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We investigate by lattice Boltzmann methods the effect of inertia on the deformation and breakdown of
stability of a two-dimensional fluid droplet surrounded by fluid of equal viscoditya confined geometiy
whose shear rate is increased very slowly. We give evidence that in two dimensions ineetassaryor the
loss of stability, so that at zero Reynolds number there is always a stable stationary droplet shape. We identify
two different routes to breakdown, via two-lobed and three-lobed structures and give evidence for a sharp
transition between these routes as parameters are varied.
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The role of inertia in the deformation and loss of stability plays an essential part. The relatively moderate demands of
of a droplet in a shear flow remains an open problem in fluidwo-dimensional simulations allows us to establish the sce-
mechanics. In three dimensio3D), a droplet in a steady nario relatively clearly, even for the case of an “infinitesi-
shear field will cease to have a stable shape at a criticanal” ramp, which we here approach numerically by a recur-
capillary number Ca0.5 even without inertid1]. Crudely ~ sive updating scheme for the flow rate.
speaking, this happens when it is deformed enough to un- Method. We use the lattice Boltzman(LB) method to
dergo the Rayleigh instability, which is the peristaltic insta-Simulate a(symmetri¢ binary fluid deep within the two-
bility of a long tube of one static fluid in another, driven by phase region. The phase separation of the order parameter
interfacial tension. In three dimensions this loss of stabilityis induced by a chemical potentig=A¢+Bp>—«kV?¢
of the steady-state droplet shafvehich we call breakdown ~derived from a¢* Landau free energy8]. The evolution
leads in finite time to the hydrodynamic fission of the dropletequation for the order parameter is
(often called breakup Ca measures the relative importance
of viscous to interfacial forces; the effect of inertia, whose dhp+u-Vo=MV2py (1)
importance is quantified by the Reynolds number Re, is es-
sentially perturbative. Thus, although situations arise where with M being a mobility; this is coupled with a Navier-
droplet that would be stable at zero Re is unstable at a finit&tokes equation
Re, this really amounts to an inertia-induced shift of the criti-
cal Ca. The contribution of inertia was studied in recent nu- p(du+u-Vu)=—Vp+ ¢V u+ yVau, (2
merical work[2-5]. Much of this work uses a flow protocol
based on sudden onset of shearing at different flow ratesyhere u is the fluid velocity, p its density, andy is the
rather than a gradual ramping up of the rate; this saves mualiscosity. The interfacial tension is included in this model
time numerically but describes a distinct physical situ-through the gradient terms in the chemical potential and it is
ation from the slow ramp studied here; both are of interesgiven by o= (2A/3B)J—2«A. Note that topological recon-
experimentally. nections of the fluid-fluid interface are handled implicitly by

The situation is somewhat different in two dimensions.the order parameter diffusion and no singularity is encoun-
Although not realizable directly in laboratory experiments,tered at breakup. Care was taken with parameter selection to
this case is more accessible by simulaiév], and is inter-  ensure that the droplet behavior is dominated by hydrody-
esting because the nonlinear physics involved may not be theamic and capillary forces, except very close to the breakup
same as in 3D. In 2D, the Rayleigh instability is effectively point, where both diffusion and an interaction arising from
switched off, because periodic variations in the width of thethe finite breadth of the interfacda few lattice spacings
droplet (at fixed volume always increases the amount of kick in.
interface. Also, in 2D breakdowttoss of steady-state stabil-  In our simulations, we first set up a droplet of fluid in a
ity) is distinct from breakup(droplet fission: breakdown  surrounding immiscible phase of the same viscosity. To im-
leads to the formation of a long neck that might in principle pose a shear flow with strain rai;e we introduce moving

elongate and thin indefinitely. In practice this will pinch off, \yoiis at the top and bottom edges of the simulation cell with
albeit through a nonhydrodynamic mechanism, once the twog

interfaces get close enoughVhen “breakup” is referred to opposite velocities: L y/2 whereL is the cell width. A drop-

belo, s 5 what we mesrin the present wor we suy 1061 2 Shear rofle il elonr i he fow it one
numerically in 2D the breakdown of stability of a droplet, y '

and find quite distinctive nonlinear physics, in which inertiaThe ratio of these forces is expressed in the capillary number

vR
Ca= 100, 3)
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whereR; is the radius of the undeformed droplet; the Rey-
nolds number measures the ratio of inertial and viscous
forces:

