ca. The contribution of inertia was studied in recent n
merical work@2–5#. Much of this work uses a flow protoco
based on sudden onset of shearing at different flow ra
rather than a gradual ramping up of the rate; this saves m
time numerically but describes a distinct physical si
ation from the slow ramp studied here; both are of inter
experimentally.

The situation is somewhat different in two dimension
Although not realizable directly in laboratory experimen
this case is more accessible by simulation@6,7#, and is inter-
esting because the nonlinear physics involved may not be
same as in 3D. In 2D, the Rayleigh instability is effective
switched off, because periodic variations in the width of t
droplet ~at fixed volume! always increases the amount
interface. Also, in 2D breakdown~loss of steady-state stabi
ity! is distinct from breakup~droplet fission!: breakdown
leads to the formation of a long neck that might in princip
elongate and thin indefinitely. In practice this will pinch o
albeit through a nonhydrodynamic mechanism, once the
interfaces get close enough.~When ‘‘breakup’’ is referred to
below, this is what we mean.! In the present work we stud
numerically in 2D the breakdown of stability of a drople
and find quite distinctive nonlinear physics, in which iner
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plays an essential part. The relatively moderate demand
two-dimensional simulations allows us to establish the s
nario relatively clearly, even for the case of an ‘‘infinites
mal’’ ramp, which we here approach numerically by a rec
sive updating scheme for the flow rate.

Method.We use the lattice Boltzmann~LB! method to
simulate a~symmetric! binary fluid deep within the two-
phase region. The phase separation of the order paramef
is induced by a chemical potentialm5Af1Bf32k¹2f
derived from af4 Landau free energy@8#. The evolution
equation for the order parameter is

] tf1u•“f5M¹2m ~1!

with M being a mobility; this is coupled with a Navier
Stokes equation

r~] tu1u•“u!52“p1f“m1h¹2u, ~2!

where u is the fluid velocity,r its density, andh is the
viscosity. The interfacial tension is included in this mod
through the gradient terms in the chemical potential and i
given bys5(2A/3B)A22kA. Note that topological recon
nections of the fluid-fluid interface are handled implicitly b
the order parameter diffusion and no singularity is enco
tered at breakup. Care was taken with parameter selectio
ensure that the droplet behavior is dominated by hydro
namic and capillary forces, except very close to the brea
point, where both diffusion and an interaction arising fro
the finite breadth of the interfaces~a few lattice spacings!
kick in.

In our simulations, we first set up a droplet of fluid in
surrounding immiscible phase of the same viscosity. To
pose a shear flow with strain rateġ, we introduce moving
walls at the top and bottom edges of the simulation cell w
opposite velocities6Lġ/2 whereL is the cell width. A drop-
let in such a shear profile will deform with the flow until an
unless the viscous stress is balanced by interfacial tens
The ratio of these forces is expressed in the capillary num

Ca5
hġR0

s
, ~3!
©2003 The American Physical Society01-1



y
ou

g

f

nd
e
-
t

fo
m

e
a

on

is

th
th

ne

b
di

s

23
re
ur
te

the
light
sure
y

e
m.

ti-

tly
we
The
t to

ic
ed
er
in

-
ted
at
s
ar

at
rre-
kup
r-

d
en-
r
in

to
. At

e
at
so

let
ntil
he

RAPID COMMUNICATIONS

WAGNER, WILSON, AND CATES PHYSICAL REVIEW E68, 045301 ~2003!
whereR0 is the radius of the undeformed droplet; the Re
nolds number measures the ratio of inertial and visc
forces:

Re5
rġR0

2

h
. ~4!

We quantify the deformation of a droplet by calculatin
the following moments of the order parameter field

b5(
x

u~f!f, ~5!

ca5(
x

u~f!xa , ~6!

dab5(
x

u~f!f~xa2ca!~xb2cb!. ~7!

Hereb gives the two-dimensional droplet’s area andc/b the
position vector of its center. The eigenvalues ofdab /b give
us two length scalesl 1> l 2 corresponding to the two axes o
the droplet. The Taylor deformation is defined as

D5
l 12 l 2

l 11 l 2
. ~8!

Note that very deformed droplets haveD close to~but still
less than! unity.

To study the breakdown of stability of droplets and fi
the critical capillary number~beyond which no steady stat
for a single droplet stably exists! we need to find the station
ary shapes of droplets at various Ca and Re. We ramp up
shear rate in a way that finds all stable droplet shapes be
the breakdown. To do this efficiently we use an algorith
that increases the shear rateġ stepwise and then waits for th
droplet shape to reach steady state before calculating Ca
Re. If droplet fission occurs, or if the resulting deformati
increment is too large~exceeding a thresholdDDc.0.05) a
smaller increaseDġ in the shear rate is tried. This process
iterated until either equilibrium is achieved, orDġ falls be-
low a pre-set limit chosen very close to zero (Dġc.1027).
In the latter case, the last value ofġ for which equilibrium
was reached is identified as the final stable shear rate;
fixes the value of Ca and Re at breakdown of stability for
chosen run. By varying simulation parameters~such as vis-
cosity! an ensemble of curves of Re versus Ca was ge
ated. Each termininated in a breakdown point.