D2

pYR

Re= ——
i

: 4)

We quantify the deformation of a droplet by calculating FIG. 1. For zero Reynolds number a two-dimensional droplet
the following moments of the order parameter field remains hydrodynamically stable at all Ca studied. It extends until
the width of the droplet is of the order of the interface width. The

. picture shows a droplet with Ca1.1; the upper wall is moving
b= zx: 0(¢) ¢, (5 rightward, the lower, leftward.

c =E 0( )% ©) facts of the LB methoc[9,1_0]. The initial _droplet radius in
a a’ each run was 21 lattice units. However, it was found that the
increased curvature of a sheared droplet could lead to slight
changes in its size as a result of increased Laplace pressure
daﬁzg 0($) p(Xa—Ca)(Xg—Cp). (7)  causing a shift in solubility. This effect was minimized by
using the true size of the droplet when calculati®gfor the
Hereb gives the two-dimensional droplet’s area amt the ~ purposes of Re and Gaee below.

position vector of its center. The eigenvaluesdgf;/b give The ratioL/R,=5.7 is not so large as to approach the
us two length scalels =1, corresponding to the two axes of Pehavior of a droplet being sheared in an infinite medium.
the droplet. The Taylor deformation is defined as Wall proximity effects are present in our resultss they are
in many experimenjs but we do not study these systemati-
[i—15 cally here. In addition, the slight changeRg with shear rate
- P (®) mentioned above means that the wall effects vary slightly
during each run. By varying lattice size and shape we
Note that very deformed droplets hafzeclose to(but still  checked that there was no undue influence on the results. The
less tham unity. same applies to the effect caused by proximity of a droplet to

To study the breakdown of stability of droplets and find its periodic image along the flow direction.
the critical capillary numbetbeyond which no steady state  Although it is hard to quantify precisely all systematic
for a single droplet stably exigtsve need to find the station- errors in LB[9] we believe the quantitative results reported
ary shapes of droplets at various Ca and Re. We ramp up theelow are generally good to within 10% and mostly rather
shear rate in a way that finds all stable droplet shapes befotgetter. Our main conclusions, however, are qualitative in
the breakdown. To do this efficiently we use an algorithmnature.

that increases the shear ratstepwise and then waits for the ~ Zero Reynolds number resultSirst we report a simula-
droplet shape to reach steady state before calculating Ca ati@n for Re=0. While LB fully treats inertial effects, a sta-
Re. If droplet fission occurs, or if the resulting deformationtionary zero Reynolds number flow can also be simulated
increment is too largéexceeding a thresholdD.=0.05) a  (essentially by switching off the term in the algorithm that
smaller increasd ¥ in the shear rate is tried. This process is 2ndles fluid convectianin contrast to previous suggestions

. L e . . [6,11], we found that a two-dimensional droplet in a shear
iterated until either equilibrium is achieved, ary falls be- ¢ 0 = 0.0 Redoes not break dowhy any fluid-mechanical

low a pre-set limit chosen very close to zeth%.=10"").  process. Instead it continues to defofffig. 1) until the
In the latter case, the last value gffor which equilibrium  width of the droplet is comparable to the interface width, at
was reached is identified as the final stable shear rate; thigrhich point dissolution-assisted breakup occurs. This corre-
fixes the value of Ca and Re at breakdown of stability for thesponds to a molecular rather than a hydrodynamic breakup
chosen run. By varying simulation parametésach as vis- mechanism. A similarly elongated droplet in 3D would cer-
cosity) an ensemble of curves of Re versus Ca was genetainly not survive, due to the Rayleigh instability.
ated. Each termininated in a breakdown point. Finite Reynolds number result8oth Re and Ca depend
The simulations reported below have lattices bounded by¥inearly on the shear rate. We can, however, form the dimen-
moving walls separated by 120 lattice sites, with periodicsionless numbelr=Re/Ca which will be almost constant for
boundary conditions along the flow directi¢m which the  each run(deviations arising only from the small changes in
lattice length is 400 Other parameters common to all runs droplet sizeR,; see above The nominall values for the
were, in lattice units[9], —A=B=0.06;x=0.039, from nine different runs simulated are identified in the caption to
which the interfacial tension is derived as 0.046; avid Fig. 2, where we show deformation curves in each case. At
=3.0. Ten viscosity values were selected in the range 0.23modest Ca values the curves with a highémore inertia
0.88, again in lattice unitf9]. These parameter values were show a larger deformation. A likely explanation for this is the
chosen to minimize lattice anisotropy, spurious diffusive cur-Bernoulli effect. This will create regions of lower pressure at
rents, and other well-documented but fairly controllable artethe edges of the droplet, tending to stretch it into the flow so
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FIG. 2. Taylor deformation against capillary number under slow
ramping of shear rates fgtop to bottom nine runs of viscosities in
the range 0.181-0.87(Tattice unit3 and the zero Re limit. Values FIG. 3. Deformation curves plotted in tiiRe, Ca plane. Note
of the parameter=Re/Ca ard =18, 13, 11, 9.1, 7.3, 6.3, 3.7, 2.2, that the zero Re curve coincides with thaxis and does not end in
1.3, O(top to bottom. breakdown. The envelope of breakdown points is shown to guide

] ] ) the eye: this has two disconnected parts, corresponding to two-lobe
that it experiences a stronger flow than applies for a droplefng three-lobe droplets at the last stable configuration. Typical

at zero Re. . . shapes are as indicated.
The simulation corresponding to the lowest curve is the

zero Reynolds number case, and here breakdown does nfiid that the droplets develop a double dimple; beyond the
occur, as previously discussed. All other curves end at theritical capillary number C4l) these elongate and break up
last stable configuration for the droplet that could be foundnto three. Foi > I the last stable droplet shows one dimple;
using our ramp method. It can be difficult to establish thebeyond Ca these elongate and break up into only two
stability of the very slowly evolving, near-critical droplets droplets.
that arise close to this last stable configuratjparticularly if Note that in these simulations we only observed break-
they are very deformgdso we have taken care to run the down of stability for Re<1.2. The shape of the breakdown
simulations for tens of thousands of time steps per iteratiornvelope in Fig. 3, together with the knowledge that the zero
in these parts of the curves. Reynolds number case remains stable, suggests that the en-

With increasingl we find that there is a trend towards velope could have a horizontal asymptote at some nonzero
steeper deformation curves, and at a criticabetween 6.3 value of Re(perhaps close to unity This would imply a
and 7.3 we observe a singularity in which the deformationfinite critical Re below which no breakdown could occur,
curve appears to develop an infinite slope at its end pointhowever large Ca. However, more detailed work would be
Further all deformation curves with largeend similarly ata needed to reach a firm conclusion on this point.
deformation of about 0.7. We performed simulations for a We also performed simulations with a less sophisticated
number of different lattice sizes and the exact valud of ramp algorithm in which the shear rate was increased as
depends on the cell dimensions, with increasing wall separasefore, but without restriction on the deformation increment.
tion causing a shift to smalldy, [12]. In this case, different behavior was seen arolyndDroplets