The simulations reported below have lattices bounded
moving walls separated by 120 lattice sites, with perio
boundary conditions along the flow direction~in which the
lattice length is 400!. Other parameters common to all run
were, in lattice units@9#, 2A5B50.06;k50.039, from
which the interfacial tension is derived as 0.046; andM
53.0. Ten viscosity values were selected in the range 0.
0.88, again in lattice units@9#. These parameter values we
chosen to minimize lattice anisotropy, spurious diffusive c
rents, and other well-documented but fairly controllable ar
04530
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facts of the LB method@9,10#. The initial droplet radius in
each run was 21 lattice units. However, it was found that
increased curvature of a sheared droplet could lead to s
changes in its size as a result of increased Laplace pres
causing a shift in solubility. This effect was minimized b
using the true size of the droplet when calculatingR0 for the
purposes of Re and Ca~see below!.

The ratio L/R0.5.7 is not so large as to approach th
behavior of a droplet being sheared in an infinite mediu
Wall proximity effects are present in our results~as they are
in many experiments!, but we do not study these systema
cally here. In addition, the slight change inR0 with shear rate
mentioned above means that the wall effects vary sligh
during each run. By varying lattice size and shape
checked that there was no undue influence on the results.
same applies to the effect caused by proximity of a drople
its periodic image along the flow direction.

Although it is hard to quantify precisely all systemat
errors in LB @9# we believe the quantitative results report
below are generally good to within 10% and mostly rath
better. Our main conclusions, however, are qualitative
nature.

Zero Reynolds number results.First we report a simula-
tion for Re50. While LB fully treats inertial effects, a sta
tionary zero Reynolds number flow can also be simula
~essentially by switching off the term in the algorithm th
handles fluid convection!. In contrast to previous suggestion
@6,11#, we found that a two-dimensional droplet in a she
flow at zero Redoes not break downby any fluid-mechanical
process. Instead it continues to deform~Fig. 1! until the
width of the droplet is comparable to the interface width,
which point dissolution-assisted breakup occurs. This co
sponds to a molecular rather than a hydrodynamic brea
mechanism. A similarly elongated droplet in 3D would ce
tainly not survive, due to the Rayleigh instability.

Finite Reynolds number results.Both Re and Ca depen
linearly on the shear rate. We can, however, form the dim
sionless numberI 5Re/Ca which will be almost constant fo
each run~deviations arising only from the small changes
droplet sizeR0; see above!. The nominalI values for the
nine different runs simulated are identified in the caption
Fig. 2, where we show deformation curves in each case
modest Ca values the curves with a higherI ~more inertia!
show a larger deformation. A likely explanation for this is th
Bernoulli effect. This will create regions of lower pressure
the edges of the droplet, tending to stretch it into the flow

FIG. 1. For zero Reynolds number a two-dimensional drop
remains hydrodynamically stable at all Ca studied. It extends u
the width of the droplet is of the order of the interface width. T
picture shows a droplet with Ca51.1; the upper wall is moving
rightward, the lower, leftward.
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that it experiences a stronger flow than applies for a dro
at zero Re.

The simulation corresponding to the lowest curve is
zero Reynolds number case, and here breakdown does
occur, as previously discussed. All other curves end at
last stable configuration for the droplet that could be fou
using our ramp method. It can be difficult to establish t
stability of the very slowly evolving, near-critical drople
that arise close to this last stable configuration~particularly if
they are very deformed! so we have taken care to run th
simulations for tens of thousands of time steps per itera
in these parts of the curves.

With increasingI we find that there is a trend toward
steeper deformation curves, and at a criticalI c between 6.3
and 7.3 we observe a singularity in which the deformat
curve appears to develop an infinite slope at its end po
Further all deformation curves with largerI end similarly at a
deformation of about 0.7. We performed simulations fo
number of different lattice sizes and the exact value ofI c
depends on the cell dimensions, with increasing wall sep
tion causing a shift to smallerI c @12#.

As explained earlier, our ramp algorithm is designed
allow only a certain amount of deformation for each ne
stationary state. So, before the algorithm reaches a regio
infinite slope it will force ever smaller shear-rate incremen
when these fall below the pre-set threshold the algorithm
save the last configuration and exit. To check the fate
these droplets we reloaded the last configurations manu
and again increased the shear rate by a very small amo
All these droplets were unstable to extension and eventu
broke up into two droplets~not three! as the necks becam
too thin.

We show the dependence of the last stable capillary n
ber on Re in Fig. 3. Each of the runs appears a~almost!
straight line on the plot, ending at the breakdown point. T
different critical capillary number regimes are clearly sep
rated in the Re/Ca plane. Figure 3 gives examples of the
stable droplet shapes for bothI ,I c andI .I c . For I ,I c we

FIG. 2. Taylor deformation against capillary number under sl
ramping of shear rates for~top to bottom! nine runs of viscosities in
the range 0.181–0.877~lattice units! and the zero Re limit. Values
of the parameterI 5Re/Ca areI 518, 13, 11, 9.1, 7.3, 6.3, 3.7, 2.2
1.3, 0 ~top to bottom!.
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find that the droplets develop a double dimple; beyond
critical capillary number Cac(I ) these elongate and break u
into three. ForI .I c the last stable droplet shows one dimp
beyond Cac these elongate and break up into only tw
droplets.

Note that in these simulations we only observed bre
down of stability for Re,1.2. The shape of the breakdow
envelope in Fig. 3, together with the knowledge that the z
Reynolds number case remains stable, suggests that th
velope could have a horizontal asymptote at some nonz
value of Re~perhaps close to unity!. This would imply a
finite critical Re below which no breakdown could occu
however large Ca. However, more detailed work would
needed to reach a firm conclusion on this point.

We also performed simulations with a less sophistica
ramp algorithm in which the shear rate was increased
before, but without restriction on the deformation increme
In this case, different behavior was seen aroundI c . Droplets
which, when ramped more carefully, would show the tw
lobed breakdown mode~with a vertical tangent to the defor
mation curve at its end point; Fig. 2! could now jump past
this onto the upper branch of the deformation curve, dev
oping instead a stable three-lobed shape, finally breaking
at higher Ca into three droplets. The deformation curve
one such case is compared to the more careful ramp for
sameI in Fig. 4. This proves that the details of the flo
history can strongly affect the breakdown mode and also
shear rate at which breakdown occurs.

Comparing this result with the general trend shown
larger I in Fig. 2 suggests a conjecture: that the behavio
governed by an underlying, continuous deformation cu
that has, forI .I c , folded over into anS shape. With such a
curve, one might naturally expect a discontinuous jump
deformation on ramping up to the point of vertical tangen
However, it appears that droplets cannot survive the ju

FIG. 3. Deformation curves plotted in the~Re, Ca! plane. Note
that the zero Re curve coincides with thex axis and does not end in
breakdown. The envelope of breakdown points is shown to gu
the eye: this has two disconnected parts, corresponding to two-
and three-lobe droplets at the last stable configuration. Typ
shapes are as indicated.
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~but instead show a two-lobed breakdown of stability! if
brought very close to this point before the jump is ma
With a faster ramp, the jump occurs sooner; the droplet t
can survive the jump and continue onto the upper branc
the deformation curve. The mechanism seems to invo
transient stretching just after the shear rate is incremen
this allows the droplet to find the upper branch of the def
mation curve, but only if the shear rate-increment is su
cient. Note that such anS-shaped deformation curve woul
also admit hysteresis, in which two states of deformat
were both possible at exactly the same Ca. However,

FIG. 4. Two deformation curves forI 511. For one run with the
deformation restriction was removed. The droplet overshoots
underlying breakdown point and jumps into a three lobe struct
which survives to larger capillary numbers until eventually losi
stability.
ev
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never got clear evidence of this in our simulations, so a
hysteresis loop appears to be relatively small.

Conclusions.In this article we have provided evidenc
that the breakdown of droplet stability in two dimensio
requires a nonzero Reynolds number. The dependence o
critical capillary number Cac on the dimensionless numbe
I 5Re/Ca for two-dimensional droplet breakdown shows
unexpected transition atI 5I c . ~The precise value ofI c de-
pends on the wall separation.! This transition is consisten
with an evolution of the underlying deformation curv
D(Ca) into anS shape.~However, we did not observe hys
teresis around this transition.! A slow enough ramp leads to
two-lobed instability mode at Cac for I .I c whereas under
different ramp conditions a droplet can, before reaching Cc ,
jump from a two-lobed structure to a three-lobed one, wh
is then stable to much higher Ca. ForI ,I c the droplet
evolves to a three-lobed structure before losing stability,
matter how slow the ramp rate. From extrapolation of t
critical capillary number we proposed that, even at very la
Ca, a threshold in Re of order unity may need to be
ceeded; but an alternative is that the Cac diverges only
as Re→0.

Because of the care required in achieving equilibrat
close to Cac it would be difficult to perform similar numeri-
cal studies in three dimensions without very substantial
sources. Nonetheless, an important open question is whe
on increasing the relative importance of inertia, the break
mode in three dimensions also undergoes a sudden trans
as we discovered here. We are unaware of experiments
dressing this, and note that in such experiments~as well as in
simulations! very careful control of the shear history migh
be needed to identify any transitions that may be presen

This work was funded in part by EPSRC Grant Nos. G
M56234 and GR/R67699.
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