As explained earlier, our ramp algorithm is designed towhich, when ramped more carefully, would show the two-
allow only a certain amount of deformation for each newlobed breakdown mod@vith a vertical tangent to the defor-
stationary state. So, before the algorithm reaches a region afiation curve at its end point; Fig.) Zould now jump past
infinite slope it will force ever smaller shear-rate increments;this onto the upper branch of the deformation curve, devel-
when these fall below the pre-set threshold the algorithm willoping instead a stable three-lobed shape, finally breaking up
save the last configuration and exit. To check the fate oft higher Ca into three droplets. The deformation curve for
these droplets we reloaded the last configurations manuallgne such case is compared to the more careful ramp for the
and again increased the shear rate by a very small amoursgamel in Fig. 4. This proves that the details of the flow
All these droplets were unstable to extension and eventualljistory can strongly affect the breakdown mode and also the
broke up into two droplet$not three as the necks became shear rate at which breakdown occurs.
too thin. Comparing this result with the general trend shown for

We show the dependence of the last stable capillary numarger| in Fig. 2 suggests a conjecture: that the behavior is
ber on Re in Fig. 3. Each of the runs appearg&knosj governed by an underlying, continuous deformation curve
straight line on the plot, ending at the breakdown point. Twothat has, fol >1., folded over into ars shape. With such a
different critical capillary number regimes are clearly sepa-curve, one might naturally expect a discontinuous jump in
rated in the Re/Ca plane. Figure 3 gives examples of the lagteformation on ramping up to the point of vertical tangency.
stable droplet shapes for botk<l. andl>1.. Forl<I.we  However, it appears that droplets cannot survive the jump
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never got clear evidence of this in our simulations, so any
hysteresis loop appears to be relatively small.
Conclusions.In this article we have provided evidence
that the breakdown of droplet stability in two dimensions
requires a nonzero Reynolds number. The dependence of the
critical capillary number Gaon the dimensionless number
| =Re/Ca for two-dimensional droplet breakdown shows an
unexpected transition at=1.. (The precise value of. de-
pends on the wall separationThis transition is consistent
with an evolution of the underlying deformation curve
D(Ca) into anS shape.(However, we did not observe hys-
teresis around this transitigrA slow enough ramp leads to a
two-lobed instability mode at G&or | >1. whereas under
different ramp conditions a droplet can, before reaching, Ca
jump from a two-lobed structure to a three-lobed one, which
is then stable to much higher Ca. Fbkl. the droplet
evolves to a three-lobed structure before losing stability, no
FIG. 4. Two deformation curves for=11. For one run with the ~Matter how slow the ramp rate. From extrapolation of the
deformation restriction was removed. The droplet overshoots théfitical capillary number we proposed that, even at very large
underlying breakdown point and jumps into a three lobe structureCa, a threshold in Re of order unity may need to be ex-
which survives to larger capillary numbers until eventually losingceeded; but an alternative is that the Gdiverges only
stability. as Re-0.
Because of the care required in achieving equilibration

(but instead show a two-lobed breakdown of stability close to_C@_lt would b_e d'ﬁ'QUIt to perform similar numeri-
cal studies in three dimensions without very substantial re-

brought very close to this point before the jump is made. . S
With a faster ramp, the jump occurs sooner: the droplet thegources. Nonetheless, an important open question is whether,

can survive the jump and continue onto the upper branch ot ‘”CfeaS‘”g th_e rela_tive importance of inertia, the breakyp
the deformation curve. The mechanism seems to involvémde in three dimensions also undergoes a sudden transition

transient stretching just after the shear rate is incremented®> W€ discovered here. We are unaware of experiments ad-

this allows the droplet to find the upper branch of the defor_dressmg this, and note that in such experimeatswell as in

mation curve, but only if the shear rate-increment is suffi—Sirnulations very cqreful control.(_)f the shear history might

cient. Note that such a8-shaped deformation curve would be needed to identify any transitions that may be present.

also admit hysteresis, in which two states of deformation This work was funded in part by EPSRC Grant Nos. GR/
were both possible at exactly the same Ca. However, w&156234 and GR/R67699.
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